RSACoreEngine.cs :  » PDF » iTextSharp » Org » BouncyCastle » Crypto » Engines » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » PDF » iTextSharp 
iTextSharp » Org » BouncyCastle » Crypto » Engines » RSACoreEngine.cs
using System;

using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Security;

namespace Org.BouncyCastle.Crypto.Engines{
  /**
  * this does your basic RSA algorithm.
  */
  class RsaCoreEngine
  {
    private RsaKeyParameters  key;
    private bool        forEncryption;
    private int          bitSize;

    /**
    * initialise the RSA engine.
    *
    * @param forEncryption true if we are encrypting, false otherwise.
    * @param param the necessary RSA key parameters.
    */
    public void Init(
      bool        forEncryption,
      ICipherParameters  parameters)
    {
      if (parameters is ParametersWithRandom)
      {
        parameters = ((ParametersWithRandom) parameters).Parameters;
      }

      if (!(parameters is RsaKeyParameters))
        throw new InvalidKeyException("Not an RSA key");

      this.key = (RsaKeyParameters) parameters;
      this.forEncryption = forEncryption;
      this.bitSize = key.Modulus.BitLength;
    }

    /**
    * Return the maximum size for an input block to this engine.
    * For RSA this is always one byte less than the key size on
    * encryption, and the same length as the key size on decryption.
    *
    * @return maximum size for an input block.
    */
    public int GetInputBlockSize()
    {
      if (forEncryption)
      {
        return (bitSize - 1) / 8;
      }

      return (bitSize + 7) / 8;
    }

    /**
    * Return the maximum size for an output block to this engine.
    * For RSA this is always one byte less than the key size on
    * decryption, and the same length as the key size on encryption.
    *
    * @return maximum size for an output block.
    */
    public int GetOutputBlockSize()
    {
      if (forEncryption)
      {
        return (bitSize + 7) / 8;
      }

      return (bitSize - 1) / 8;
    }

    public BigInteger ConvertInput(
      byte[]  inBuf,
      int    inOff,
      int    inLen)
    {
      int maxLength = (bitSize + 7) / 8;

      if (inLen > maxLength)
        throw new DataLengthException("input too large for RSA cipher.");

      BigInteger input = new BigInteger(1, inBuf, inOff, inLen);

      if (input.CompareTo(key.Modulus) >= 0)
        throw new DataLengthException("input too large for RSA cipher.");

      return input;
    }

    public byte[] ConvertOutput(
      BigInteger result)
    {
      byte[] output = result.ToByteArrayUnsigned();

      if (forEncryption)
      {
        int outSize = GetOutputBlockSize();

        // TODO To avoid this, create version of BigInteger.ToByteArray that
        // writes to an existing array
        if (output.Length < outSize) // have ended up with less bytes than normal, lengthen
        {
          byte[] tmp = new byte[outSize];
          output.CopyTo(tmp, tmp.Length - output.Length);
          output = tmp;
        }
      }

      return output;
    }

    public BigInteger ProcessBlock(
      BigInteger input)
    {
      if (key is RsaPrivateCrtKeyParameters)
      {
        //
        // we have the extra factors, use the Chinese Remainder Theorem - the author
        // wishes to express his thanks to Dirk Bonekaemper at rtsffm.com for
        // advice regarding the expression of this.
        //
        RsaPrivateCrtKeyParameters crtKey = (RsaPrivateCrtKeyParameters)key;

        BigInteger p = crtKey.P;;
        BigInteger q = crtKey.Q;
        BigInteger dP = crtKey.DP;
        BigInteger dQ = crtKey.DQ;
        BigInteger qInv = crtKey.QInv;

        BigInteger mP, mQ, h, m;

        // mP = ((input Mod p) ^ dP)) Mod p
        mP = (input.Remainder(p)).ModPow(dP, p);

        // mQ = ((input Mod q) ^ dQ)) Mod q
        mQ = (input.Remainder(q)).ModPow(dQ, q);

        // h = qInv * (mP - mQ) Mod p
        h = mP.Subtract(mQ);
        h = h.Multiply(qInv);
        h = h.Mod(p);               // Mod (in Java) returns the positive residual

        // m = h * q + mQ
        m = h.Multiply(q);
        m = m.Add(mQ);

        return m;
      }

      return input.ModPow(key.Exponent, key.Modulus);
    }
  }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.