RSA.cs :  » Network-Clients » Granados » Routrek » PKI » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » Network Clients » Granados 
Granados » Routrek » PKI » RSA.cs
/* ---------------------------------------------------------------------------
 *
 * Copyright (c) Routrek Networks, Inc.    All Rights Reserved..
 * 
 * This file is a part of the Granados SSH Client Library that is subject to
 * the license included in the distributed package.
 * You may not use this file except in compliance with the license.
 * 
 * ---------------------------------------------------------------------------
 * I implemented this algorithm with reference to following products and books though the algorithm is known publicly.
 *   * MindTerm ( AppGate Network Security )
 *   * Applied Cryptography ( Bruce Schneier )
 */
using System;
using System.Diagnostics;
using System.Security.Cryptography;

using Routrek.SSHC;

namespace Routrek.PKI{
  public class RSAKeyPair : KeyPair, ISigner, IVerifier {

    private RSAPublicKey _publickey;
    private BigInteger _d;
    private BigInteger _u;
    private BigInteger _p;
    private BigInteger _q;

    public RSAKeyPair(BigInteger e, BigInteger d, BigInteger n, BigInteger u, BigInteger p, BigInteger q) {
      _publickey = new RSAPublicKey(e, n);
      _d = d;
      _u = u;
      _p = p;
      _q = q;
    }
    public BigInteger D {
      get { 
        return _d;
      }
    }
    public BigInteger U {
      get { 
        return _u;
      }
    }
    public BigInteger P {
      get { 
        return _p;
      }
    }
    public BigInteger Q {
      get { 
        return _q;
      }
    }
    public override PublicKeyAlgorithm Algorithm {
      get {
        return PublicKeyAlgorithm.RSA;
      }
    }
    public byte[] Sign(byte[] data) {
      BigInteger pe = PrimeExponent(_d, _p);
      BigInteger qe = PrimeExponent(_d, _q);

      BigInteger result = SignCore(new BigInteger(data), pe, qe);

      return result.getBytes();
    }
    
    public void Verify(byte[] data, byte[] expected) {
      _publickey.Verify(data, expected);
    }

    public byte[] SignWithSHA1(byte[] data) {
      byte[] hash = new SHA1CryptoServiceProvider().ComputeHash(data);

      byte[] buf = new byte[hash.Length + PKIUtil.SHA1_ASN_ID.Length];
      Array.Copy(PKIUtil.SHA1_ASN_ID, 0, buf, 0, PKIUtil.SHA1_ASN_ID.Length);
      Array.Copy(hash,        0, buf, PKIUtil.SHA1_ASN_ID.Length, hash.Length);
  
      BigInteger x = new BigInteger(buf);
      //Debug.WriteLine(x.ToHexString());
      int padLen = (_publickey._n.bitCount() + 7) / 8;

      x = RSAUtil.PKCS1PadType1(x, padLen);
      byte[] result = Sign(x.getBytes());
      return result;
    }

    private BigInteger SignCore(BigInteger input, BigInteger pe, BigInteger qe) {
      BigInteger p2 = (input % _p).modPow(pe, _p);
      BigInteger q2 = (input % _q).modPow(qe, _q);

      if(p2==q2)
        return p2;

      BigInteger k = (q2-p2) % _q;
      if(k.IsNegative) k += _q; //in .NET, k is negative when _q is negative
      k = (k * _u) % _q;

      BigInteger result = k * _p + p2;

      return result;
    }

    public override PublicKey PublicKey {
      get {
        return _publickey;
      }
    }

    private static BigInteger PrimeExponent(BigInteger privateExponent,  BigInteger prime) {
      BigInteger pe = prime - new BigInteger(1);
      return privateExponent % pe;

    }

    public RSAParameters ToRSAParameters() {
      RSAParameters p = new RSAParameters();
      p.D = _d.getBytes();
      p.Exponent = _publickey.Exponent.getBytes();
      p.Modulus = _publickey.Modulus.getBytes();
      p.P = _p.getBytes();
      p.Q = _q.getBytes();
      BigInteger pe = PrimeExponent(_d, _p);
      BigInteger qe = PrimeExponent(_d, _q);
      p.DP = pe.getBytes();
      p.DQ = qe.getBytes();
      p.InverseQ = _u.getBytes();
      return p;
    }

    public static RSAKeyPair GenerateNew(int bits, Random rnd) {
      BigInteger one = new BigInteger(1);
      BigInteger p   = null;
      BigInteger q   = null;
      BigInteger t   = null;
      BigInteger p_1 = null;
      BigInteger q_1 = null;
      BigInteger phi = null;
      BigInteger G   = null;
      BigInteger F   = null;
      BigInteger e   = null;
      BigInteger d   = null;
      BigInteger u   = null;
      BigInteger n   = null;

      bool finished = false;

      while(!finished) {
        p = BigInteger.genPseudoPrime(bits / 2, 64, rnd);
        q = BigInteger.genPseudoPrime(bits - (bits / 2), 64, rnd);

        if(p == 0) {
          continue;
        } else if(q < p) {
          t = q;
          q = p;
          p = t;
        }

        t = p.gcd(q);
        if(t != one) {
          continue;
        }

        p_1 = p - one;
        q_1 = q - one;
        phi = p_1 * q_1;
        G   = p_1.gcd(q_1);
        F   = phi / G;

        e   = one << 5;
        e   = e - one;
        do {
          e = e + (one + one);
          t = e.gcd(phi);
        } while(t!=one);

        // !!! d = e.modInverse(F);
        d = e.modInverse(phi);
        n = p * q;
        u = p.modInverse(q);

        finished = true;
      }

      return new RSAKeyPair(e,d,n,u,p,q);
    }
  }

  public class RSAPublicKey : PublicKey, IVerifier {


    internal BigInteger _e;
    internal BigInteger _n;


    public RSAPublicKey(BigInteger exp, BigInteger mod) {
      _e = exp;
      _n = mod;
    }
    public override PublicKeyAlgorithm Algorithm {
      get {
        return PublicKeyAlgorithm.RSA;
      }
    }
    public BigInteger Exponent {
      get {
        return _e;
      }
    }
    public BigInteger Modulus {
      get {
        return _n;
      }
    }

    public void Verify(byte[] data, byte[] expected) {
      if(VerifyBI(data)!=new BigInteger(expected))
        throw new VerifyException("Failed to verify");
    }
    private BigInteger VerifyBI(byte[] data) {
      return new BigInteger(data).modPow(_e, _n);
    }
    public void VerifyWithSHA1(byte[] data, byte[] expected) {
      BigInteger result = VerifyBI(data);
      byte[] finaldata = RSAUtil.StripPKCS1Pad(result,1).getBytes();
      
      if(finaldata.Length != PKIUtil.SHA1_ASN_ID.Length+expected.Length)
        throw new VerifyException("result is too short");
      else {
        byte[] r = new byte[finaldata.Length];
        Array.Copy(PKIUtil.SHA1_ASN_ID, 0, r, 0, PKIUtil.SHA1_ASN_ID.Length);
        Array.Copy(expected, 0, r, PKIUtil.SHA1_ASN_ID.Length, expected.Length);
        if(SSHUtil.memcmp(r, finaldata)!=0)
          throw new VerifyException("failed to verify");
      }
    }

    public override void WriteTo(IKeyWriter writer) {
      writer.Write(_e);
      writer.Write(_n);
    }
  }

  public class RSAUtil {
    
    public static BigInteger PKCS1PadType2(BigInteger input, int pad_len, Random rand) {
      int input_byte_length = (input.bitCount()+7)/8;
      //System.out.println(String.valueOf(pad_len) + ":" + input_byte_length);
      byte[] pad = new byte[pad_len - input_byte_length - 3];

      for(int i = 0; i < pad.Length; i++) {
        byte[] b = new byte[1];
        rand.NextBytes(b);
        while(b[0] == 0) rand.NextBytes(b); //0
        pad[i] = b[0];
      }

      BigInteger pad_int = new BigInteger(pad);
      pad_int = pad_int << ((input_byte_length + 1) * 8);
      BigInteger result = new BigInteger(2);
      result = result << ((pad_len - 2) * 8);
      result = result | pad_int;
      result = result | input;

      return result;
    }
    
    public static BigInteger PKCS1PadType1(BigInteger input, int pad_len) {
      int input_byte_length = (input.bitCount()+7)/8;
      //System.out.println(String.valueOf(pad_len) + ":" + input_byte_length);
      byte[] pad = new byte[pad_len - input_byte_length - 3];
      
      for(int i = 0; i < pad.Length; i++) {
        pad[i] = (byte)0xff;
      }

      BigInteger pad_int = new BigInteger(pad);
      pad_int = pad_int << ((input_byte_length + 1) * 8);
      BigInteger result = new BigInteger(1);
      result = result << ((pad_len - 2) * 8);
      result = result | pad_int;
      result = result | input;

      return result;
    }
    public static BigInteger StripPKCS1Pad(BigInteger input, int type) {
      byte[] strip = input.getBytes();
      int i;

      if(strip[0] != type) throw new Exception(String.Format("Invalid PKCS1 padding {0}", type));

      for(i = 1; i < strip.Length; i++) {
        if(strip[i] == 0) break;

        if(type == 0x01 && strip[i] != (byte)0xff)
          throw new Exception("Invalid PKCS1 padding, corrupt data");
      }

      if(i == strip.Length)
        throw new Exception("Invalid PKCS1 padding, corrupt data");

      byte[] val = new byte[strip.Length - i];
      Array.Copy(strip, i, val, 0, val.Length);
      return new BigInteger(val);
    }
  }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.