图片缩放 : 涂料 « 图形用户界面 « Java

En
Java
1. 图形用户界面
2. 三维图形动画
3. 高级图形
4. 蚂蚁编译
5. Apache类库
6. 统计图
7. 
8. 集合数据结构
9. 数据类型
10. 数据库JDBC
11. 设计模式
12. 开发相关类
13. EJB3
14. 电子邮件
15. 事件
16. 文件输入输出
17. 游戏
18. 泛型
19. GWT
20. Hibernate
21. 本地化
22. J2EE平台
23. 基于J2ME
24. JDK-6
25. JNDI的LDAP
26. JPA
27. JSP技术
28. JSTL
29. 语言基础知识
30. 网络协议
31. PDF格式RTF格式
32. 映射
33. 常规表达式
34. 脚本
35. 安全
36. Servlets
37. Spring
38. Swing组件
39. 图形用户界面
40. SWT-JFace-Eclipse
41. 线程
42. 应用程序
43. Velocity
44. Web服务SOA
45. 可扩展标记语言
Java 教程
Java » 图形用户界面 » 涂料屏幕截图 
图片缩放

 
 

import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.Image;
import java.awt.RenderingHints;
import java.awt.Transparency;
import java.awt.image.BufferedImage;
import java.net.URL;
import javax.imageio.ImageIO;
import javax.swing.JComponent;
import javax.swing.JFrame;
import javax.swing.SwingUtilities;
/*
 * PictureScaler.java
 *
 * Created on May 1, 2007, 5:03 PM
 *
 * Copyright (c) 2007, Sun Microsystems, Inc
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the TimingFramework project nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/**
 *
 @author Chet
 */
public class PictureScaler extends JComponent {

    private static BufferedImage picture = null;
    private static final int PADDING = 10;
    private static final double SCALE_FACTOR = .05;
    private int scaleW, scaleH;
    
    /** Creates a new instance of PictureScaler */
    public PictureScaler() {
        try {
            URL url = getClass().getResource("BB.jpg");
            picture = ImageIO.read(url);
            scaleW = (int)(SCALE_FACTOR * picture.getWidth());
            scaleH = (int)(SCALE_FACTOR * picture.getHeight());
            System.out.println("w, h = " + picture.getWidth() ", " + picture.getHeight());
            setPreferredSize(new Dimension(PADDING + ((scaleW + PADDING))
                    scaleH + (* PADDING)));
        catch (Exception e) {
            System.out.println("Problem reading image file: " + e);
            System.exit(0);
        }
    }

    /**
     * Convenience method that returns a scaled instance of the
     * provided BufferedImage.
     
     
     @param img the original image to be scaled
     @param targetWidth the desired width of the scaled instance,
     *    in pixels
     @param targetHeight the desired height of the scaled instance,
     *    in pixels
     @param hint one of the rendering hints that corresponds to
     *    RenderingHints.KEY_INTERPOLATION (e.g.
     *    RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR,
     *    RenderingHints.VALUE_INTERPOLATION_BILINEAR,
     *    RenderingHints.VALUE_INTERPOLATION_BICUBIC)
     @param progressiveBilinear if true, this method will use a multi-step
     *    scaling technique that provides higher quality than the usual
     *    one-step technique (only useful in down-scaling cases, where
     *    targetWidth or targetHeight is
     *    smaller than the original dimensions)
     @return a scaled version of the original BufferedImage
     */
    public BufferedImage getFasterScaledInstance(BufferedImage img,
            int targetWidth, int targetHeight, Object hint,
            boolean progressiveBilinear)
    {
        int type = (img.getTransparency() == Transparency.OPAQUE?
            BufferedImage.TYPE_INT_RGB : BufferedImage.TYPE_INT_ARGB;
        BufferedImage ret = img;
        BufferedImage scratchImage = null;
        Graphics2D g2 = null;
        int w, h;
        int prevW = ret.getWidth();
        int prevH = ret.getHeight();
        boolean isTranslucent = img.getTransparency() !=  Transparency.OPAQUE; 

        if (progressiveBilinear) {
            // Use multi-step technique: start with original size, then
            // scale down in multiple passes with drawImage()
            // until the target size is reached
            w = img.getWidth();
            h = img.getHeight();
        else {
            // Use one-step technique: scale directly from original
            // size to target size with a single drawImage() call
            w = targetWidth;
            h = targetHeight;
        }
        
        do {
            if (progressiveBilinear && w > targetWidth) {
                w /= 2;
                if (w < targetWidth) {
                    w = targetWidth;
                }
            }

            if (progressiveBilinear && h > targetHeight) {
                h /= 2;
                if (h < targetHeight) {
                    h = targetHeight;
                }
            }

            if (scratchImage == null || isTranslucent) {
                // Use a single scratch buffer for all iterations
                // and then copy to the final, correctly-sized image
                // before returning
                scratchImage = new BufferedImage(w, h, type);
                g2 = scratchImage.createGraphics();
            }
            g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION, hint);
            g2.drawImage(ret, 00, w, h, 00, prevW, prevH, null);
            prevW = w;
            prevH = h;

            ret = scratchImage;
        while (w != targetWidth || h != targetHeight);
        
        if (g2 != null) {
            g2.dispose();
        }

        // If we used a scratch buffer that is larger than our target size,
        // create an image of the right size and copy the results into it
        if (targetWidth != ret.getWidth() || targetHeight != ret.getHeight()) {
            scratchImage = new BufferedImage(targetWidth, targetHeight, type);
            g2 = scratchImage.createGraphics();
            g2.drawImage(ret, 00null);
            g2.dispose();
            ret = scratchImage;
        }
        
        return ret;
    }
    
    /**
     * Render all scaled versions 10 times, timing each version and 
     * reporting the results below the appropriate scaled image.
     */
    protected void paintComponent(Graphics g) {
        // Scale with NEAREST_NEIGHBOR
        int xLoc = PADDING, yLoc = PADDING;
        long startTime, endTime;
        float totalTime;
        int iterations = 10;
        ((Graphics2D)g).setRenderingHint(RenderingHints.KEY_INTERPOLATION, 
                RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR);
        startTime = System.nanoTime();
        for (int i = 0; i < iterations; ++i) {
            g.drawImage(picture, xLoc, yLoc, scaleW, scaleH, null);
        }
        endTime = System.nanoTime();
        totalTime = (float)((endTime - startTime1000000/ iterations;
        g.drawString("NEAREST ", xLoc, yLoc + scaleH + PADDING);
        g.drawString(Float.toString(totalTime" ms"
                xLoc, yLoc + scaleH + PADDING + 10);
        System.out.println("NEAREST: " ((endTime - startTime1000000));
        
        // Scale with BILINEAR
        xLoc += scaleW + PADDING;
        ((Graphics2D)g).setRenderingHint(RenderingHints.KEY_INTERPOLATION, 
                RenderingHints.VALUE_INTERPOLATION_BILINEAR);
        startTime = System.nanoTime();
        for (int i = 0; i < iterations; ++i) {
            g.drawImage(picture, xLoc, yLoc, scaleW, scaleH, null);
        }
        endTime = System.nanoTime();
        totalTime = (float)((endTime - startTime1000000/ iterations;
        g.drawString("BILINEAR", xLoc, yLoc + scaleH + PADDING);
        g.drawString(Float.toString(totalTime" ms"
                xLoc, yLoc + scaleH + PADDING + 10);
        System.out.println("BILINEAR: " ((endTime - startTime1000000));

        // Scale with BICUBIC
        xLoc += scaleW + PADDING;
        ((Graphics2D)g).setRenderingHint(RenderingHints.KEY_INTERPOLATION, 
                RenderingHints.VALUE_INTERPOLATION_BICUBIC);
        startTime = System.nanoTime();
        for (int i = 0; i < iterations; ++i) {
            g.drawImage(picture, xLoc, yLoc, scaleW, scaleH, null);
        }
        endTime = System.nanoTime();
        totalTime = (float)((endTime - startTime1000000/ iterations;
        g.drawString("BICUBIC", xLoc, yLoc + scaleH + PADDING);
        g.drawString(Float.toString(totalTime" ms"
                xLoc, yLoc + scaleH + PADDING + 10);
        System.out.println("BICUBIC: " ((endTime - startTime1000000));

        // Scale with getScaledInstance
        xLoc += scaleW + PADDING;
        startTime = System.nanoTime();
        for (int i = 0; i < iterations; ++i) {
            Image scaledPicture = picture.getScaledInstance(scaleW, scaleH, 
                    Image.SCALE_AREA_AVERAGING);
            g.drawImage(scaledPicture, xLoc, yLoc, null);
        }
        endTime = System.nanoTime();
        totalTime = (float)((endTime - startTime1000000/ iterations;
        g.drawString("getScaled", xLoc, yLoc + scaleH + PADDING);
        g.drawString(Float.toString(totalTime" ms"
                xLoc, yLoc + scaleH + PADDING + 10);
        System.out.println("getScaled: " ((endTime - startTime1000000));
        
        // Scale with Progressive Bilinear
        xLoc += scaleW + PADDING;
        startTime = System.nanoTime();
        for (int i = 0; i < iterations; ++i) {
            Image scaledPicture = getFasterScaledInstance(picture, scaleW, scaleH, 
                    RenderingHints.VALUE_INTERPOLATION_BILINEAR, true);
            g.drawImage(scaledPicture, xLoc, yLoc, null);
        }
        endTime = System.nanoTime();
        totalTime = (float)((endTime - startTime1000000/ iterations;
        g.drawString("Progressive", xLoc, yLoc + scaleH + PADDING);
        g.drawString(Float.toString(totalTime" ms"
                xLoc, yLoc + scaleH + PADDING + 10);
        System.out.println("Progressive: " ((endTime - startTime1000000));
    }
    
    private static void createAndShowGUI() {
        JFrame f = new JFrame();
        f.setLayout(new BorderLayout());
        f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        PictureScaler test = new PictureScaler();
        //f.setSize(scaleW + (4 * PADDING), scaleH + (4 * PADDING));
        f.add(test);        
        f.validate();
        f.pack();
        f.setVisible(true);
    }
    
    public static void main(String args[]) {
        Runnable doCreateAndShowGUI = new Runnable() {
            public void run() {
                createAndShowGUI();
            }
        };
        SwingUtilities.invokeLater(doCreateAndShowGUI);
    }
}

 

 
Related examples in the same category
1. 绘制字符串绘制字符串
2. 绘制的颜色和文字绘制的颜色和文字
3. 反锯齿反锯齿
4. 绘制绘制
5. 绘制网格绘制网格
6. Paint Test Paint Test
7. Render Quality Test Render Quality Test
8. 绘制绘制
9. 径向渐变径向渐变
10. 关于中心变换
11. 安全重绘
12. 量表测试
13. Scaling Methods
14. 简单属性的绘画
15. 两站梯度两站梯度
16. 坏与好原始渲染
www.java2java.com | Contact Us
Copyright 2010 - 2030 Java Source and Support. All rights reserved.
All other trademarks are property of their respective owners.