Sequenced HashMap : Customized Map « Collections Data Structure « Java

Java
1. 2D Graphics GUI
2. 3D
3. Advanced Graphics
4. Ant
5. Apache Common
6. Chart
7. Class
8. Collections Data Structure
9. Data Type
10. Database SQL JDBC
11. Design Pattern
12. Development Class
13. EJB3
14. Email
15. Event
16. File Input Output
17. Game
18. Generics
19. GWT
20. Hibernate
21. I18N
22. J2EE
23. J2ME
24. JDK 6
25. JNDI LDAP
26. JPA
27. JSP
28. JSTL
29. Language Basics
30. Network Protocol
31. PDF RTF
32. Reflection
33. Regular Expressions
34. Scripting
35. Security
36. Servlets
37. Spring
38. Swing Components
39. Swing JFC
40. SWT JFace Eclipse
41. Threads
42. Tiny Application
43. Velocity
44. Web Services SOA
45. XML
Java Tutorial
Java Source Code / Java Documentation
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java » Collections Data Structure » Customized MapScreenshots 
Sequenced HashMap
    


/*
 * $Header: /home/projects/aspectwerkz/scm/aspectwerkz4/src/main/org/codehaus/aspectwerkz/util/SequencedHashMap.java,v 1.3 2004/10/22 12:40:40 avasseur Exp $
 * $Revision: 1.3 $
 * $Date: 2004/10/22 12:40:40 $
 *
 
 *
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 1999-2002 The Apache Software Foundation.  All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. The end-user documentation included with the redistribution, if
 *    any, must include the following acknowlegement:
 *       "This product includes software developed by the
 *        Apache Software Foundation (http://www.apache.org/)."
 *    Alternately, this acknowlegement may appear in the software itself,
 *    if and wherever such third-party acknowlegements normally appear.
 *
 * 4. The names "The Jakarta Project", "Commons", and "Apache Software
 *    Foundation" must not be used to endorse or promote products derived
 *    from this software without prior written permission. For written
 *    permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache"
 *    nor may "Apache" appear in their names without prior written
 *    permission of the Apache Group.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED.  IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation.  For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 */

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.util.AbstractCollection;
import java.util.AbstractSet;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.ConcurrentModificationException;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;

/**
 * A map of objects whose mapping entries are sequenced based on the order in which they were added. This data structure
 * has fast <I>O(1) </I> search time, deletion time, and insertion time. <p/>
 * <P>
 * Although this map is sequenced, it cannot implement {@link java.util.List}because of incompatible interface
 * definitions. The remove methods in List and Map have different return values (see:
 * {@linkjava.util.List#remove(Object)}and {@link java.util.Map#remove(Object)}).<p/>
 * <P>
 * This class is not thread safe. When a thread safe implementation is required, use {@link
 * Collections#synchronizedMap(Map)} as it is documented, or use explicit synchronization controls.
 *
 @author <a href="mailto:mas@apache.org">Michael A. Smith </A>
 @author <a href="mailto:dlr@collab.net">Daniel Rall </a>
 @author <a href="mailto:hps@intermeta.de">Henning P. Schmiedehausen </a>
 @since 2.0
 */
public class SequencedHashMap implements Map, Cloneable, Externalizable {
    // constants to define what the iterator should return on "next"
    private static final int KEY = 0;

    private static final int VALUE = 1;

    private static final int ENTRY = 2;

    private static final int REMOVED_MASK = 0x80000000;

    // add a serial version uid, so that if we change things in the future
    // without changing the format, we can still deserialize properly.
    private static final long serialVersionUID = 3380552487888102930L;

    /**
     * Sentinel used to hold the head and tail of the list of entries.
     */
    private Entry sentinel;

    /**
     * Map of keys to entries
     */
    private HashMap entries;

    /**
     * Holds the number of modifications that have occurred to the map, excluding modifications made through a
     * collection view's iterator (e.g. entrySet().iterator().remove()). This is used to create a fail-fast behavior
     * with the iterators.
     */
    private transient long modCount = 0;

    /**
     * Construct a new sequenced hash map with default initial size and load factor.
     */
    public SequencedHashMap() {
        sentinel = createSentinel();
        entries = new HashMap();
    }

    /**
     * Construct a new sequenced hash map with the specified initial size and default load factor.
     *
     @param initialSize the initial size for the hash table
     @see HashMap#HashMap(int)
     */
    public SequencedHashMap(int initialSize) {
        sentinel = createSentinel();
        entries = new HashMap(initialSize);
    }

    /**
     * Construct a new sequenced hash map with the specified initial size and load factor.
     *
     @param initialSize the initial size for the hash table
     @param loadFactor  the load factor for the hash table.
     @see HashMap#HashMap(int,float)
     */
    public SequencedHashMap(int initialSize, float loadFactor) {
        sentinel = createSentinel();
        entries = new HashMap(initialSize, loadFactor);
    }

    /**
     * Construct a new sequenced hash map and add all the elements in the specified map. The order in which the mappings
     * in the specified map are added is defined by {@link #putAll(Map)}.
     */
    public SequencedHashMap(Map m) {
        this();
        putAll(m);
    }

    /**
     * Construct an empty sentinel used to hold the head (sentinel.next) and the tail (sentinel.prev) of the list. The
     * sentinal has a <code>null</code> key and value.
     */
    private static final Entry createSentinel() {
        Entry s = new Entry(null, null);
        s.prev = s;
        s.next = s;
        return s;
    }

    /**
     * Removes an internal entry from the linked list. This does not remove it from the underlying map.
     */
    private void removeEntry(Entry entry) {
        entry.next.prev = entry.prev;
        entry.prev.next = entry.next;
    }

    /**
     * Inserts a new internal entry to the tail of the linked list. This does not add the entry to the underlying map.
     */
    private void insertEntry(Entry entry) {
        entry.next = sentinel;
        entry.prev = sentinel.prev;
        sentinel.prev.next = entry;
        sentinel.prev = entry;
    }

    // per Map.size()

    /**
     * Implements {@link Map#size()}.
     */
    public int size() {
        // use the underlying Map's size since size is not maintained here.
        return entries.size();
    }

    /**
     * Implements {@link Map#isEmpty()}.
     */
    public boolean isEmpty() {
        // for quick check whether the map is entry, we can check the linked list
        // and see if there's anything in it.
        return sentinel.next == sentinel;
    }

    /**
     * Implements {@link Map#containsKey(Object)}.
     */
    public boolean containsKey(Object key) {
        // pass on to underlying map implementation
        return entries.containsKey(key);
    }

    /**
     * Implements {@link Map#containsValue(Object)}.
     */
    public boolean containsValue(Object value) {
        // unfortunately, we cannot just pass this call to the underlying map
        // because we are mapping keys to entries, not keys to values. The
        // underlying map doesn't have an efficient implementation anyway, so this
        // isn't a big deal.
        // do null comparison outside loop so we only need to do it once. This
        // provides a tighter, more efficient loop at the expense of slight
        // code duplication.
        if (value == null) {
            for (Entry pos = sentinel.next; pos != sentinel; pos = pos.next) {
                if (pos.getValue() == null) {
                    return true;
                }
            }
        else {
            for (Entry pos = sentinel.next; pos != sentinel; pos = pos.next) {
                if (value.equals(pos.getValue())) {
                    return true;
                }
            }
        }
        return false;
    }

    /**
     * Implements {@link Map#get(Object)}.
     */
    public Object get(Object o) {
        // find entry for the specified key object
        Entry entry = (Entryentries.get(o);
        if (entry == null) {
            return null;
        }
        return entry.getValue();
    }

    /**
     * Return the entry for the "oldest" mapping. That is, return the Map.Entry for the key-value pair that was first
     * put into the map when compared to all the other pairings in the map. This behavior is equivalent to using
     * <code>entrySet().iterator().next()</code>, but this method provides an optimized implementation.
     *
     @return The first entry in the sequence, or <code>null</code> if the map is empty.
     */
    public Map.Entry getFirst() {
        // sentinel.next points to the "first" element of the sequence -- the head
        // of the list, which is exactly the entry we need to return. We must test
        // for an empty list though because we don't want to return the sentinel!
        return (isEmpty()) null : sentinel.next;
    }

    /**
     * Return the key for the "oldest" mapping. That is, return the key for the mapping that was first put into the map
     * when compared to all the other objects in the map. This behavior is equivalent to using
     * <code>getFirst().getKey()</code>, but this method provides a slightly optimized implementation.
     *
     @return The first key in the sequence, or <code>null</code> if the map is empty.
     */
    public Object getFirstKey() {
        // sentinel.next points to the "first" element of the sequence -- the head
        // of the list -- and the requisite key is returned from it. An empty list
        // does not need to be tested. In cases where the list is empty,
        // sentinel.next will point to the sentinel itself which has a null key,
        // which is exactly what we would want to return if the list is empty (a
        // nice convient way to avoid test for an empty list)
        return sentinel.next.getKey();
    }

    /**
     * Return the value for the "oldest" mapping. That is, return the value for the mapping that was first put into the
     * map when compared to all the other objects in the map. This behavior is equivalent to using
     * <code>getFirst().getValue()</code>, but this method provides a slightly optimized implementation.
     *
     @return The first value in the sequence, or <code>null</code> if the map is empty.
     */
    public Object getFirstValue() {
        // sentinel.next points to the "first" element of the sequence -- the head
        // of the list -- and the requisite value is returned from it. An empty
        // list does not need to be tested. In cases where the list is empty,
        // sentinel.next will point to the sentinel itself which has a null value,
        // which is exactly what we would want to return if the list is empty (a
        // nice convient way to avoid test for an empty list)
        return sentinel.next.getValue();
    }

    /**
     * Return the entry for the "newest" mapping. That is, return the Map.Entry for the key-value pair that was first
     * put into the map when compared to all the other pairings in the map. The behavior is equivalent to: <p/>
     * <p/>
     * <pre>
     * Object obj = null;
     * Iterator iter = entrySet().iterator();
     * while (iter.hasNext()) {
     *     obj = iter.next();
     * }
     * return (Map.Entry) obj;
     * </pre>
     * <p/>
     * <p/>However, the implementation of this method ensures an O(1) lookup of the last key rather than O(n).
     *
     @return The last entry in the sequence, or <code>null</code> if the map is empty.
     */
    public Map.Entry getLast() {
        // sentinel.prev points to the "last" element of the sequence -- the tail
        // of the list, which is exactly the entry we need to return. We must test
        // for an empty list though because we don't want to return the sentinel!
        return (isEmpty()) null : sentinel.prev;
    }

    /**
     * Return the key for the "newest" mapping. That is, return the key for the mapping that was last put into the map
     * when compared to all the other objects in the map. This behavior is equivalent to using
     * <code>getLast().getKey()</code>, but this method provides a slightly optimized implementation.
     *
     @return The last key in the sequence, or <code>null</code> if the map is empty.
     */
    public Object getLastKey() {
        // sentinel.prev points to the "last" element of the sequence -- the tail
        // of the list -- and the requisite key is returned from it. An empty list
        // does not need to be tested. In cases where the list is empty,
        // sentinel.prev will point to the sentinel itself which has a null key,
        // which is exactly what we would want to return if the list is empty (a
        // nice convient way to avoid test for an empty list)
        return sentinel.prev.getKey();
    }

    /**
     * Return the value for the "newest" mapping. That is, return the value for the mapping that was last put into the
     * map when compared to all the other objects in the map. This behavior is equivalent to using
     * <code>getLast().getValue()</code>, but this method provides a slightly optimized implementation.
     *
     @return The last value in the sequence, or <code>null</code> if the map is empty.
     */
    public Object getLastValue() {
        // sentinel.prev points to the "last" element of the sequence -- the tail
        // of the list -- and the requisite value is returned from it. An empty
        // list does not need to be tested. In cases where the list is empty,
        // sentinel.prev will point to the sentinel itself which has a null value,
        // which is exactly what we would want to return if the list is empty (a
        // nice convient way to avoid test for an empty list)
        return sentinel.prev.getValue();
    }

    /**
     * Implements {@link Map#put(Object, Object)}.
     */
    public Object put(Object key, Object value) {
        modCount++;
        Object oldValue = null;

        // lookup the entry for the specified key
        Entry e = (Entryentries.get(key);

        // check to see if it already exists
        if (e != null) {
            // remove from list so the entry gets "moved" to the end of list
            removeEntry(e);

            // update value in map
            oldValue = e.setValue(value);

            // Note: We do not update the key here because its unnecessary. We only
            // do comparisons using equals(Object) and we know the specified key and
            // that in the map are equal in that sense. This may cause a problem if
            // someone does not implement their hashCode() and/or equals(Object)
            // method properly and then use it as a key in this map.
        else {
            // add new entry
            e = new Entry(key, value);
            entries.put(key, e);
        }

        // assert(entry in map, but not list)
        // add to list
        insertEntry(e);
        return oldValue;
    }

    /**
     * Implements {@link Map#remove(Object)}.
     */
    public Object remove(Object key) {
        Entry e = removeImpl(key);
        return (e == nullnull : e.getValue();
    }

    /**
     * Fully remove an entry from the map, returning the old entry or null if there was no such entry with the specified
     * key.
     */
    private Entry removeImpl(Object key) {
        Entry e = (Entryentries.remove(key);
        if (e == null) {
            return null;
        }
        modCount++;
        removeEntry(e);
        return e;
    }

    /**
     * Adds all the mappings in the specified map to this map, replacing any mappings that already exist (as per
     * {@linkMap#putAll(Map)}). The order in which the entries are added is determined by the iterator returned from
     * {@linkMap#entrySet()}for the specified map.
     *
     @param t the mappings that should be added to this map.
     @throws NullPointerException if <code>t</code> is <code>null</code>
     */
    public void putAll(Map t) {
        Iterator iter = t.entrySet().iterator();
        while (iter.hasNext()) {
            Map.Entry entry = (Map.Entryiter.next();
            put(entry.getKey(), entry.getValue());
        }
    }

    /**
     * Implements {@link Map#clear()}.
     */
    public void clear() {
        modCount++;

        // remove all from the underlying map
        entries.clear();

        // and the list
        sentinel.next = sentinel;
        sentinel.prev = sentinel;
    }

    /**
     * Implements {@link Map#equals(Object)}.
     */
    public boolean equals(Object obj) {
        if (obj == null) {
            return false;
        }
        if (obj == this) {
            return true;
        }
        if (!(obj instanceof Map)) {
            return false;
        }
        return entrySet().equals(((Mapobj).entrySet());
    }

    /**
     * Implements {@link Map#hashCode()}.
     */
    public int hashCode() {
        return entrySet().hashCode();
    }

    /**
     * Provides a string representation of the entries within the map. The format of the returned string may change with
     * different releases, so this method is suitable for debugging purposes only. If a specific format is required, use
     * {@link #entrySet()}.{@link Set#iterator() iterator()}and iterate over the entries in the map formatting them
     * as appropriate.
     */
    public String toString() {
        StringBuffer buf = new StringBuffer();
        buf.append('[');
        for (Entry pos = sentinel.next; pos != sentinel; pos = pos.next) {
            buf.append(pos.getKey());
            buf.append('=');
            buf.append(pos.getValue());
            if (pos.next != sentinel) {
                buf.append(',');
            }
        }
        buf.append(']');
        return buf.toString();
    }

    /**
     * Implements {@link Map#keySet()}.
     */
    public Set keySet() {
        return new AbstractSet() {
            // required impls
            public Iterator iterator() {
                return new OrderedIterator(KEY);
            }

            public boolean remove(Object o) {
                Entry e = SequencedHashMap.this.removeImpl(o);
                return (e != null);
            }

            // more efficient impls than abstract set
            public void clear() {
                SequencedHashMap.this.clear();
            }

            public int size() {
                return SequencedHashMap.this.size();
            }

            public boolean isEmpty() {
                return SequencedHashMap.this.isEmpty();
            }

            public boolean contains(Object o) {
                return SequencedHashMap.this.containsKey(o);
            }
        };
    }

    /**
     * Implements {@link Map#values()}.
     */
    public Collection values() {
        return new AbstractCollection() {
            // required impl
            public Iterator iterator() {
                return new OrderedIterator(VALUE);
            }

            public boolean remove(Object value) {
                // do null comparison outside loop so we only need to do it once. This
                // provides a tighter, more efficient loop at the expense of slight
                // code duplication.
                if (value == null) {
                    for (Entry pos = sentinel.next; pos != sentinel; pos = pos.next) {
                        if (pos.getValue() == null) {
                            SequencedHashMap.this.removeImpl(pos.getKey());
                            return true;
                        }
                    }
                else {
                    for (Entry pos = sentinel.next; pos != sentinel; pos = pos.next) {
                        if (value.equals(pos.getValue())) {
                            SequencedHashMap.this.removeImpl(pos.getKey());
                            return true;
                        }
                    }
                }
                return false;
            }

            // more efficient impls than abstract collection
            public void clear() {
                SequencedHashMap.this.clear();
            }

            public int size() {
                return SequencedHashMap.this.size();
            }

            public boolean isEmpty() {
                return SequencedHashMap.this.isEmpty();
            }

            public boolean contains(Object o) {
                return SequencedHashMap.this.containsValue(o);
            }
        };
    }

    /**
     * Implements {@link Map#entrySet()}.
     */
    public Set entrySet() {
        return new AbstractSet() {
            // helper
            private Entry findEntry(Object o) {
                if (o == null) {
                    return null;
                }
                if (!(instanceof Map.Entry)) {
                    return null;
                }
                Map.Entry e = (Map.Entryo;
                Entry entry = (Entryentries.get(e.getKey());
                if ((entry != null&& entry.equals(e)) {
                    return entry;
                else {
                    return null;
                }
            }

            // required impl
            public Iterator iterator() {
                return new OrderedIterator(ENTRY);
            }

            public boolean remove(Object o) {
                Entry e = findEntry(o);
                if (e == null) {
                    return false;
                }
                return SequencedHashMap.this.removeImpl(e.getKey()) != null;
            }

            // more efficient impls than abstract collection
            public void clear() {
                SequencedHashMap.this.clear();
            }

            public int size() {
                return SequencedHashMap.this.size();
            }

            public boolean isEmpty() {
                return SequencedHashMap.this.isEmpty();
            }

            public boolean contains(Object o) {
                return findEntry(o!= null;
            }
        };
    }

    // APIs maintained from previous version of SequencedHashMap for backwards
    // compatibility

    /**
     * Creates a shallow copy of this object, preserving the internal structure by copying only references. The keys and
     * values themselves are not <code>clone()</code> 'd. The cloned object maintains the same sequence.
     *
     @return A clone of this instance.
     @throws CloneNotSupportedException if clone is not supported by a subclass.
     */
    public Object clone() throws CloneNotSupportedException {
        // yes, calling super.clone() silly since we're just blowing away all
        // the stuff that super might be doing anyway, but for motivations on
        // this, see:
        // http://www.javaworld.com/javaworld/jw-01-1999/jw-01-object.html
        SequencedHashMap map = (SequencedHashMapsuper.clone();

        // create new, empty sentinel
        map.sentinel = createSentinel();

        // create a new, empty entry map
        // note: this does not preserve the initial capacity and load factor.
        map.entries = new HashMap();

        // add all the mappings
        map.putAll(this);

        // Note: We cannot just clone the hashmap and sentinel because we must
        // duplicate our internal structures. Cloning those two will not clone all
        // the other entries they reference, and so the cloned hash map will not be
        // able to maintain internal consistency because there are two objects with
        // the same entries. See discussion in the Entry implementation on why we
        // cannot implement a clone of the Entry (and thus why we need to recreate
        // everything).
        return map;
    }

    /**
     * Returns the Map.Entry at the specified index
     *
     @throws ArrayIndexOutOfBoundsException if the specified index is <code>&lt; 0</code> or <code>&gt;</code> the
     *                                        size of the map.
     */
    private Map.Entry getEntry(int index) {
        Entry pos = sentinel;
        if (index < 0) {
            throw new ArrayIndexOutOfBoundsException(index + " < 0");
        }

        // loop to one before the position
        int i = -1;
        while ((i < (index - 1)) && (pos.next != sentinel)) {
            i++;
            pos = pos.next;
        }

        // pos.next is the requested position
        // if sentinel is next, past end of list
        if (pos.next == sentinel) {
            throw new ArrayIndexOutOfBoundsException(index + " >= " (i + 1));
        }
        return pos.next;
    }

    /**
     * Returns the key at the specified index.
     *
     @throws ArrayIndexOutOfBoundsException if the <code>index</code> is <code>&lt; 0</code> or <code>&gt;</code>
     *                                        the size of the map.
     */
    public Object get(int index) {
        return getEntry(index).getKey();
    }

    /**
     * Returns the value at the specified index.
     *
     @throws ArrayIndexOutOfBoundsException if the <code>index</code> is <code>&lt; 0</code> or <code>&gt;</code>
     *                                        the size of the map.
     */
    public Object getValue(int index) {
        return getEntry(index).getValue();
    }

    /**
     * Returns the index of the specified key.
     */
    public int indexOf(Object key) {
        Entry e = (Entryentries.get(key);
        int pos = 0;
        while (e.prev != sentinel) {
            pos++;
            e = e.prev;
        }
        return pos;
    }

    /**
     * Returns a key iterator.
     */
    public Iterator iterator() {
        return keySet().iterator();
    }

    /**
     * Returns the last index of the specified key.
     */
    public int lastIndexOf(Object key) {
        // keys in a map are guarunteed to be unique
        return indexOf(key);
    }

    /**
     * Returns a List view of the keys rather than a set view. The returned list is unmodifiable. This is required
     * because changes to the values of the list (using {@link java.util.ListIterator#set(Object)}) will effectively
     * remove the value from the list and reinsert that value at the end of the list, which is an unexpected side effect
     * of changing the value of a list. This occurs because changing the key, changes when the mapping is added to the
     * map and thus where it appears in the list. <p/>
     * <P>
     * An alternative to this method is to use {@link #keySet()}
     *
     @return The ordered list of keys.
     @see #keySet()
     */
    public List sequence() {
        List l = new ArrayList(size());
        Iterator iter = keySet().iterator();
        while (iter.hasNext()) {
            l.add(iter.next());
        }
        return Collections.unmodifiableList(l);
    }

    /**
     * Removes the element at the specified index.
     *
     @param index The index of the object to remove.
     @return The previous value coressponding the <code>key</code>, or <code>null</code> if none existed.
     @throws ArrayIndexOutOfBoundsException if the <code>index</code> is <code>&lt; 0</code> or <code>&gt;</code>
     *                                        the size of the map.
     */
    public Object remove(int index) {
        return remove(get(index));
    }

    // per Externalizable.readExternal(ObjectInput)

    /**
     * Deserializes this map from the given stream.
     *
     @param in the stream to deserialize from
     @throws IOException            if the stream raises it
     @throws ClassNotFoundException if the stream raises it
     */
    public void readExternal(ObjectInput inthrows IOException, ClassNotFoundException {
        int size = in.readInt();
        for (int i = 0; i < size; i++) {
            Object key = in.readObject();
            Object value = in.readObject();
            put(key, value);
        }
    }

    /**
     * Serializes this map to the given stream.
     *
     @param out the stream to serialize to
     @throws IOException if the stream raises it
     */
    public void writeExternal(ObjectOutput outthrows IOException {
        out.writeInt(size());
        for (Entry pos = sentinel.next; pos != sentinel; pos = pos.next) {
            out.writeObject(pos.getKey());
            out.writeObject(pos.getValue());
        }
    }

    /**
     * {@link java.util.Map.Entry}that doubles as a node in the linked list of sequenced mappings.
     */
    private static class Entry implements Map.Entry {
        // Note: This class cannot easily be made clonable. While the actual
        // implementation of a clone would be simple, defining the semantics is
        // difficult. If a shallow clone is implemented, then entry.next.prev !=
        // entry, which is unintuitive and probably breaks all sorts of assumptions
        // in code that uses this implementation. If a deep clone is
        // implementated, then what happens when the linked list is cyclical (as is
        // the case with SequencedHashMap)? It's impossible to know in the clone
        // when to stop cloning, and thus you end up in a recursive loop,
        // continuously cloning the "next" in the list.
        private final Object key;

        private Object value;

        // package private to allow the SequencedHashMap to access and manipulate
        // them.
        Entry next = null;

        Entry prev = null;

        public Entry(Object key, Object value) {
            this.key = key;
            this.value = value;
        }

        // per Map.Entry.getKey()
        public Object getKey() {
            return this.key;
        }

        // per Map.Entry.getValue()
        public Object getValue() {
            return this.value;
        }

        // per Map.Entry.setValue()
        public Object setValue(Object value) {
            Object oldValue = this.value;
            this.value = value;
            return oldValue;
        }

        public int hashCode() {
            // implemented per api docs for Map.Entry.hashCode()
            return (((getKey() == null: getKey().hashCode()) ^
                    ((getValue() == null: getValue().hashCode()));
        }

        public boolean equals(Object obj) {
            if (obj == null) {
                return false;
            }
            if (obj == this) {
                return true;
            }
            if (!(obj instanceof Map.Entry)) {
                return false;
            }
            Map.Entry other = (Map.Entryobj;

            // implemented per api docs for Map.Entry.equals(Object)
            return (((getKey() == null(other.getKey() == null: getKey().equals(other.getKey())) && ((getValue() ==
                                                                                                           null)
                                                                                                          ?
                                                                                                          (other.getValue() ==
                                                                                                           null)
                                                                                                          :
                                                                                                          getValue()
                    .equals(other.getValue())));
        }

        public String toString() {
            return "[" + getKey() '=' + getValue() ']';
        }
    }

    private class OrderedIterator implements Iterator {
        /**
         * Holds the type that should be returned from the iterator. The value should be either {@link #KEY},
         * {@link#VALUE}, or {@link #ENTRY}. To save a tiny bit of memory, this field is also used as a marker for
         * when remove has been called on the current object to prevent a second remove on the same element.
         * Essientially, if this value is negative (i.e. the bit specified by {@link #REMOVED_MASK}is set), the current
         * position has been removed. If positive, remove can still be called.
         */
        private int returnType;

        /**
         * Holds the "current" position in the iterator. When pos.next is the sentinel, we've reached the end of the
         * list.
         */
        private Entry pos = sentinel;

        /**
         * Holds the expected modification count. If the actual modification count of the map differs from this value,
         * then a concurrent modification has occurred.
         */
        private transient long expectedModCount = modCount;

        /**
         * Construct an iterator over the sequenced elements in the order in which they were added. The {@link #next()}
         * method returns the type specified by <code>returnType</code> which must be either {@link #KEY},
         * {@link#VALUE}, or {@link #ENTRY}.
         */
        public OrderedIterator(int returnType) {
            //// Since this is a private inner class, nothing else should have
            //// access to the constructor. Since we know the rest of the outer
            //// class uses the iterator correctly, we can leave of the following
            //// check:
            //if(returnType >= 0 && returnType <= 2) {
            //  throw new IllegalArgumentException("Invalid iterator type");
            //}
            // Set the "removed" bit so that the iterator starts in a state where
            // "next" must be called before "remove" will succeed.
            this.returnType = returnType | REMOVED_MASK;
        }

        /**
         * Returns whether there is any additional elements in the iterator to be returned.
         *
         @return <code>true</code> if there are more elements left to be returned from the iterator;
         *         <code>false</code> otherwise.
         */
        public boolean hasNext() {
            return pos.next != sentinel;
        }

        /**
         * Returns the next element from the iterator.
         *
         @return the next element from the iterator.
         @throws NoSuchElementException if there are no more elements in the iterator.
         @throws ConcurrentModificationException
         *                                if a modification occurs in the underlying map.
         */
        public Object next() {
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
            if (pos.next == sentinel) {
                throw new NoSuchElementException();
            }

            // clear the "removed" flag
            returnType = returnType & ~REMOVED_MASK;
            pos = pos.next;
            switch (returnType) {
                case KEY:
                    return pos.getKey();
                case VALUE:
                    return pos.getValue();
                case ENTRY:
                    return pos;
                default:

                    // should never happen
                    throw new Error("bad iterator type: " + returnType);
            }
        }

        /**
         * Removes the last element returned from the {@link #next()}method from the sequenced map.
         *
         @throws IllegalStateException if there isn't a "last element" to be removed. That is, if {@link #next()}has
         *                               never been called, or if {@link #remove()}was already called on the element.
         @throws ConcurrentModificationException
         *                               if a modification occurs in the underlying map.
         */
        public void remove() {
            if ((returnType & REMOVED_MASK!= 0) {
                throw new IllegalStateException("remove() must follow next()");
            }
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
            SequencedHashMap.this.removeImpl(pos.getKey());

            // update the expected mod count for the remove operation
            expectedModCount++;

            // set the removed flag
            returnType = returnType | REMOVED_MASK;
        }
    }
}

   
    
    
    
  
Related examples in the same category
1. Ordered Map
2. Case Insensitive Map
3. A Map collection with real-time behavior
4. Cache Map
5. Map implementation Optimized for Strings keys
6. An integer hashmap
7. An IdentityMap that uses reference-equality instead of object-equality
8. Int Object HashMap
9. Concurrent Skip List Map
10. A hash map that uses primitive ints for the key rather than objects.
11. Integer Map
12. Copy On Write Map
13. Expiring Map
14. Array Map
15. Int Object HashMap (from CERN)
16. Int HashMap from jodd.org
17. String Map
18. List Map
19. Map using Locale objects as keys
20. Map with keys iterated in insertion order
21. Most Recently Used Map
22. Multi Map
23. MultiMap is a Java version of the C++ STL class std::multimap
24. Object Int Map
25. Int Int Map
26. Int Object Map
27. Identity HashMap
28. A java.util.Map interface which can only hold a single object
29. A multi valued Map
30. A simple hashmap from keys to integers
31. A memory-efficient hash map.
32. An implementation of the java.util.Map interface which can only hold a single object.
33. Utility methods for operating on memory-efficient maps.
34. CaseBlindHashMap - a HashMap extension, using Strings as key values.
35. A fixed size map implementation.
36. Int HashMap
37. IntMap provides a simple hashmap from keys to integers
38. Complex Key HashMap
39. A Map with multiple values for a key
40. A Map that accepts int or Integer keys only
41. A Map where keys are compared by object identity, rather than equals()
42. Type-safe Map, from char array to String value
43. A hashtable-based Map implementation with soft keys
44. List ordered map
45. Hash map using String values as keys mapped to primitive int values.
46. Lookup table that stores a list of strings
47. HashNMap stores multiple values by a single key value. Values can be retrieved using a direct query or by creating an enumeration over the stored elements.
48. Combines multiple values to form a single composite key. MultiKey can often be used as an alternative to nested maps.
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.