import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.Image;
import java.awt.RenderingHints;
import java.awt.Transparency;
import java.awt.image.BufferedImage;
import java.net.URL;
import javax.imageio.ImageIO;
import javax.swing.JComponent;
import javax.swing.JFrame;
import javax.swing.SwingUtilities;
/*
* PictureScaler.java
*
* Created on May 1, 2007, 5:03 PM
*
* Copyright (c) 2007, Sun Microsystems, Inc
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the TimingFramework project nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
*
* @author Chet
*/
public class PictureScaler extends JComponent {
private static BufferedImage picture = null;
private static final int PADDING = 10;
private static final double SCALE_FACTOR = .05;
private int scaleW, scaleH;
/** Creates a new instance of PictureScaler */
public PictureScaler() {
try {
URL url = getClass().getResource("BB.jpg");
picture = ImageIO.read(url);
scaleW = (int)(SCALE_FACTOR * picture.getWidth());
scaleH = (int)(SCALE_FACTOR * picture.getHeight());
System.out.println("w, h = " + picture.getWidth() + ", " + picture.getHeight());
setPreferredSize(new Dimension(PADDING + (5 * (scaleW + PADDING)),
scaleH + (4 * PADDING)));
} catch (Exception e) {
System.out.println("Problem reading image file: " + e);
System.exit(0);
}
}
/**
* Convenience method that returns a scaled instance of the
* provided BufferedImage.
*
*
* @param img the original image to be scaled
* @param targetWidth the desired width of the scaled instance,
* in pixels
* @param targetHeight the desired height of the scaled instance,
* in pixels
* @param hint one of the rendering hints that corresponds to
* RenderingHints.KEY_INTERPOLATION (e.g.
* RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR,
* RenderingHints.VALUE_INTERPOLATION_BILINEAR,
* RenderingHints.VALUE_INTERPOLATION_BICUBIC)
* @param progressiveBilinear if true, this method will use a multi-step
* scaling technique that provides higher quality than the usual
* one-step technique (only useful in down-scaling cases, where
* targetWidth or targetHeight is
* smaller than the original dimensions)
* @return a scaled version of the original BufferedImage
*/
public BufferedImage getFasterScaledInstance(BufferedImage img,
int targetWidth, int targetHeight, Object hint,
boolean progressiveBilinear)
{
int type = (img.getTransparency() == Transparency.OPAQUE) ?
BufferedImage.TYPE_INT_RGB : BufferedImage.TYPE_INT_ARGB;
BufferedImage ret = img;
BufferedImage scratchImage = null;
Graphics2D g2 = null;
int w, h;
int prevW = ret.getWidth();
int prevH = ret.getHeight();
boolean isTranslucent = img.getTransparency() != Transparency.OPAQUE;
if (progressiveBilinear) {
// Use multi-step technique: start with original size, then
// scale down in multiple passes with drawImage()
// until the target size is reached
w = img.getWidth();
h = img.getHeight();
} else {
// Use one-step technique: scale directly from original
// size to target size with a single drawImage() call
w = targetWidth;
h = targetHeight;
}
do {
if (progressiveBilinear && w > targetWidth) {
w /= 2;
if (w < targetWidth) {
w = targetWidth;
}
}
if (progressiveBilinear && h > targetHeight) {
h /= 2;
if (h < targetHeight) {
h = targetHeight;
}
}
if (scratchImage == null || isTranslucent) {
// Use a single scratch buffer for all iterations
// and then copy to the final, correctly-sized image
// before returning
scratchImage = new BufferedImage(w, h, type);
g2 = scratchImage.createGraphics();
}
g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION, hint);
g2.drawImage(ret, 0, 0, w, h, 0, 0, prevW, prevH, null);
prevW = w;
prevH = h;
ret = scratchImage;
} while (w != targetWidth || h != targetHeight);
if (g2 != null) {
g2.dispose();
}
// If we used a scratch buffer that is larger than our target size,
// create an image of the right size and copy the results into it
if (targetWidth != ret.getWidth() || targetHeight != ret.getHeight()) {
scratchImage = new BufferedImage(targetWidth, targetHeight, type);
g2 = scratchImage.createGraphics();
g2.drawImage(ret, 0, 0, null);
g2.dispose();
ret = scratchImage;
}
return ret;
}
/**
* Render all scaled versions 10 times, timing each version and
* reporting the results below the appropriate scaled image.
*/
protected void paintComponent(Graphics g) {
// Scale with NEAREST_NEIGHBOR
int xLoc = PADDING, yLoc = PADDING;
long startTime, endTime;
float totalTime;
int iterations = 10;
((Graphics2D)g).setRenderingHint(RenderingHints.KEY_INTERPOLATION,
RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR);
startTime = System.nanoTime();
for (int i = 0; i < iterations; ++i) {
g.drawImage(picture, xLoc, yLoc, scaleW, scaleH, null);
}
endTime = System.nanoTime();
totalTime = (float)((endTime - startTime) / 1000000) / iterations;
g.drawString("NEAREST ", xLoc, yLoc + scaleH + PADDING);
g.drawString(Float.toString(totalTime) + " ms",
xLoc, yLoc + scaleH + PADDING + 10);
System.out.println("NEAREST: " + ((endTime - startTime) / 1000000));
// Scale with BILINEAR
xLoc += scaleW + PADDING;
((Graphics2D)g).setRenderingHint(RenderingHints.KEY_INTERPOLATION,
RenderingHints.VALUE_INTERPOLATION_BILINEAR);
startTime = System.nanoTime();
for (int i = 0; i < iterations; ++i) {
g.drawImage(picture, xLoc, yLoc, scaleW, scaleH, null);
}
endTime = System.nanoTime();
totalTime = (float)((endTime - startTime) / 1000000) / iterations;
g.drawString("BILINEAR", xLoc, yLoc + scaleH + PADDING);
g.drawString(Float.toString(totalTime) + " ms",
xLoc, yLoc + scaleH + PADDING + 10);
System.out.println("BILINEAR: " + ((endTime - startTime) / 1000000));
// Scale with BICUBIC
xLoc += scaleW + PADDING;
((Graphics2D)g).setRenderingHint(RenderingHints.KEY_INTERPOLATION,
RenderingHints.VALUE_INTERPOLATION_BICUBIC);
startTime = System.nanoTime();
for (int i = 0; i < iterations; ++i) {
g.drawImage(picture, xLoc, yLoc, scaleW, scaleH, null);
}
endTime = System.nanoTime();
totalTime = (float)((endTime - startTime) / 1000000) / iterations;
g.drawString("BICUBIC", xLoc, yLoc + scaleH + PADDING);
g.drawString(Float.toString(totalTime) + " ms",
xLoc, yLoc + scaleH + PADDING + 10);
System.out.println("BICUBIC: " + ((endTime - startTime) / 1000000));
// Scale with getScaledInstance
xLoc += scaleW + PADDING;
startTime = System.nanoTime();
for (int i = 0; i < iterations; ++i) {
Image scaledPicture = picture.getScaledInstance(scaleW, scaleH,
Image.SCALE_AREA_AVERAGING);
g.drawImage(scaledPicture, xLoc, yLoc, null);
}
endTime = System.nanoTime();
totalTime = (float)((endTime - startTime) / 1000000) / iterations;
g.drawString("getScaled", xLoc, yLoc + scaleH + PADDING);
g.drawString(Float.toString(totalTime) + " ms",
xLoc, yLoc + scaleH + PADDING + 10);
System.out.println("getScaled: " + ((endTime - startTime) / 1000000));
// Scale with Progressive Bilinear
xLoc += scaleW + PADDING;
startTime = System.nanoTime();
for (int i = 0; i < iterations; ++i) {
Image scaledPicture = getFasterScaledInstance(picture, scaleW, scaleH,
RenderingHints.VALUE_INTERPOLATION_BILINEAR, true);
g.drawImage(scaledPicture, xLoc, yLoc, null);
}
endTime = System.nanoTime();
totalTime = (float)((endTime - startTime) / 1000000) / iterations;
g.drawString("Progressive", xLoc, yLoc + scaleH + PADDING);
g.drawString(Float.toString(totalTime) + " ms",
xLoc, yLoc + scaleH + PADDING + 10);
System.out.println("Progressive: " + ((endTime - startTime) / 1000000));
}
private static void createAndShowGUI() {
JFrame f = new JFrame();
f.setLayout(new BorderLayout());
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
PictureScaler test = new PictureScaler();
//f.setSize(scaleW + (4 * PADDING), scaleH + (4 * PADDING));
f.add(test);
f.validate();
f.pack();
f.setVisible(true);
}
public static void main(String args[]) {
Runnable doCreateAndShowGUI = new Runnable() {
public void run() {
createAndShowGUI();
}
};
SwingUtilities.invokeLater(doCreateAndShowGUI);
}
}
|