Source Code Cross Referenced for PNMImageEncoder.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » com » sun » media » jai » codecimpl » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » com.sun.media.jai.codecimpl 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: PNMImageEncoder.java,v $
003:         *
004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Use is subject to license terms.
007:         *
008:         * $Revision: 1.1 $
009:         * $Date: 2005/02/11 04:55:38 $
010:         * $State: Exp $
011:         */
012:        package com.sun.media.jai.codecimpl;
013:
014:        import java.awt.Rectangle;
015:        import java.awt.image.ColorModel;
016:        import java.awt.image.ComponentSampleModel;
017:        import java.awt.image.DataBuffer;
018:        import java.awt.image.DataBufferByte;
019:        import java.awt.image.IndexColorModel;
020:        import java.awt.image.MultiPixelPackedSampleModel;
021:        import java.awt.image.Raster;
022:        import java.awt.image.RenderedImage;
023:        import java.awt.image.SampleModel;
024:        import java.io.IOException;
025:        import java.io.OutputStream;
026:        import com.sun.media.jai.codec.ImageEncoderImpl;
027:        import com.sun.media.jai.codec.ImageEncodeParam;
028:        import com.sun.media.jai.codec.PNMEncodeParam;
029:
030:        /**
031:         * An ImageEncoder for the PNM family of file formats.
032:         *
033:         * <p> The PNM file format includes PBM for monochrome images, PGM for
034:         * grey scale images, and PPM for color images. When writing the
035:         * source data out, the encoder chooses the appropriate file variant
036:         * based on the actual SampleModel of the source image. In case the
037:         * source image data is unsuitable for the PNM file format, for
038:         * example when source has 4 bands or float data type, the encoder
039:         * throws an Error.
040:         *
041:         * <p> The raw file format is used wherever possible, unless the
042:         * PNMEncodeParam object supplied to the constructor returns
043:         * <code>true</code> from its <code>getRaw()</code> method.
044:         *
045:         *
046:         * @since EA2
047:         */
048:        public class PNMImageEncoder extends ImageEncoderImpl {
049:
050:            private static final int PBM_ASCII = '1';
051:            private static final int PGM_ASCII = '2';
052:            private static final int PPM_ASCII = '3';
053:            private static final int PBM_RAW = '4';
054:            private static final int PGM_RAW = '5';
055:            private static final int PPM_RAW = '6';
056:
057:            private static final int SPACE = ' ';
058:
059:            private static final String COMMENT = "# written by com.sun.media.jai.codecimpl.PNMImageEncoder";
060:
061:            private byte[] lineSeparator;
062:
063:            private int variant;
064:            private int maxValue;
065:
066:            public PNMImageEncoder(OutputStream output, ImageEncodeParam param) {
067:                super (output, param);
068:                if (this .param == null) {
069:                    this .param = new PNMEncodeParam();
070:                }
071:            }
072:
073:            /**
074:             * Encodes a RenderedImage and writes the output to the
075:             * OutputStream associated with this ImageEncoder.
076:             */
077:            public void encode(RenderedImage im) throws IOException {
078:                int minX = im.getMinX();
079:                int minY = im.getMinY();
080:                int width = im.getWidth();
081:                int height = im.getHeight();
082:                int tileHeight = im.getTileHeight();
083:                SampleModel sampleModel = im.getSampleModel();
084:                ColorModel colorModel = im.getColorModel();
085:
086:                String ls = (String) java.security.AccessController
087:                        .doPrivileged(new sun.security.action.GetPropertyAction(
088:                                "line.separator"));
089:                lineSeparator = ls.getBytes();
090:
091:                int dataType = sampleModel.getTransferType();
092:                if ((dataType == DataBuffer.TYPE_FLOAT)
093:                        || (dataType == DataBuffer.TYPE_DOUBLE)) {
094:                    throw new RuntimeException(JaiI18N
095:                            .getString("PNMImageEncoder0"));
096:                }
097:
098:                // Raw data can only handle bytes, everything greater must be ASCII.
099:                int[] sampleSize = sampleModel.getSampleSize();
100:                int numBands = sampleModel.getNumBands();
101:
102:                // Colormap populated for non-bilevel IndexColorModel only.
103:                byte[] reds = null;
104:                byte[] greens = null;
105:                byte[] blues = null;
106:
107:                // Flag indicating that PB data should be inverted before writing.
108:                boolean isPBMInverted = false;
109:
110:                if (numBands == 1) {
111:                    if (colorModel instanceof  IndexColorModel) {
112:                        IndexColorModel icm = (IndexColorModel) colorModel;
113:
114:                        int mapSize = icm.getMapSize();
115:                        if (mapSize < (1 << sampleSize[0])) {
116:                            throw new RuntimeException(JaiI18N
117:                                    .getString("PNMImageEncoder1"));
118:                        }
119:
120:                        if (sampleSize[0] == 1) {
121:                            variant = PBM_RAW;
122:
123:                            // Set PBM inversion flag if 1 maps to a higher color
124:                            // value than 0: PBM expects white-is-zero so if this
125:                            // does not obtain then inversion needs to occur.
126:                            isPBMInverted = (icm.getRed(1) + icm.getGreen(1) + icm
127:                                    .getBlue(1)) > (icm.getRed(0)
128:                                    + icm.getGreen(0) + icm.getBlue(0));
129:                        } else {
130:                            variant = PPM_RAW;
131:
132:                            reds = new byte[mapSize];
133:                            greens = new byte[mapSize];
134:                            blues = new byte[mapSize];
135:
136:                            icm.getReds(reds);
137:                            icm.getGreens(greens);
138:                            icm.getBlues(blues);
139:                        }
140:                    } else if (sampleSize[0] == 1) {
141:                        variant = PBM_RAW;
142:                    } else if (sampleSize[0] <= 8) {
143:                        variant = PGM_RAW;
144:                    } else {
145:                        variant = PGM_ASCII;
146:                    }
147:                } else if (numBands == 3) {
148:                    if (sampleSize[0] <= 8 && sampleSize[1] <= 8
149:                            && sampleSize[2] <= 8) { // all 3 bands must be <= 8
150:                        variant = PPM_RAW;
151:                    } else {
152:                        variant = PPM_ASCII;
153:                    }
154:                } else {
155:                    throw new RuntimeException(JaiI18N
156:                            .getString("PNMImageEncoder2"));
157:                }
158:
159:                // Read parameters
160:                if (((PNMEncodeParam) param).getRaw()) {
161:                    if (!isRaw(variant)) {
162:                        boolean canUseRaw = true;
163:
164:                        // Make sure sampleSize for all bands no greater than 8.
165:                        for (int i = 0; i < sampleSize.length; i++) {
166:                            if (sampleSize[i] > 8) {
167:                                canUseRaw = false;
168:                                break;
169:                            }
170:                        }
171:
172:                        if (canUseRaw) {
173:                            variant += 0x3;
174:                        }
175:                    }
176:                } else {
177:                    if (isRaw(variant)) {
178:                        variant -= 0x3;
179:                    }
180:                }
181:
182:                maxValue = (1 << sampleSize[0]) - 1;
183:
184:                // Write PNM file.
185:                output.write('P'); // magic value
186:                output.write(variant);
187:
188:                output.write(lineSeparator);
189:                output.write(COMMENT.getBytes()); // comment line
190:
191:                output.write(lineSeparator);
192:                writeInteger(output, width); // width
193:                output.write(SPACE);
194:                writeInteger(output, height); // height
195:
196:                // Writ esample max value for non-binary images
197:                if ((variant != PBM_RAW) && (variant != PBM_ASCII)) {
198:                    output.write(lineSeparator);
199:                    writeInteger(output, maxValue);
200:                }
201:
202:                // The spec allows a single character between the
203:                // last header value and the start of the raw data.
204:                if (variant == PBM_RAW || variant == PGM_RAW
205:                        || variant == PPM_RAW) {
206:                    output.write('\n');
207:                }
208:
209:                // Set flag for optimal image writing case: row-packed data with
210:                // correct band order if applicable.
211:                boolean writeOptimal = false;
212:                if (variant == PBM_RAW
213:                        && sampleModel.getTransferType() == DataBuffer.TYPE_BYTE
214:                        && sampleModel instanceof  MultiPixelPackedSampleModel) {
215:
216:                    MultiPixelPackedSampleModel mppsm = (MultiPixelPackedSampleModel) sampleModel;
217:
218:                    // Must have left-aligned bytes with unity bit stride.
219:                    if (mppsm.getDataBitOffset() == 0
220:                            && mppsm.getPixelBitStride() == 1) {
221:
222:                        writeOptimal = true;
223:                    }
224:                } else if ((variant == PGM_RAW || variant == PPM_RAW)
225:                        && sampleModel instanceof  ComponentSampleModel
226:                        && !(colorModel instanceof  IndexColorModel)) {
227:
228:                    ComponentSampleModel csm = (ComponentSampleModel) sampleModel;
229:
230:                    // Pixel stride must equal band count.
231:                    if (csm.getPixelStride() == numBands) {
232:                        writeOptimal = true;
233:
234:                        // Band offsets must equal band indices.
235:                        if (variant == PPM_RAW) {
236:                            int[] bandOffsets = csm.getBandOffsets();
237:                            for (int b = 0; b < numBands; b++) {
238:                                if (bandOffsets[b] != b) {
239:                                    writeOptimal = false;
240:                                    break;
241:                                }
242:                            }
243:                        }
244:                    }
245:                }
246:
247:                // Write using an optimal approach if possible.
248:                if (writeOptimal) {
249:                    int bytesPerRow = variant == PBM_RAW ? (width + 7) / 8
250:                            : width * sampleModel.getNumBands();
251:                    int numYTiles = im.getNumYTiles();
252:                    Rectangle imageBounds = new Rectangle(im.getMinX(), im
253:                            .getMinY(), im.getWidth(), im.getHeight());
254:                    Rectangle stripRect = new Rectangle(im.getMinX(), im
255:                            .getMinTileY()
256:                            * im.getTileHeight() + im.getTileGridYOffset(), im
257:                            .getWidth(), im.getTileHeight());
258:
259:                    byte[] invertedData = null;
260:                    if (isPBMInverted) {
261:                        invertedData = new byte[bytesPerRow];
262:                    }
263:
264:                    // Loop over tiles to minimize cobbling.
265:                    for (int j = 0; j < numYTiles; j++) {
266:                        // Clamp the strip to the image bounds.
267:                        if (j == numYTiles - 1) {
268:                            stripRect.height = im.getHeight() - stripRect.y;
269:                        }
270:
271:                        Rectangle encodedRect = stripRect
272:                                .intersection(imageBounds);
273:                        // Get a strip of data.
274:                        Raster strip = im.getData(encodedRect);
275:
276:                        // Get the data array.
277:                        byte[] bdata = ((DataBufferByte) strip.getDataBuffer())
278:                                .getData();
279:
280:                        // Get the scanline stride.
281:                        int rowStride = variant == PBM_RAW ? ((MultiPixelPackedSampleModel) strip
282:                                .getSampleModel()).getScanlineStride()
283:                                : ((ComponentSampleModel) strip
284:                                        .getSampleModel()).getScanlineStride();
285:
286:                        if (rowStride == bytesPerRow && !isPBMInverted) {
287:                            // Write the entire strip at once.
288:                            output.write(bdata, 0, bdata.length);
289:                        } else {
290:                            // Write the strip row-by-row.
291:                            int offset = 0;
292:                            for (int i = 0; i < encodedRect.height; i++) {
293:                                if (isPBMInverted) {
294:                                    for (int k = 0; k < bytesPerRow; k++) {
295:                                        invertedData[k] = (byte) (~(bdata[offset
296:                                                + k] & 0xff));
297:                                    }
298:                                    output.write(invertedData, 0, bytesPerRow);
299:                                } else {
300:                                    output.write(bdata, offset, bytesPerRow);
301:                                }
302:                                offset += rowStride;
303:                            }
304:                        }
305:
306:                        // Increment the strip origin.
307:                        stripRect.y += tileHeight;
308:                    }
309:
310:                    // Write all buffered bytes and return.
311:                    output.flush();
312:
313:                    return;
314:                }
315:
316:                // Buffer for up to 8 rows of pixels
317:                int[] pixels = new int[8 * width * numBands];
318:
319:                // Also allocate a buffer to hold the data to be written to the file,
320:                // so we can use array writes.
321:                byte[] bpixels = reds == null ? new byte[8 * width * numBands]
322:                        : new byte[8 * width * 3];
323:
324:                // The index of the sample being written, used to
325:                // place a line separator after every 16th sample in
326:                // ASCII mode.  Not used in raw mode.
327:                int count = 0;
328:
329:                // Process 8 rows at a time so all but the last will have
330:                // a multiple of 8 pixels.  This simplifies PBM_RAW encoding.
331:                int lastRow = minY + height;
332:                for (int row = minY; row < lastRow; row += 8) {
333:                    int rows = Math.min(8, lastRow - row);
334:                    int size = rows * width * numBands;
335:
336:                    // Grab the pixels
337:                    Raster src = im.getData(new Rectangle(minX, row, width,
338:                            rows));
339:                    src.getPixels(minX, row, width, rows, pixels);
340:
341:                    // Invert bits if necessary.
342:                    if (isPBMInverted) {
343:                        for (int k = 0; k < size; k++) {
344:                            pixels[k] ^= 0x00000001;
345:                        }
346:                    }
347:
348:                    switch (variant) {
349:                    case PBM_ASCII:
350:                    case PGM_ASCII:
351:                        for (int i = 0; i < size; i++) {
352:                            if ((count++ % 16) == 0) {
353:                                output.write(lineSeparator);
354:                            } else {
355:                                output.write(SPACE);
356:                            }
357:                            writeInteger(output, pixels[i]);
358:                        }
359:                        output.write(lineSeparator);
360:                        break;
361:
362:                    case PPM_ASCII:
363:                        if (reds == null) { // no need to expand
364:                            for (int i = 0; i < size; i++) {
365:                                if ((count++ % 16) == 0) {
366:                                    output.write(lineSeparator);
367:                                } else {
368:                                    output.write(SPACE);
369:                                }
370:                                writeInteger(output, pixels[i]);
371:                            }
372:
373:                        } else {
374:                            for (int i = 0; i < size; i++) {
375:                                if ((count++ % 16) == 0) {
376:                                    output.write(lineSeparator);
377:                                } else {
378:                                    output.write(SPACE);
379:                                }
380:                                writeInteger(output, (reds[pixels[i]] & 0xFF));
381:                                output.write(SPACE);
382:                                writeInteger(output, (greens[pixels[i]] & 0xFF));
383:                                output.write(SPACE);
384:                                writeInteger(output, (blues[pixels[i]] & 0xFF));
385:                            }
386:                        }
387:                        output.write(lineSeparator);
388:                        break;
389:
390:                    case PBM_RAW:
391:                        // 8 pixels packed into 1 byte, the leftovers are padded.
392:                        int kdst = 0;
393:                        int ksrc = 0;
394:                        for (int i = 0; i < size / 8; i++) {
395:                            int b = (pixels[ksrc++] << 7)
396:                                    | (pixels[ksrc++] << 6)
397:                                    | (pixels[ksrc++] << 5)
398:                                    | (pixels[ksrc++] << 4)
399:                                    | (pixels[ksrc++] << 3)
400:                                    | (pixels[ksrc++] << 2)
401:                                    | (pixels[ksrc++] << 1) | pixels[ksrc++];
402:                            bpixels[kdst++] = (byte) b;
403:                        }
404:
405:                        // Leftover pixels, only possible at the end of the file.
406:                        if (size % 8 > 0) {
407:                            int b = 0;
408:                            for (int i = 0; i < size % 8; i++) {
409:                                b |= pixels[size + i] << (7 - i);
410:                            }
411:                            bpixels[kdst++] = (byte) b;
412:                        }
413:                        output.write(bpixels, 0, (size + 7) / 8);
414:
415:                        break;
416:
417:                    case PGM_RAW:
418:                        for (int i = 0; i < size; i++) {
419:                            bpixels[i] = (byte) (pixels[i]);
420:                        }
421:                        output.write(bpixels, 0, size);
422:                        break;
423:
424:                    case PPM_RAW:
425:                        if (reds == null) { // no need to expand
426:                            for (int i = 0; i < size; i++) {
427:                                bpixels[i] = (byte) (pixels[i] & 0xFF);
428:                            }
429:                        } else {
430:                            for (int i = 0, j = 0; i < size; i++) {
431:                                bpixels[j++] = reds[pixels[i]];
432:                                bpixels[j++] = greens[pixels[i]];
433:                                bpixels[j++] = blues[pixels[i]];
434:                            }
435:                        }
436:                        output.write(bpixels, 0, bpixels.length);
437:                        break;
438:                    }
439:                }
440:
441:                // Force all buffered bytes to be written out.
442:                output.flush();
443:            }
444:
445:            /** Writes an integer to the output in ASCII format. */
446:            private void writeInteger(OutputStream output, int i)
447:                    throws IOException {
448:                output.write(Integer.toString(i).getBytes());
449:            }
450:
451:            /** Writes a byte to the output in ASCII format. */
452:            private void writeByte(OutputStream output, byte b)
453:                    throws IOException {
454:                output.write(Byte.toString(b).getBytes());
455:            }
456:
457:            /** Returns true if file variant is raw format, false if ASCII. */
458:            private boolean isRaw(int v) {
459:                return (v >= PBM_RAW);
460:            }
461:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.