using System;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Security;
namespace Org.BouncyCastle.Crypto.Engines{
/**
* this does your basic RSA algorithm.
*/
class RsaCoreEngine
{
private RsaKeyParameters key;
private bool forEncryption;
private int bitSize;
/**
* initialise the RSA engine.
*
* @param forEncryption true if we are encrypting, false otherwise.
* @param param the necessary RSA key parameters.
*/
public void Init(
bool forEncryption,
ICipherParameters parameters)
{
if (parameters is ParametersWithRandom)
{
parameters = ((ParametersWithRandom) parameters).Parameters;
}
if (!(parameters is RsaKeyParameters))
throw new InvalidKeyException("Not an RSA key");
this.key = (RsaKeyParameters) parameters;
this.forEncryption = forEncryption;
this.bitSize = key.Modulus.BitLength;
}
/**
* Return the maximum size for an input block to this engine.
* For RSA this is always one byte less than the key size on
* encryption, and the same length as the key size on decryption.
*
* @return maximum size for an input block.
*/
public int GetInputBlockSize()
{
if (forEncryption)
{
return (bitSize - 1) / 8;
}
return (bitSize + 7) / 8;
}
/**
* Return the maximum size for an output block to this engine.
* For RSA this is always one byte less than the key size on
* decryption, and the same length as the key size on encryption.
*
* @return maximum size for an output block.
*/
public int GetOutputBlockSize()
{
if (forEncryption)
{
return (bitSize + 7) / 8;
}
return (bitSize - 1) / 8;
}
public BigInteger ConvertInput(
byte[] inBuf,
int inOff,
int inLen)
{
int maxLength = (bitSize + 7) / 8;
if (inLen > maxLength)
throw new DataLengthException("input too large for RSA cipher.");
BigInteger input = new BigInteger(1, inBuf, inOff, inLen);
if (input.CompareTo(key.Modulus) >= 0)
throw new DataLengthException("input too large for RSA cipher.");
return input;
}
public byte[] ConvertOutput(
BigInteger result)
{
byte[] output = result.ToByteArrayUnsigned();
if (forEncryption)
{
int outSize = GetOutputBlockSize();
// TODO To avoid this, create version of BigInteger.ToByteArray that
// writes to an existing array
if (output.Length < outSize) // have ended up with less bytes than normal, lengthen
{
byte[] tmp = new byte[outSize];
output.CopyTo(tmp, tmp.Length - output.Length);
output = tmp;
}
}
return output;
}
public BigInteger ProcessBlock(
BigInteger input)
{
if (key is RsaPrivateCrtKeyParameters)
{
//
// we have the extra factors, use the Chinese Remainder Theorem - the author
// wishes to express his thanks to Dirk Bonekaemper at rtsffm.com for
// advice regarding the expression of this.
//
RsaPrivateCrtKeyParameters crtKey = (RsaPrivateCrtKeyParameters)key;
BigInteger p = crtKey.P;;
BigInteger q = crtKey.Q;
BigInteger dP = crtKey.DP;
BigInteger dQ = crtKey.DQ;
BigInteger qInv = crtKey.QInv;
BigInteger mP, mQ, h, m;
// mP = ((input Mod p) ^ dP)) Mod p
mP = (input.Remainder(p)).ModPow(dP, p);
// mQ = ((input Mod q) ^ dQ)) Mod q
mQ = (input.Remainder(q)).ModPow(dQ, q);
// h = qInv * (mP - mQ) Mod p
h = mP.Subtract(mQ);
h = h.Multiply(qInv);
h = h.Mod(p); // Mod (in Java) returns the positive residual
// m = h * q + mQ
m = h.Multiply(q);
m = m.Add(mQ);
return m;
}
return input.ModPow(key.Exponent, key.Modulus);
}
}
}
|