RedBlack.cs :  » Development » TULP2G » Wintellect » PowerCollections » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » Development » TULP2G 
TULP2G » Wintellect » PowerCollections » RedBlack.cs
//******************************
// Written by Peter Golde
// Copyright (c) 2004-2005, Wintellect
//
// Use and restribution of this code is subject to the license agreement 
// contained in the file "License.txt" accompanying this file.
//******************************

using System;
using System.Diagnostics;
using System.Collections.Generic;


namespace Wintellect.PowerCollections{
    /// <summary>
    /// Describes what to do if a key is already in the tree when doing an
    /// insertion.
    /// </summary>
    internal enum DuplicatePolicy { 
        InsertFirst,               // Insert a new node before duplicates
        InsertLast,               // Insert a new node after duplicates
        ReplaceFirst,            // Replace the first of the duplicate nodes
        ReplaceLast,            // Replace the last of the duplicate nodes
        DoNothing                // Do nothing to the tree
    };

  /// <summary>
  /// The base implementation for various collections classes that use Red-Black trees
  /// as part of their implementation. This class should not (and can not) be 
  /// used directly by end users; it's only for internal use by the collections package.
  /// </summary>
  /// <remarks>
  /// The Red-Black tree manages items of type T, and uses a IComparer&lt;T&gt; that
  /// compares items to sort the tree. Multiple items can compare equal and be stored
  /// in the tree. Insert, Delete, and Find operations are provided in their full generality;
  /// all operations allow dealing with either the first or last of items that compare equal. 
  ///</remarks>
    [Serializable]
  internal class RedBlackTree<T>: IEnumerable<T> {
    private IComparer<T> comparer;      // interface for comparing elements, only Compare is used.
    private Node root;          // The root of the tree. Can be null when tree is empty.
    private int count;            // The count of elements in the tree.

        private int changeStamp;        // An integer that is changed every time the tree structurally changes.
                                                        // Used so that enumerations throw an exception if the tree is changed
                                                        // during enumeration.

        private Node[] stack;               // A stack of nodes. This is cached locally to avoid constant re-allocated it.

        /// <summary>
        /// Create an array of Nodes big enough for any path from top 
        /// to bottom. This is cached, and reused from call-to-call, so only one
        /// can be around at a time per tree.
        /// </summary>
        /// <returns>The node stack.</returns>
        private Node[] GetNodeStack()
        {
            // Maximum depth needed is 2 * lg count + 1.
            int maxDepth;
            if (count < 0x400)
                maxDepth = 21;
            else if (count < 0x10000)
                maxDepth = 41;
            else
                maxDepth = 65;

            if (stack == null || stack.Length < maxDepth)
                stack = new Node[maxDepth];

            return stack;
        }

        /// <summary>
    /// The class that is each node in the red-black tree.
    /// </summary>
        [Serializable]
    private class Node {
      public Node left, right;
      public T item;

            private const uint REDMASK = 0x80000000;
            private uint count;

            /// <summary>
            /// Is this a red node?
            /// </summary>
            public bool IsRed {
                get { return (count & REDMASK) != 0; }
                set { 
                    if (value) 
                        count |= REDMASK; 
                    else
                        count &= ~REDMASK;
                }
            }

            /// <summary>
            /// Get or set the Count field -- a 31-bit field
            /// that holds the number of nodes at or below this
            /// level.
            /// </summary>
            public int Count
            {
                get { return (int)(count & ~REDMASK); }
                set { count = (count & REDMASK) | (uint)value; }
            }

            /// <summary>
            /// Add one to the Count.
            /// </summary>
            public void IncrementCount()
            {
                ++count;
            }

            /// <summary>
            /// Subtract one from the Count. The current
            /// Count must be non-zero.
            /// </summary>
            public void DecrementCount()
            {
                Debug.Assert(Count != 0);
                --count;
            }

            /// <summary>
            /// Clones a node and all its descendants.
            /// </summary>
            /// <returns>The cloned node.</returns>
            public Node Clone()
            {
                Node newNode = new Node();
                newNode.item = item;

                newNode.count = count;

                if (left != null)
                    newNode.left = left.Clone();

                if (right != null)
                    newNode.right = right.Clone();

                return newNode;
            }
        }

        /// <summary>
        /// Must be called whenever there is a structural change in the tree. Causes
        /// changeStamp to be changed, which causes any in-progress enumerations
        /// to throw exceptions.
        /// </summary>
        internal void StopEnumerations()
        {
            ++changeStamp;
        }

        /// <summary>
        /// Checks the given stamp against the current change stamp. If different, the
        /// collection has changed during enumeration and an InvalidOperationException
        /// must be thrown
        /// </summary>
        /// <param name="startStamp">changeStamp at the start of the enumeration.</param>
        private void CheckEnumerationStamp(int startStamp)
        {
            if (startStamp != changeStamp) {
                throw new InvalidOperationException(Strings.ChangeDuringEnumeration);
            }
        }

        /// <summary>
    /// Initialize a red-black tree, using the given interface instance to compare elements. Only
    /// Compare is used on the IComparer interface.
    /// </summary>
    /// <param name="comparer">The IComparer&lt;T&gt; used to sort keys.</param>
    public RedBlackTree(IComparer<T> comparer) {
      this.comparer = comparer;
      this.count = 0;
      this.root = null;
    }

    /// <summary>
    /// Returns the number of elements in the tree.
    /// </summary>
    public int ElementCount {
      get {
        return count;
      }
    }

        /// <summary>
        /// Clone the tree, returning a new tree containing the same items. Should
        /// take O(N) take.
        /// </summary>
        /// <returns>Clone version of this tree.</returns>
        public RedBlackTree<T> Clone()
        {
            RedBlackTree<T> newTree = new RedBlackTree<T>(comparer);
            newTree.count = this.count;
            if (this.root != null)
                newTree.root = this.root.Clone();
            return newTree;
        }

    /// <summary>
    /// Finds the key in the tree. If multiple items in the tree have
    /// compare equal to the key, finds the first or last one. Optionally replaces the item
    /// with the one searched for.
    /// </summary>
    /// <param name="key">Key to search for.</param>
    /// <param name="findFirst">If true, find the first of duplicates, else finds the last of duplicates.</param>
        /// <param name="replace">If true, replaces the item with key (if function returns true)</param>
        /// <param name="item">Returns the found item, before replacing (if function returns true).</param>
        /// <returns>True if the key was found.</returns>
    public bool Find(T key, bool findFirst, bool replace, out T item) {
      Node current = root;      // current search location in the tree
      Node found = null;      // last node found with the key, or null if none.
      
      while (current != null) {
        int compare = comparer.Compare(key, current.item);

        if (compare < 0) {
          current = current.left;
        }
        else if (compare > 0) {
          current = current.right;
        }
        else {
          // Go left/right on equality to find first/last of elements with this key.
          Debug.Assert(compare == 0);
          found = current;
          if (findFirst)
            current = current.left;
          else
            current = current.right;
        }
      }

      if (found != null) {
        item = found.item;
                if (replace)
                    found.item = key;
                return true;
      }
      else {
        item = default(T);  
        return false;
      }
    }

        /// <summary>
        /// Finds the index of the key in the tree. If multiple items in the tree have
        /// compare equal to the key, finds the first or last one. 
        /// </summary>
        /// <param name="key">Key to search for.</param>
        /// <param name="findFirst">If true, find the first of duplicates, else finds the last of duplicates.</param>
        /// <returns>Index of the item found if the key was found, -1 if not found.</returns>
        public int FindIndex(T key, bool findFirst)
        {
            T dummy;
            if (findFirst)
                return FirstItemInRange(EqualRangeTester(key), out dummy);
            else
                return LastItemInRange(EqualRangeTester(key), out dummy);
        }

        /// <summary>
        /// Find the item at a particular index in the tree.
        /// </summary>
        /// <param name="index">The zero-based index of the item. Must be &gt;= 0 and &lt; Count.</param>
        /// <returns>The item at the particular index.</returns>
        public T GetItemByIndex(int index)
        {
            if (index < 0 || index >= count)
                throw new ArgumentOutOfRangeException("index");

      Node current = root;      // current search location in the tree

            for (; ; ) {
                int leftCount;

                if (current.left != null) 
                    leftCount = current.left.Count;
                else 
                    leftCount = 0;

                if (leftCount > index)
                    current = current.left;
                else if (leftCount == index)
                    return current.item;
                else {
                    index -= leftCount + 1;
                    current = current.right;
                }
            }
    }

    /// <summary>
    /// Insert a new node into the tree, maintaining the red-black invariants.
    /// </summary>
    /// <remarks>Algorithm from Sedgewick, "Algorithms".</remarks>
    /// <param name="item">The new item to insert</param>
    /// <param name="dupPolicy">What to do if equal item is already present.</param>
    /// <param name="previous">If false, returned, the previous item.</param>
    /// <returns>false if duplicate exists, otherwise true.</returns>
    public bool Insert(T item, DuplicatePolicy dupPolicy, out T previous) {
      Node node = root;
      Node parent = null, gparent = null, ggparent = null;  // parent, grand, a great-grantparent of node.
      bool wentLeft = false, wentRight = false;        // direction from parent to node.
            bool rotated;
      Node duplicateFound = null;

            // The tree may be changed.
            StopEnumerations();

            // We increment counts on the way down the tree. If we end up not inserting an items due
            // to a duplicate, we need a stack to adjust the counts back. We don't need the stack if the duplicate
            // policy means that we will always do an insertion.
            bool needStack = !((dupPolicy == DuplicatePolicy.InsertFirst) || (dupPolicy == DuplicatePolicy.InsertLast));
            Node[] nodeStack = null;
            int nodeStackPtr = 0;  // first free item on the stack.
            if (needStack) 
                nodeStack = GetNodeStack();

            while (node != null) {
                // If we find a node with two red children, split it so it doesn't cause problems
        // when inserting a node.
                if (node.left != null && node.left.IsRed && node.right != null && node.right.IsRed) {
                    node = InsertSplit(ggparent, gparent, parent, node, out rotated);

                    if (needStack && rotated) {
                        nodeStackPtr -= 2;
                        if (nodeStackPtr < 0)
                            nodeStackPtr = 0;
                    }
                }

        // Keep track of parent, grandparent, great-grand parent.
        ggparent = gparent; gparent = parent; parent = node;

        // Compare the key and the node. 
        int compare = comparer.Compare(item, node.item);

        if (compare == 0) {
          // Found a node with the data already. Check duplicate policy.
          if (dupPolicy == DuplicatePolicy.DoNothing) {
                        previous = node.item;

                        // Didn't insert after all. Return counts back to their previous value.
                        for (int i = 0; i < nodeStackPtr; ++i)
                            nodeStack[i].DecrementCount();

                        return false;
          }
          else if (dupPolicy == DuplicatePolicy.InsertFirst || dupPolicy == DuplicatePolicy.ReplaceFirst) {
            // Insert first by treating the key as less than nodes in the tree.
            duplicateFound = node;
            compare = -1;
          }
          else {
            Debug.Assert(dupPolicy == DuplicatePolicy.InsertLast || dupPolicy == DuplicatePolicy.ReplaceLast);
            // Insert last by treating the key as greater than nodes in the tree.
            duplicateFound = node;
            compare = 1;
          }
        }

        Debug.Assert(compare != 0);

                node.IncrementCount();
                if (needStack)
                    nodeStack[nodeStackPtr++] = node;

        // Move to the left or right as needed to find the insertion point.
        if (compare < 0) {
          node = node.left;
          wentLeft = true; wentRight = false;
        }
        else {
          node = node.right;
          wentRight = true; wentLeft = false;
        }
      }

            if (duplicateFound != null) {
                previous = duplicateFound.item;

                // Are we replacing instread of inserting?
                if (duplicateFound != null && (dupPolicy == DuplicatePolicy.ReplaceFirst || dupPolicy == DuplicatePolicy.ReplaceLast)) {
                    duplicateFound.item = item;

                    // Didn't insert after all. Return counts back to their previous value.
                    for (int i = 0; i < nodeStackPtr; ++i)
                        nodeStack[i].DecrementCount();

                    return false;
                }
            }
            else {
                previous = default(T);
            }

            // Create a new node.
      node = new Node();
      node.item = item;
            node.Count = 1;

      // Link the node into the tree.
      if (wentLeft) 
        parent.left = node;
      else if (wentRight)
        parent.right = node;
      else {
        Debug.Assert(root == null);
        root = node;
      }

      // Maintain the red-black policy.
      InsertSplit(ggparent, gparent, parent, node, out rotated);

      // We've added a node to the tree, so update the count.
      count += 1;

            return (duplicateFound == null);
    }

    /// <summary>
    /// Split a node with two red children (a 4-node in the 2-3-4 tree formalism), as
    /// part of an insert operation.
    /// </summary>
    /// <param name="ggparent">great grand-parent of "node", can be null near root</param>
    /// <param name="gparent">grand-parent of "node", can be null near root</param>
    /// <param name="parent">parent of "node", can be null near root</param>
    /// <param name="node">Node to split, can't be null</param>
        /// <param name="rotated">Indicates that rotation(s) occurred in the tree.</param>
    /// <returns>Node to continue searching from.</returns>
    private Node InsertSplit(Node ggparent, Node gparent, Node parent, Node node, out bool rotated) {
      if (node != root)
        node.IsRed = true;
      if (node.left != null)
        node.left.IsRed = false;
      if (node.right != null)
        node.right.IsRed = false;

      if (parent != null && parent.IsRed) {
        // Since parent is red, gparent can't be null (root is always black). ggparent
        // might be null, however.
        Debug.Assert(gparent != null);

        // if links from gparent and parent are opposite (left/right or right/left),
        // then rotate.
        if ((gparent.left == parent) != (parent.left == node)) {
          Rotate(gparent, parent, node);
          parent = node;
        }

        gparent.IsRed = true;

        // Do a rotate to prevent two red links in a row.
        Rotate(ggparent, gparent, parent);

        parent.IsRed = false;
                rotated = true;
        return parent;
      }
      else {
                rotated = false;
        return node;
      }
    }

    /// <summary>
    /// Performs a rotation involving the node, it's child and grandchild. The counts of 
        /// childs and grand-child are set the correct values from their children; this is important
        /// if they have been adjusted on the way down the try as part of an insert/delete.
    /// </summary>
    /// <param name="node">Top node of the rotation. Can be null if child==root.</param>
    /// <param name="child">One child of "node". Not null.</param>
    /// <param name="gchild">One child of "child". Not null.</param>
    private void Rotate(Node node, Node child, Node gchild) {
      if (gchild == child.left) {
        child.left = gchild.right;
        gchild.right = child;
      }
      else {
        Debug.Assert(gchild == child.right);
        child.right = gchild.left;
        gchild.left = child;
      }

            // Restore the counts.
            child.Count = (child.left != null ? child.left.Count : 0) + (child.right != null ? child.right.Count : 0) + 1;
            gchild.Count = (gchild.left != null ? gchild.left.Count : 0) + (gchild.right != null ? gchild.right.Count : 0) + 1;

      if (node == null) {
        Debug.Assert(child == root);
        root = gchild;
      }
      else if (child == node.left) {
        node.left = gchild;
      }
      else {
        Debug.Assert(child == node.right);
        node.right = gchild;
      }
    }

    /// <summary>
    /// Deletes a key from the tree. If multiple elements are equal to key, 
    /// deletes the first or last. If no element is equal to the key, 
    /// returns false.
    /// </summary>
    /// <remarks>Top-down algorithm from Weiss. Basic plan is to move down in the tree, 
    /// rotating and recoloring along the way to always keep the current node red, which 
    /// ensures that the node we delete is red. The details are quite complex, however! </remarks>
    /// <param name="key">Key to delete.</param>
    /// <param name="deleteFirst">Which item to delete if multiple are equal to key. True to delete the first, false to delete last.</param>
    /// <param name="item">Returns the item that was deleted, if true returned.</param>
    /// <returns>True if an element was deleted, false if no element had 
    /// specified key.</returns>
        public bool Delete(T key, bool deleteFirst, out T item)
        {
            return DeleteItemFromRange(EqualRangeTester(key), deleteFirst, out item);
        }

        /// 
    /// <summary>
    /// Enumerate all the items in-order
    /// </summary>
    /// <returns>An enumerator for all the items, in order.</returns>
        /// <exception cref="InvalidOperationException">The tree has an item added or deleted during the enumeration.</exception>
        public IEnumerator<T> GetEnumerator()
        {
      return EnumerateRange(EntireRangeTester).GetEnumerator();
    }

    /// <summary>
    /// Enumerate all the items in-order
    /// </summary>
    /// <returns>An enumerator for all the items, in order.</returns>
        /// <exception cref="InvalidOperationException">The tree has an item added or deleted during the enumeration.</exception>
        System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
        {
            return GetEnumerator();
        }

        #region Ranges

        /// <summary>
        /// A delegate that tests if an item is within a custom range. The range must be a contiguous
        /// range of items with the ordering of this tree. The range test function must test
        /// if an item is before, withing, or after the range.
        /// </summary>
        /// <param name="item">Item to test against the range.</param>
        /// <returns>Returns negative if item is before the range, zero if item is withing the range,
        /// and positive if item is after the range.</returns>
        public delegate int RangeTester(T item);

        /// <summary>
        /// Gets a range tester that defines a range by first and last items.
        /// </summary>
        /// <param name="useFirst">If true, bound the range on the bottom by first.</param>
        /// <param name="first">If useFirst is true, the inclusive lower bound.</param>
        /// <param name="useLast">If true, bound the range on the top by last.</param>
        /// <param name="last">If useLast is true, the exclusive upper bound.</param>
        /// <returns>A RangeTester delegate that tests for an item in the given range.</returns>
        public RangeTester BoundedRangeTester(bool useFirst, T first, bool useLast, T last)
        {
            return delegate(T item) {
                if (useFirst && comparer.Compare(first, item) > 0)
                    return -1;     // item is before first.
                else if (useLast && comparer.Compare(last, item) <= 0)
                    return 1;      // item is after or equal to last.
                else
                    return 0;      // item is greater or equal to first, and less than last.
            };
        }

        /// <summary>
        /// Gets a range tester that defines a range by first and last items.
        /// </summary>
        /// <param name="first">The lower bound.</param>
        /// <param name="firstInclusive">True if the lower bound is inclusive, false if exclusive.</param>
        /// <param name="last">The upper bound.</param>
        /// <param name="lastInclusive">True if the upper bound is inclusive, false if exclusive.</param>
        /// <returns>A RangeTester delegate that tests for an item in the given range.</returns>
        public RangeTester DoubleBoundedRangeTester(T first, bool firstInclusive, T last, bool lastInclusive)
        {
            return delegate(T item) {
                if (firstInclusive) {
                    if (comparer.Compare(first, item) > 0)
                        return -1;     // item is before first.
                }
                else {
                    if (comparer.Compare(first, item) >= 0)
                        return -1;     // item is before or equal to first.
                }

                if (lastInclusive) {
                    if (comparer.Compare(last, item) < 0)
                        return 1;      // item is after last.
                }
                else {
                    if (comparer.Compare(last, item) <= 0)
                        return 1;      // item is after or equal to last
                }

                return 0;      // item is between first and last.
            };
        }


        /// <summary>
        /// Gets a range tester that defines a range by a lower bound.
        /// </summary>
        /// <param name="first">The lower bound.</param>
        /// <param name="inclusive">True if the lower bound is inclusive, false if exclusive.</param>
        /// <returns>A RangeTester delegate that tests for an item in the given range.</returns>
        public RangeTester LowerBoundedRangeTester(T first, bool inclusive)
        {
            return delegate(T item) {
                if (inclusive) {
                    if (comparer.Compare(first, item) > 0)
                        return -1;     // item is before first.
                    else
                        return 0;      // item is after or equal to first
                }
                else {
                    if (comparer.Compare(first, item) >= 0)
                        return -1;     // item is before or equal to first.
                    else
                        return 0;      // item is after first
                }
            };
        }


        /// <summary>
        /// Gets a range tester that defines a range by upper bound.
        /// </summary>
        /// <param name="last">The upper bound.</param>
        /// <param name="inclusive">True if the upper bound is inclusive, false if exclusive.</param>
        /// <returns>A RangeTester delegate that tests for an item in the given range.</returns>
        public RangeTester UpperBoundedRangeTester(T last, bool inclusive)
        {
            return delegate(T item) {
                if (inclusive) {
                    if (comparer.Compare(last, item) < 0)
                        return 1;      // item is after last.
                    else
                        return 0;      // item is before or equal to last.
                }
                else {
                    if (comparer.Compare(last, item) <= 0)
                        return 1;      // item is after or equal to last
                    else
                        return 0;      // item is before last.
                }
            };
        }

        /// <summary>
        /// Gets a range tester that defines a range by all items equal to an item.
        /// </summary>
        /// <param name="equalTo">The item that is contained in the range.</param>
        /// <returns>A RangeTester delegate that tests for an item equal to <paramref name="equalTo"/>.</returns>
        public RangeTester EqualRangeTester(T equalTo)
        {
            return delegate(T item) {
                return comparer.Compare(item, equalTo);
            };
        }

        /// <summary>
        /// A range tester that defines a range that is the entire tree.
        /// </summary>
        /// <param name="item">Item to test.</param>
        /// <returns>Always returns 0.</returns>
        public int EntireRangeTester(T item)
        {
            return 0;
        }

        /// <summary>
        /// Enumerate the items in a custom range in the tree. The range is determined by 
        /// a RangeTest delegate.
        /// </summary>
        /// <param name="rangeTester">Tests an item against the custom range.</param>
        /// <returns>An IEnumerable&lt;T&gt; that enumerates the custom range in order.</returns>
        /// <exception cref="InvalidOperationException">The tree has an item added or deleted during the enumeration.</exception>
        public IEnumerable<T> EnumerateRange(RangeTester rangeTester)
        {
            return EnumerateRangeInOrder(rangeTester, root);
        }

        /// <summary>
        /// Enumerate all the items in a custom range, under and including node, in-order.
        /// </summary>
        /// <param name="rangeTester">Tests an item against the custom range.</param>
        /// <param name="node">Node to begin enumeration. May be null.</param>
        /// <returns>An enumerable of the items.</returns>
        /// <exception cref="InvalidOperationException">The tree has an item added or deleted during the enumeration.</exception>
        private IEnumerable<T> EnumerateRangeInOrder(RangeTester rangeTester, Node node)
        {
            int startStamp = changeStamp;

            if (node != null) {
                int compare = rangeTester(node.item);

                if (compare >= 0) {
                    // At least part of the range may lie to the left.
                    foreach (T item in EnumerateRangeInOrder(rangeTester, node.left)) {
                        yield return item;
                        CheckEnumerationStamp(startStamp);
                    }
                }

                if (compare == 0) {
                    // The item is within the range.
                    yield return node.item;
                    CheckEnumerationStamp(startStamp);
                }

                if (compare <= 0) {
                    // At least part of the range lies to the right.
                    foreach (T item in EnumerateRangeInOrder(rangeTester, node.right)) {
                        yield return item;
                        CheckEnumerationStamp(startStamp);
                    }
                }
            }
        }

        /// <summary>
        /// Enumerate the items in a custom range in the tree, in reversed order. The range is determined by 
        /// a RangeTest delegate.
        /// </summary>
        /// <param name="rangeTester">Tests an item against the custom range.</param>
        /// <returns>An IEnumerable&lt;T&gt; that enumerates the custom range in reversed order.</returns>
        /// <exception cref="InvalidOperationException">The tree has an item added or deleted during the enumeration.</exception>
        public IEnumerable<T> EnumerateRangeReversed(RangeTester rangeTester)
        {
            return EnumerateRangeInReversedOrder(rangeTester, root);
        }

        /// <summary>
        /// Enumerate all the items in a custom range, under and including node, in reversed order.
        /// </summary>
        /// <param name="rangeTester">Tests an item against the custom range.</param>
        /// <param name="node">Node to begin enumeration. May be null.</param>
        /// <returns>An enumerable of the items, in reversed oreder.</returns>
        /// <exception cref="InvalidOperationException">The tree has an item added or deleted during the enumeration.</exception>
        private IEnumerable<T> EnumerateRangeInReversedOrder(RangeTester rangeTester, Node node)
        {
            int startStamp = changeStamp;

            if (node != null) {
                int compare = rangeTester(node.item);

                if (compare <= 0) {
                    // At least part of the range lies to the right.
                    foreach (T item in EnumerateRangeInReversedOrder(rangeTester, node.right)) {
                        yield return item;
                        CheckEnumerationStamp(startStamp);
                    }
                }

                if (compare == 0) {
                    // The item is within the range.
                    yield return node.item;
                    CheckEnumerationStamp(startStamp);
                }

                if (compare >= 0) {
                    // At least part of the range may lie to the left.
                    foreach (T item in EnumerateRangeInReversedOrder(rangeTester, node.left)) {
                        yield return item;
                        CheckEnumerationStamp(startStamp);
                    }
                }
            }
        }


        /// <summary>
        /// Deletes either the first or last item from a range, as identified by a RangeTester
        /// delegate. If the range is empty, returns false.
        /// </summary>
        /// <remarks>Top-down algorithm from Weiss. Basic plan is to move down in the tree, 
        /// rotating and recoloring along the way to always keep the current node red, which 
        /// ensures that the node we delete is red. The details are quite complex, however! </remarks>
        /// <param name="rangeTester">Range to delete from.</param>
        /// <param name="deleteFirst">If true, delete the first item from the range, else the last.</param>
        /// <param name="item">Returns the item that was deleted, if true returned.</param>
        /// <returns>True if an element was deleted, false if the range is empty.</returns>
        public bool DeleteItemFromRange(RangeTester rangeTester, bool deleteFirst, out T item)
        {
            Node node;      // The current node.
            Node parent;    // Parent of the current node.
            Node gparent;    // Grandparent of the current node.
            Node sib;      // Sibling of the current node.
            Node keyNode;    // Node with the key that is being removed.

            // The tree may be changed.
            StopEnumerations();

            if (root == null) {
                // Nothing in the tree. Go home now.
                item = default(T);
                return false;
            }

            // We decrement counts on the way down the tree. If we end up not finding an item to delete
            // we need a stack to adjust the counts back. 
            Node[] nodeStack = GetNodeStack();
            int nodeStackPtr = 0;  // first free item on the stack.

            // Start at the root.
            node = root;
            sib = parent = gparent = null;
            keyNode = null;

            // Proceed down the tree, making the current node red so it can be removed.
            for (; ; ) {
                Debug.Assert(parent == null || parent.IsRed);
                Debug.Assert(sib == null || !sib.IsRed);
                Debug.Assert(!node.IsRed);

                if ((node.left == null || !node.left.IsRed) && (node.right == null || !node.right.IsRed)) {
                    // node has two black children (null children are considered black).
                    if (parent == null) {
                        // Special case for the root.
                        Debug.Assert(node == root);
                        node.IsRed = true;
                    }
                    else if ((sib.left == null || !sib.left.IsRed) && (sib.right == null || !sib.right.IsRed)) {
                        // sib has two black children.
                        node.IsRed = true;
                        sib.IsRed = true;
                        parent.IsRed = false;
                    }
                    else {
                        if (parent.left == node && (sib.right == null || !sib.right.IsRed)) {
                            // sib has a black child on the opposite side as node.
                            Node tleft = sib.left;
                            Rotate(parent, sib, tleft);
                            sib = tleft;
                        }
                        else if (parent.right == node && (sib.left == null || !sib.left.IsRed)) {
                            // sib has a black child on the opposite side as node.
                            Node tright = sib.right;
                            Rotate(parent, sib, tright);
                            sib = tright;
                        }

                        // sib has a red child.
                        Rotate(gparent, parent, sib);
                        node.IsRed = true;
                        sib.IsRed = true;
                        sib.left.IsRed = false;
                        sib.right.IsRed = false;

                        sib.DecrementCount();
                        nodeStack[nodeStackPtr - 1] = sib;
                        parent.DecrementCount();
                        nodeStack[nodeStackPtr++] = parent;
                    }
                }

                // Compare the key and move down the tree to the correct child.
                do {
                    Node nextNode, nextSib;    // Node we've moving to, and it's sibling.

                    node.DecrementCount();
                    nodeStack[nodeStackPtr++] = node;

                    // Determine which way to move in the tree by comparing the 
                    // current item to what we're looking for.
                    int compare = rangeTester(node.item);

                    if (compare == 0) {
                        // We've found the node to remove. Remember it, then keep traversing the
                        // tree to either find the first/last of equal keys, and if needed, the predecessor
                        // or successor (the actual node to be removed).
                        keyNode = node;
                        if (deleteFirst) {
                            nextNode = node.left; nextSib = node.right;
                        }
                        else {
                            nextNode = node.right; nextSib = node.left;
                        }
                    }
                    else if (compare > 0) {
                        nextNode = node.left; nextSib = node.right;
                    }
                    else {
                        nextNode = node.right; nextSib = node.left;
                    }

                    // Have we reached the end of our tree walk?
                    if (nextNode == null)
                        goto FINISHED;

                    // Move down the tree.
                    gparent = parent;
                    parent = node;
                    node = nextNode;
                    sib = nextSib;
                } while (!parent.IsRed && node.IsRed);

                if (!parent.IsRed) {
                    Debug.Assert(!node.IsRed);
                    // moved to a black child.
                    Rotate(gparent, parent, sib);

                    sib.DecrementCount();
                    nodeStack[nodeStackPtr - 1] = sib;
                    parent.DecrementCount();
                    nodeStack[nodeStackPtr++] = parent;

                    sib.IsRed = false;
                    parent.IsRed = true;
                    gparent = sib;
                    sib = (parent.left == node) ? parent.right : parent.left;
                }
            }

        FINISHED:
            if (keyNode == null) {
                // We never found a node to delete.

                // Return counts back to their previous value.
                for (int i = 0; i < nodeStackPtr; ++i)
                    nodeStack[i].IncrementCount();

                // Color the root black, in case it was colored red above.
                if (root != null)
                    root.IsRed = false;

                item = default(T);
                return false;
            }

            // Return the item from the node we're deleting.
            item = keyNode.item;

            // At a leaf or a node with one child which is a leaf. Remove the node.
            if (keyNode != node) {
                // The node we want to delete is interior. Move the item from the
                // node we're actually deleting to the key node.
                keyNode.item = node.item;
            }

            // If we have one child, replace the current with the child, otherwise,
            // replace the current node with null.
            Node replacement;
            if (node.left != null) {
                replacement = node.left;
                Debug.Assert(!node.IsRed && replacement.IsRed);
                replacement.IsRed = false;
            }
            else if (node.right != null) {
                replacement = node.right;
                Debug.Assert(!node.IsRed && replacement.IsRed);
                replacement.IsRed = false;
            }
            else
                replacement = null;

            if (parent == null) {
                Debug.Assert(root == node);
                root = replacement;
            }
            else if (parent.left == node)
                parent.left = replacement;
            else {
                Debug.Assert(parent.right == node);
                parent.right = replacement;
            }

            // Color the root black, in case it was colored red above.
            if (root != null)
                root.IsRed = false;

            // Update item count.
            count -= 1;

            // And we're done.
            return true;
        }

        /// <summary>
        /// Delete all the items in a range, identified by a RangeTester delegate.
        /// </summary>
        /// <param name="rangeTester">The delegate that defines the range to delete.</param>
        /// <returns>The number of items deleted.</returns>
        public int DeleteRange(RangeTester rangeTester)
        {
            bool deleted;
            int count = 0;
            T dummy;

            do {
                deleted = DeleteItemFromRange(rangeTester, true, out dummy);
                if (deleted)
                    ++count;
            } while (deleted);

            return count;
        }

        /// <summary>
        /// Count the items in a custom range in the tree. The range is determined by 
        /// a RangeTester delegate.
        /// </summary>
        /// <param name="rangeTester">The delegate that defines the range.</param>
        /// <returns>The number of items in the range.</returns>
        public int CountRange(RangeTester rangeTester)
        {
            return CountRangeUnderNode(rangeTester, root, false, false);
        }

        /// <summary>
        /// Count all the items in a custom range, under and including node.
        /// </summary>
        /// <param name="rangeTester">The delegate that defines the range.</param>
        /// <param name="node">Node to begin enumeration. May be null.</param>
        /// <param name="belowRangeTop">This node and all under it are either in the range or below it.</param>
        /// <param name="aboveRangeBottom">This node and all under it are either in the range or above it.</param>
        /// <returns>The number of items in the range, under and include node.</returns>
        private int CountRangeUnderNode(RangeTester rangeTester, Node node, bool belowRangeTop, bool aboveRangeBottom)
        {
            if (node != null) {
                if (belowRangeTop && aboveRangeBottom) {
                    // This node and all below it must be in the range. Use the predefined count.
                    return node.Count;
                }

                int compare = rangeTester(node.item);
                int count;

                if (compare == 0) {
                    count = 1;  // the node itself
                    count += CountRangeUnderNode(rangeTester, node.left, true, aboveRangeBottom);
                    count += CountRangeUnderNode(rangeTester, node.right, belowRangeTop, true);
                }
                else if (compare < 0) {
                    count = CountRangeUnderNode(rangeTester, node.right, belowRangeTop, aboveRangeBottom);
                }
                else { // compare > 0
                    count = CountRangeUnderNode(rangeTester, node.left, belowRangeTop, aboveRangeBottom);
                }

                return count;
            }
            else {
                return 0;
            }
        }

        /// <summary>
        /// Find the first item in a custom range in the tree, and it's index. The range is determined
        /// by a RangeTester delegate.
        /// </summary>
        /// <param name="rangeTester">The delegate that defines the range.</param>
        /// <param name="item">Returns the item found, if true was returned.</param>
        /// <returns>Index of first item in range if range is non-empty, -1 otherwise.</returns>
        public int FirstItemInRange(RangeTester rangeTester, out T item)
        {
            Node node = root, found = null;
            int curCount = 0, foundIndex = -1;

            while (node != null) {
                int compare = rangeTester(node.item);

                if (compare == 0) {
                    found = node;
                    if (node.left != null)
                        foundIndex = curCount + node.left.Count;
                    else
                        foundIndex = curCount;
                }

                if (compare >= 0)
                    node = node.left;
                else {
                    if (node.left != null)
                        curCount += node.left.Count + 1;
                    else
                        curCount += 1;
                    node = node.right;
                }
            }

            if (found != null) {
                item = found.item;
                return foundIndex;
            }
            else {
                item = default(T);
                return -1;
            }
        }

        /// <summary>
        /// Find the last item in a custom range in the tree, and it's index. The range is determined
        /// by a RangeTester delegate.
        /// </summary>
        /// <param name="rangeTester">The delegate that defines the range.</param>
        /// <param name="item">Returns the item found, if true was returned.</param>
        /// <returns>Index of the item if range is non-empty, -1 otherwise.</returns>
        public int LastItemInRange(RangeTester rangeTester, out T item)
        {
            Node node = root, found = null;
            int curCount = 0, foundIndex = -1;

            while (node != null) {
                int compare = rangeTester(node.item);

                if (compare == 0) {
                    found = node;
                    if (node.left != null)
                        foundIndex = curCount + node.left.Count;
                    else
                        foundIndex = curCount;
                }

                if (compare <= 0) {
                    if (node.left != null)
                        curCount += node.left.Count + 1;
                    else
                        curCount += 1;
                    node = node.right;
                }
                else
                    node = node.left;
            }

            if (found != null) {
                item = found.item;
                return foundIndex;
            }
            else {
                item = default(T);
                return foundIndex;
            }
        }

        #endregion Ranges

#if DEBUG
    /// <summary>
    /// Prints out the tree.
    /// </summary>
    public void Print() {
      PrintSubTree(root, "", "");
      Console.WriteLine();
    }

    /// <summary>
    /// Prints a sub-tree.
    /// </summary>
    /// <param name="node">Node to print from</param>
    /// <param name="prefixNode">Prefix for the node</param>
    /// <param name="prefixChildren">Prefix for the node's children</param>
    private void PrintSubTree(Node node, string prefixNode, string prefixChildren) {
      if (node == null)
        return;

      // Red nodes marked as "@@", black nodes as "..".
            Console.WriteLine("{0}{1} {2,4} {3}", prefixNode, node.IsRed ? "@@" : "..", node.Count, node.item.ToString());

      PrintSubTree(node.left, prefixChildren + "|-L-", prefixChildren + "|  ");
      PrintSubTree(node.right, prefixChildren + "|-R-", prefixChildren + "   ");
    }

    /// <summary>
    /// Validates that the tree is correctly sorted, and meets the red-black tree 
    /// axioms.
    /// </summary>
    public void Validate() {
      Debug.Assert(comparer != null, "Comparer should not be null");

      if (root == null) {
        Debug.Assert(0 == count, "Count in empty tree should be 0.");
      
      }
      else {
        Debug.Assert(! root.IsRed, "Root is not black");
        int blackHeight;
        int nodeCount = ValidateSubTree(root, out blackHeight);
        Debug.Assert(nodeCount == this.count, "Node count of tree is not correct.");
      }
    }

    /// <summary>
    /// Validates a sub-tree and returns the count and black height.
    /// </summary>
    /// <param name="node">Sub-tree to validate. May be null.</param>
    /// <param name="blackHeight">Returns the black height of the tree.</param>
        /// <returns>Returns the number of nodes in the sub-tree. 0 if node is null.</returns>
    private int ValidateSubTree(Node node, out int blackHeight) {
      if (node == null) {
        blackHeight = 0;
        return 0;
      }

      // Check that this node is sorted with respect to any children.
      if (node.left != null)
                Debug.Assert(comparer.Compare(node.left.item, node.item) <= 0, "Left child is not less than or equal to node");
            if (node.right != null)
                Debug.Assert(comparer.Compare(node.right.item, node.item) >= 0, "Right child is not greater than or equal to node");

            // Check that the two-red rule is not violated.
      if (node.IsRed) {
        if (node.left != null)
          Debug.Assert(! node.left.IsRed, "Node and left child both red");
        if (node.right != null) 
          Debug.Assert(! node.right.IsRed, "Node and right child both red");
      }

      // Validate sub-trees and get their size and heights.
      int leftCount, leftBlackHeight;
      int rightCount, rightBlackHeight;
            int ourCount;

      leftCount = ValidateSubTree(node.left, out leftBlackHeight);
      rightCount = ValidateSubTree(node.right, out rightBlackHeight);
            ourCount = leftCount + rightCount + 1;

            Debug.Assert(ourCount == node.Count);

      // Validate the equal black-height rule.
      Debug.Assert(leftBlackHeight == rightBlackHeight, "Black heights are not equal");

      // Calculate our black height and return the count
      blackHeight = leftBlackHeight;
      if (! node.IsRed)
        blackHeight += 1;
            return ourCount;
    }
#endif //DEBUG

    }

}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.