Source Code Cross Referenced for AffineBilinearOpImage.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » com » sun » media » jai » opimage » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » com.sun.media.jai.opimage 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


0001:        /*
0002:         * $RCSfile: AffineBilinearOpImage.java,v $
0003:         *
0004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
0005:         *
0006:         * Use is subject to license terms.
0007:         *
0008:         * $Revision: 1.1 $
0009:         * $Date: 2005/02/11 04:56:13 $
0010:         * $State: Exp $
0011:         */
0012:        package com.sun.media.jai.opimage;
0013:
0014:        import java.awt.Rectangle;
0015:        import java.awt.geom.AffineTransform;
0016:        import java.awt.geom.Point2D;
0017:        import java.awt.image.DataBuffer;
0018:        import java.awt.image.Raster;
0019:        import java.awt.image.RenderedImage;
0020:        import java.awt.image.WritableRaster;
0021:        import java.awt.image.renderable.ParameterBlock;
0022:        import javax.media.jai.BorderExtender;
0023:        import javax.media.jai.ImageLayout;
0024:        import javax.media.jai.Interpolation;
0025:        import javax.media.jai.InterpolationBilinear;
0026:        import javax.media.jai.OpImage;
0027:        import javax.media.jai.RasterAccessor;
0028:        import javax.media.jai.RasterFormatTag;
0029:        import java.util.Map;
0030:
0031:        // import com.sun.media.jai.test.OpImageTester;
0032:
0033:        /**
0034:         * An OpImage subclass that performs bilinear Affine mapping
0035:         */
0036:        final class AffineBilinearOpImage extends AffineOpImage {
0037:
0038:            /**
0039:             * Constructs an AffineBilinearOpImage from a RenderedImage source,
0040:             *
0041:             * @param source a RenderedImage.
0042:             * @param extender a BorderExtender, or null.
0043:             * @param layout an ImageLayout optionally containing the tile grid layout,
0044:             *        SampleModel, and ColorModel, or null.
0045:             * @param interp an Interpolation object to use for resampling
0046:             * @param transform the desired AffineTransform.
0047:             */
0048:            public AffineBilinearOpImage(RenderedImage source,
0049:                    BorderExtender extender, Map config, ImageLayout layout,
0050:                    AffineTransform transform, Interpolation interp,
0051:                    double[] backgroundValues) {
0052:                super (source, extender, config, layout, transform, interp,
0053:                        backgroundValues);
0054:            }
0055:
0056:            /**
0057:             * Performs an affine transform on a specified rectangle. The sources are
0058:             * cobbled.
0059:             *
0060:             * @param sources an array of source Rasters, guaranteed to provide all
0061:             *                necessary source data for computing the output.
0062:             * @param dest a WritableRaster tile containing the area to be computed.
0063:             * @param destRect the rectangle within dest to be processed.
0064:             */
0065:            protected void computeRect(Raster[] sources, WritableRaster dest,
0066:                    Rectangle destRect) {
0067:                // Retrieve format tags.
0068:                RasterFormatTag[] formatTags = getFormatTags();
0069:
0070:                Raster source = sources[0];
0071:
0072:                Rectangle srcRect = source.getBounds();
0073:
0074:                int srcRectX = srcRect.x;
0075:                int srcRectY = srcRect.y;
0076:
0077:                //
0078:                // Get data for the source rectangle & the destination rectangle
0079:                // In the first version source Rectangle is the whole source
0080:                // image always.
0081:                //
0082:                // See if we can cache the source to avoid multiple rasteraccesors
0083:                //
0084:                RasterAccessor srcAccessor = new RasterAccessor(source,
0085:                        srcRect, formatTags[0], getSourceImage(0)
0086:                                .getColorModel());
0087:                RasterAccessor dstAccessor = new RasterAccessor(dest, destRect,
0088:                        formatTags[1], getColorModel());
0089:
0090:                switch (dstAccessor.getDataType()) {
0091:                case DataBuffer.TYPE_BYTE:
0092:                    byteLoop(srcAccessor, destRect, srcRectX, srcRectY,
0093:                            dstAccessor);
0094:                    break;
0095:
0096:                case DataBuffer.TYPE_INT:
0097:                    intLoop(srcAccessor, destRect, srcRectX, srcRectY,
0098:                            dstAccessor);
0099:                    break;
0100:
0101:                case DataBuffer.TYPE_SHORT:
0102:                    shortLoop(srcAccessor, destRect, srcRectX, srcRectY,
0103:                            dstAccessor);
0104:                    break;
0105:
0106:                case DataBuffer.TYPE_USHORT:
0107:                    ushortLoop(srcAccessor, destRect, srcRectX, srcRectY,
0108:                            dstAccessor);
0109:                    break;
0110:
0111:                case DataBuffer.TYPE_FLOAT:
0112:                    floatLoop(srcAccessor, destRect, srcRectX, srcRectY,
0113:                            dstAccessor);
0114:                    break;
0115:
0116:                case DataBuffer.TYPE_DOUBLE:
0117:                    doubleLoop(srcAccessor, destRect, srcRectX, srcRectY,
0118:                            dstAccessor);
0119:                    break;
0120:                }
0121:
0122:                // If the RasterAccessor object set up a temporary buffer for the
0123:                // op to write to, tell the RasterAccessor to write that data
0124:                // to the raster, that we're done with it.
0125:                if (dstAccessor.isDataCopy()) {
0126:                    dstAccessor.clampDataArrays();
0127:                    dstAccessor.copyDataToRaster();
0128:                }
0129:            }
0130:
0131:            private void byteLoop(RasterAccessor src, Rectangle destRect,
0132:                    int srcRectX, int srcRectY, RasterAccessor dst) {
0133:
0134:                float src_rect_x1 = src.getX();
0135:                float src_rect_y1 = src.getY();
0136:                float src_rect_x2 = src_rect_x1 + src.getWidth();
0137:                float src_rect_y2 = src_rect_y1 + src.getHeight();
0138:
0139:                float s_x, s_y;
0140:
0141:                float fracx, fracy;
0142:
0143:                int pxlow, pylow, pxhigh, pyhigh;
0144:
0145:                int s, s00, s01, s10, s11;
0146:                float s0, s1;
0147:                float tmp;
0148:
0149:                int dstPixelOffset;
0150:                int dstOffset = 0;
0151:
0152:                Point2D dst_pt = new Point2D.Float();
0153:                Point2D src_pt = new Point2D.Float();
0154:
0155:                int dwidth = dst.getWidth();
0156:                int dheight = dst.getHeight();
0157:                int dnumBands = dst.getNumBands();
0158:
0159:                byte dstDataArrays[][] = dst.getByteDataArrays();
0160:                int dstBandOffsets[] = dst.getBandOffsets();
0161:                int dstPixelStride = dst.getPixelStride();
0162:                int dstScanlineStride = dst.getScanlineStride();
0163:
0164:                byte srcDataArrays[][] = src.getByteDataArrays();
0165:                int bandOffsets[] = src.getBandOffsets();
0166:                int srcPixelStride = src.getPixelStride();
0167:                int srcScanlineStride = src.getScanlineStride();
0168:
0169:                int dst_num_bands = dst.getNumBands();
0170:
0171:                int dst_min_x = destRect.x;
0172:                int dst_min_y = destRect.y;
0173:                int dst_max_x = destRect.x + destRect.width;
0174:                int dst_max_y = destRect.y + destRect.height;
0175:
0176:                byte[] backgroundByte = new byte[dst_num_bands];
0177:                for (int i = 0; i < dst_num_bands; i++)
0178:                    backgroundByte[i] = (byte) backgroundValues[i];
0179:
0180:                for (int y = dst_min_y; y < dst_max_y; y++) {
0181:
0182:                    dstPixelOffset = dstOffset;
0183:
0184:                    // Backward map the first point in the line
0185:                    // The energy is at the (pt_x + 0.5, pt_y + 0.5)
0186:                    dst_pt.setLocation((double) dst_min_x + 0.5,
0187:                            (double) y + 0.5);
0188:                    mapDestPoint(dst_pt, src_pt);
0189:
0190:                    // Get the mapped source coordinates
0191:                    s_x = (float) src_pt.getX();
0192:                    s_y = (float) src_pt.getY();
0193:
0194:                    // As per definition of bilinear interpolation
0195:                    s_x -= 0.5;
0196:                    s_y -= 0.5;
0197:
0198:                    // Floor to get the integral coordinate
0199:                    int s_ix = (int) Math.floor(s_x);
0200:                    int s_iy = (int) Math.floor(s_y);
0201:
0202:                    fracx = s_x - (float) s_ix;
0203:                    fracy = s_y - (float) s_iy;
0204:
0205:                    // Translate to/from SampleModel space & Raster space
0206:                    pylow = (s_iy - srcRectY) * srcScanlineStride;
0207:                    pxlow = (s_ix - srcRectX) * srcPixelStride;
0208:                    pyhigh = pylow + srcScanlineStride;
0209:                    pxhigh = pxlow + srcPixelStride;
0210:
0211:                    int tmp00 = pxlow + pylow;
0212:                    int tmp01 = pxhigh + pylow;
0213:                    int tmp10 = pxlow + pyhigh;
0214:                    int tmp11 = pxhigh + pyhigh;
0215:
0216:                    for (int x = dst_min_x; x < dst_max_x; x++) {
0217:                        //
0218:                        // Check against the source rectangle
0219:                        //
0220:                        if ((s_ix >= src_rect_x1) && (s_ix < (src_rect_x2 - 1))
0221:                                && (s_iy >= src_rect_y1)
0222:                                && (s_iy < (src_rect_y2 - 1))) {
0223:                            for (int k2 = 0; k2 < dst_num_bands; k2++) {
0224:                                //
0225:                                // Get the 4 neighbourhood pixels
0226:                                //
0227:                                byte tmp_row[];
0228:                                int tmp_col;
0229:
0230:                                // Get to the right row
0231:                                tmp_row = srcDataArrays[k2];
0232:
0233:                                // Position at the bandOffset
0234:                                tmp_col = bandOffsets[k2];
0235:
0236:                                s00 = tmp_row[tmp00 + tmp_col] & 0xff;
0237:                                s01 = tmp_row[tmp01 + tmp_col] & 0xff;
0238:                                s10 = tmp_row[tmp10 + tmp_col] & 0xff;
0239:                                s11 = tmp_row[tmp11 + tmp_col] & 0xff;
0240:
0241:                                // Weighted Average of these 4 pixels
0242:                                s0 = (float) s00
0243:                                        + ((float) (s01 - s00) * fracx);
0244:                                s1 = (float) s10
0245:                                        + ((float) (s11 - s10) * fracx);
0246:
0247:                                tmp = s0 + ((s1 - s0) * fracy);
0248:
0249:                                // Round
0250:                                if (tmp < 0.5F) {
0251:                                    s = 0;
0252:                                } else if (tmp > 254.5F) {
0253:                                    s = 255;
0254:                                } else {
0255:                                    s = (int) (tmp + 0.5F);
0256:                                }
0257:
0258:                                // Write the result
0259:                                dstDataArrays[k2][dstPixelOffset
0260:                                        + dstBandOffsets[k2]] = (byte) (s & 0xff);
0261:                            }
0262:                        } else if (setBackground) {
0263:                            for (int k = 0; k < dst_num_bands; k++)
0264:                                dstDataArrays[k][dstPixelOffset
0265:                                        + dstBandOffsets[k]] = backgroundByte[k];
0266:                        }
0267:
0268:                        // walk
0269:                        if (fracx < fracdx1) {
0270:                            s_ix += incx;
0271:                            fracx += fracdx;
0272:                        } else {
0273:                            s_ix += incx1;
0274:                            fracx -= fracdx1;
0275:                        }
0276:
0277:                        if (fracy < fracdy1) {
0278:                            s_iy += incy;
0279:                            fracy += fracdy;
0280:                        } else {
0281:                            s_iy += incy1;
0282:                            fracy -= fracdy1;
0283:                        }
0284:
0285:                        // Translate to/from SampleModel space & Raster space
0286:                        pylow = (s_iy - srcRectY) * srcScanlineStride;
0287:                        pxlow = (s_ix - srcRectX) * srcPixelStride;
0288:                        pyhigh = pylow + srcScanlineStride;
0289:                        pxhigh = pxlow + srcPixelStride;
0290:
0291:                        tmp00 = pxlow + pylow;
0292:                        tmp01 = pxhigh + pylow;
0293:                        tmp10 = pxlow + pyhigh;
0294:                        tmp11 = pxhigh + pyhigh;
0295:
0296:                        // Go to next pixel
0297:                        dstPixelOffset += dstPixelStride;
0298:                    }
0299:
0300:                    // Go to the next line in the destination rectangle
0301:                    dstOffset += dstScanlineStride;
0302:                }
0303:            }
0304:
0305:            private void intLoop(RasterAccessor src, Rectangle destRect,
0306:                    int srcRectX, int srcRectY, RasterAccessor dst) {
0307:
0308:                float src_rect_x1 = src.getX();
0309:                float src_rect_y1 = src.getY();
0310:                float src_rect_x2 = src_rect_x1 + src.getWidth();
0311:                float src_rect_y2 = src_rect_y1 + src.getHeight();
0312:
0313:                float s_x, s_y;
0314:
0315:                float fracx, fracy;
0316:
0317:                int pxlow, pylow, pxhigh, pyhigh;
0318:
0319:                int s, s00, s01, s10, s11;
0320:                float s0, s1;
0321:                float tmp;
0322:
0323:                int dstPixelOffset;
0324:                int dstOffset = 0;
0325:
0326:                Point2D dst_pt = new Point2D.Float();
0327:                Point2D src_pt = new Point2D.Float();
0328:
0329:                int dwidth = dst.getWidth();
0330:                int dheight = dst.getHeight();
0331:                int dnumBands = dst.getNumBands();
0332:
0333:                int dstDataArrays[][] = dst.getIntDataArrays();
0334:                int dstBandOffsets[] = dst.getBandOffsets();
0335:                int dstPixelStride = dst.getPixelStride();
0336:                int dstScanlineStride = dst.getScanlineStride();
0337:
0338:                int srcDataArrays[][] = src.getIntDataArrays();
0339:                int bandOffsets[] = src.getBandOffsets();
0340:                int srcPixelStride = src.getPixelStride();
0341:                int srcScanlineStride = src.getScanlineStride();
0342:
0343:                int dst_num_bands = dst.getNumBands();
0344:
0345:                int dst_min_x = destRect.x;
0346:                int dst_min_y = destRect.y;
0347:                int dst_max_x = destRect.x + destRect.width;
0348:                int dst_max_y = destRect.y + destRect.height;
0349:
0350:                int[] backgroundInt = new int[dst_num_bands];
0351:                for (int i = 0; i < dst_num_bands; i++)
0352:                    backgroundInt[i] = (int) backgroundValues[i];
0353:
0354:                for (int y = dst_min_y; y < dst_max_y; y++) {
0355:
0356:                    dstPixelOffset = dstOffset;
0357:
0358:                    // Backward map the first point in the line
0359:                    dst_pt.setLocation((double) dst_min_x + 0.5,
0360:                            (double) y + 0.5);
0361:                    mapDestPoint(dst_pt, src_pt);
0362:
0363:                    // Get the mapped source coordinates
0364:                    s_x = (float) src_pt.getX();
0365:                    s_y = (float) src_pt.getY();
0366:
0367:                    // As per definition of bilinear interpolation
0368:                    s_x -= 0.5;
0369:                    s_y -= 0.5;
0370:
0371:                    // Floor to get the integral coordinate
0372:                    int s_ix = (int) Math.floor(s_x);
0373:                    int s_iy = (int) Math.floor(s_y);
0374:
0375:                    fracx = s_x - (float) s_ix;
0376:                    fracy = s_y - (float) s_iy;
0377:
0378:                    // Translate to/from SampleModel space & Raster space
0379:                    pylow = (s_iy - srcRectY) * srcScanlineStride;
0380:                    pxlow = (s_ix - srcRectX) * srcPixelStride;
0381:                    pyhigh = pylow + srcScanlineStride;
0382:                    pxhigh = pxlow + srcPixelStride;
0383:
0384:                    int tmp00 = pxlow + pylow;
0385:                    int tmp01 = pxhigh + pylow;
0386:                    int tmp10 = pxlow + pyhigh;
0387:                    int tmp11 = pxhigh + pyhigh;
0388:
0389:                    for (int x = dst_min_x; x < dst_max_x; x++) {
0390:                        //
0391:                        // Check against the source rectangle
0392:                        //
0393:                        if ((s_ix >= src_rect_x1) && (s_ix < (src_rect_x2 - 1))
0394:                                && (s_iy >= src_rect_y1)
0395:                                && (s_iy < (src_rect_y2 - 1))) {
0396:                            for (int k2 = 0; k2 < dst_num_bands; k2++) {
0397:                                //
0398:                                // Get the 4 neighbourhood pixels
0399:                                //
0400:                                int tmp_row[];
0401:                                int tmp_col;
0402:
0403:                                // Get to the right row
0404:                                tmp_row = srcDataArrays[k2];
0405:
0406:                                // Position at the bandOffset
0407:                                tmp_col = bandOffsets[k2];
0408:
0409:                                s00 = tmp_row[tmp00 + tmp_col];
0410:                                s01 = tmp_row[tmp01 + tmp_col];
0411:                                s10 = tmp_row[tmp10 + tmp_col];
0412:                                s11 = tmp_row[tmp11 + tmp_col];
0413:
0414:                                // Weighted Average of these 4 pixels
0415:                                s0 = (float) s00
0416:                                        + ((float) (s01 - s00) * fracx);
0417:                                s1 = (float) s10
0418:                                        + ((float) (s11 - s10) * fracx);
0419:
0420:                                tmp = s0 + ((s1 - s0) * fracy);
0421:
0422:                                // Round
0423:                                if (tmp < (float) Integer.MIN_VALUE) {
0424:                                    s = Integer.MIN_VALUE;
0425:                                } else if (tmp > (float) Integer.MAX_VALUE) {
0426:                                    s = Integer.MAX_VALUE;
0427:                                } else if (tmp > 0) {
0428:                                    s = (int) (tmp + 0.5F);
0429:                                } else {
0430:                                    s = (int) (tmp - 0.5F);
0431:                                }
0432:
0433:                                // Write the result
0434:                                dstDataArrays[k2][dstPixelOffset
0435:                                        + dstBandOffsets[k2]] = s;
0436:                            }
0437:                        } else if (setBackground) {
0438:                            for (int k = 0; k < dst_num_bands; k++)
0439:                                dstDataArrays[k][dstPixelOffset
0440:                                        + dstBandOffsets[k]] = backgroundInt[k];
0441:                        }
0442:
0443:                        // walk
0444:                        if (fracx < fracdx1) {
0445:                            s_ix += incx;
0446:                            fracx += fracdx;
0447:                        } else {
0448:                            s_ix += incx1;
0449:                            fracx -= fracdx1;
0450:                        }
0451:
0452:                        if (fracy < fracdy1) {
0453:                            s_iy += incy;
0454:                            fracy += fracdy;
0455:                        } else {
0456:                            s_iy += incy1;
0457:                            fracy -= fracdy1;
0458:                        }
0459:
0460:                        // Translate to/from SampleModel space & Raster space
0461:                        pylow = (s_iy - srcRectY) * srcScanlineStride;
0462:                        pxlow = (s_ix - srcRectX) * srcPixelStride;
0463:                        pyhigh = pylow + srcScanlineStride;
0464:                        pxhigh = pxlow + srcPixelStride;
0465:
0466:                        tmp00 = pxlow + pylow;
0467:                        tmp01 = pxhigh + pylow;
0468:                        tmp10 = pxlow + pyhigh;
0469:                        tmp11 = pxhigh + pyhigh;
0470:
0471:                        dstPixelOffset += dstPixelStride;
0472:                    }
0473:
0474:                    dstOffset += dstScanlineStride;
0475:                }
0476:            }
0477:
0478:            private void shortLoop(RasterAccessor src, Rectangle destRect,
0479:                    int srcRectX, int srcRectY, RasterAccessor dst) {
0480:
0481:                float src_rect_x1 = src.getX();
0482:                float src_rect_y1 = src.getY();
0483:                float src_rect_x2 = src_rect_x1 + src.getWidth();
0484:                float src_rect_y2 = src_rect_y1 + src.getHeight();
0485:
0486:                float s_x, s_y;
0487:
0488:                float fracx, fracy;
0489:
0490:                int pxlow, pylow, pxhigh, pyhigh;
0491:
0492:                int s, s00, s01, s10, s11;
0493:                float s0, s1;
0494:                float tmp;
0495:
0496:                int dstPixelOffset;
0497:                int dstOffset = 0;
0498:
0499:                Point2D dst_pt = new Point2D.Float();
0500:                Point2D src_pt = new Point2D.Float();
0501:
0502:                int dwidth = dst.getWidth();
0503:                int dheight = dst.getHeight();
0504:                int dnumBands = dst.getNumBands();
0505:
0506:                short dstDataArrays[][] = dst.getShortDataArrays();
0507:                int dstBandOffsets[] = dst.getBandOffsets();
0508:                int dstPixelStride = dst.getPixelStride();
0509:                int dstScanlineStride = dst.getScanlineStride();
0510:
0511:                short srcDataArrays[][] = src.getShortDataArrays();
0512:                int bandOffsets[] = src.getBandOffsets();
0513:                int srcPixelStride = src.getPixelStride();
0514:                int srcScanlineStride = src.getScanlineStride();
0515:
0516:                int dst_num_bands = dst.getNumBands();
0517:
0518:                int dst_min_x = destRect.x;
0519:                int dst_min_y = destRect.y;
0520:                int dst_max_x = destRect.x + destRect.width;
0521:                int dst_max_y = destRect.y + destRect.height;
0522:
0523:                short[] backgroundShort = new short[dst_num_bands];
0524:                for (int i = 0; i < dst_num_bands; i++)
0525:                    backgroundShort[i] = (short) backgroundValues[i];
0526:
0527:                for (int y = dst_min_y; y < dst_max_y; y++) {
0528:
0529:                    dstPixelOffset = dstOffset;
0530:
0531:                    // Backward map the first point in the line
0532:                    dst_pt.setLocation((double) dst_min_x + 0.5,
0533:                            (double) y + 0.5);
0534:                    mapDestPoint(dst_pt, src_pt);
0535:
0536:                    // Get the mapped source coordinates
0537:                    s_x = (float) src_pt.getX();
0538:                    s_y = (float) src_pt.getY();
0539:
0540:                    // As per definition of bilinear interpolation
0541:                    s_x -= 0.5;
0542:                    s_y -= 0.5;
0543:
0544:                    // Floor to get the integral coordinate
0545:                    int s_ix = (int) Math.floor(s_x);
0546:                    int s_iy = (int) Math.floor(s_y);
0547:
0548:                    fracx = s_x - (float) s_ix;
0549:                    fracy = s_y - (float) s_iy;
0550:
0551:                    // Translate to/from SampleModel space & Raster space
0552:                    pylow = (s_iy - srcRectY) * srcScanlineStride;
0553:                    pxlow = (s_ix - srcRectX) * srcPixelStride;
0554:                    pyhigh = pylow + srcScanlineStride;
0555:                    pxhigh = pxlow + srcPixelStride;
0556:
0557:                    int tmp00 = pxlow + pylow;
0558:                    int tmp01 = pxhigh + pylow;
0559:                    int tmp10 = pxlow + pyhigh;
0560:                    int tmp11 = pxhigh + pyhigh;
0561:
0562:                    for (int x = dst_min_x; x < dst_max_x; x++) {
0563:                        //
0564:                        // Check against the source rectangle
0565:                        //
0566:                        if ((s_ix >= src_rect_x1) && (s_ix < (src_rect_x2 - 1))
0567:                                && (s_iy >= src_rect_y1)
0568:                                && (s_iy < (src_rect_y2 - 1))) {
0569:                            for (int k2 = 0; k2 < dst_num_bands; k2++) {
0570:                                //
0571:                                // Get the 4 neighbourhood pixels
0572:                                //
0573:                                short tmp_row[];
0574:                                int tmp_col;
0575:
0576:                                // Get to the right row
0577:                                tmp_row = srcDataArrays[k2];
0578:
0579:                                // Position at the bandOffset
0580:                                tmp_col = bandOffsets[k2];
0581:
0582:                                s00 = tmp_row[tmp00 + tmp_col];
0583:                                s01 = tmp_row[tmp01 + tmp_col];
0584:                                s10 = tmp_row[tmp10 + tmp_col];
0585:                                s11 = tmp_row[tmp11 + tmp_col];
0586:
0587:                                // Weighted Average of these 4 pixels
0588:                                s0 = (float) s00
0589:                                        + ((float) (s01 - s00) * fracx);
0590:                                s1 = (float) s10
0591:                                        + ((float) (s11 - s10) * fracx);
0592:                                tmp = s0 + ((s1 - s0) * fracy);
0593:
0594:                                // Round
0595:                                if (tmp < ((float) Short.MIN_VALUE)) {
0596:                                    s = Short.MIN_VALUE;
0597:                                } else if (tmp > ((float) Short.MAX_VALUE)) {
0598:                                    s = Short.MAX_VALUE;
0599:                                } else if (tmp > 0) {
0600:                                    s = (int) (tmp + 0.5F);
0601:                                } else {
0602:                                    s = (int) (tmp - 0.5F);
0603:                                }
0604:
0605:                                // Write the result
0606:                                dstDataArrays[k2][dstPixelOffset
0607:                                        + dstBandOffsets[k2]] = (short) (s);
0608:                            }
0609:                        } else if (setBackground) {
0610:                            for (int k = 0; k < dst_num_bands; k++)
0611:                                dstDataArrays[k][dstPixelOffset
0612:                                        + dstBandOffsets[k]] = backgroundShort[k];
0613:                        }
0614:
0615:                        // walk
0616:                        if (fracx < fracdx1) {
0617:                            s_ix += incx;
0618:                            fracx += fracdx;
0619:                        } else {
0620:                            s_ix += incx1;
0621:                            fracx -= fracdx1;
0622:                        }
0623:
0624:                        if (fracy < fracdy1) {
0625:                            s_iy += incy;
0626:                            fracy += fracdy;
0627:                        } else {
0628:                            s_iy += incy1;
0629:                            fracy -= fracdy1;
0630:                        }
0631:
0632:                        // Translate to/from SampleModel space & Raster space
0633:                        pylow = (s_iy - srcRectY) * srcScanlineStride;
0634:                        pxlow = (s_ix - srcRectX) * srcPixelStride;
0635:                        pyhigh = pylow + srcScanlineStride;
0636:                        pxhigh = pxlow + srcPixelStride;
0637:
0638:                        tmp00 = pxlow + pylow;
0639:                        tmp01 = pxhigh + pylow;
0640:                        tmp10 = pxlow + pyhigh;
0641:                        tmp11 = pxhigh + pyhigh;
0642:
0643:                        dstPixelOffset += dstPixelStride;
0644:                    }
0645:
0646:                    dstOffset += dstScanlineStride;
0647:                }
0648:            }
0649:
0650:            private void ushortLoop(RasterAccessor src, Rectangle destRect,
0651:                    int srcRectX, int srcRectY, RasterAccessor dst) {
0652:
0653:                float src_rect_x1 = src.getX();
0654:                float src_rect_y1 = src.getY();
0655:                float src_rect_x2 = src_rect_x1 + src.getWidth();
0656:                float src_rect_y2 = src_rect_y1 + src.getHeight();
0657:
0658:                float s_x, s_y;
0659:
0660:                float fracx, fracy;
0661:
0662:                int pxlow, pylow, pxhigh, pyhigh;
0663:
0664:                int s, s00, s01, s10, s11;
0665:                float s0, s1;
0666:                float tmp;
0667:
0668:                int dstPixelOffset;
0669:                int dstOffset = 0;
0670:
0671:                Point2D dst_pt = new Point2D.Float();
0672:                Point2D src_pt = new Point2D.Float();
0673:
0674:                int dwidth = dst.getWidth();
0675:                int dheight = dst.getHeight();
0676:                int dnumBands = dst.getNumBands();
0677:
0678:                short dstDataArrays[][] = dst.getShortDataArrays();
0679:                int dstBandOffsets[] = dst.getBandOffsets();
0680:                int dstPixelStride = dst.getPixelStride();
0681:                int dstScanlineStride = dst.getScanlineStride();
0682:
0683:                short srcDataArrays[][] = src.getShortDataArrays();
0684:                int bandOffsets[] = src.getBandOffsets();
0685:                int srcPixelStride = src.getPixelStride();
0686:                int srcScanlineStride = src.getScanlineStride();
0687:
0688:                int dst_num_bands = dst.getNumBands();
0689:
0690:                int dst_min_x = destRect.x;
0691:                int dst_min_y = destRect.y;
0692:                int dst_max_x = destRect.x + destRect.width;
0693:                int dst_max_y = destRect.y + destRect.height;
0694:
0695:                short[] backgroundUShort = new short[dst_num_bands];
0696:                for (int i = 0; i < dst_num_bands; i++)
0697:                    backgroundUShort[i] = (short) backgroundValues[i];
0698:
0699:                for (int y = dst_min_y; y < dst_max_y; y++) {
0700:
0701:                    dstPixelOffset = dstOffset;
0702:
0703:                    // Backward map the first point in the line
0704:                    dst_pt.setLocation((double) dst_min_x + 0.5,
0705:                            (double) y + 0.5);
0706:                    mapDestPoint(dst_pt, src_pt);
0707:
0708:                    // Get the mapped source coordinates
0709:                    s_x = (float) src_pt.getX();
0710:                    s_y = (float) src_pt.getY();
0711:
0712:                    // As per definition of bilinear interpolation
0713:                    s_x -= 0.5;
0714:                    s_y -= 0.5;
0715:
0716:                    // Floor to get the integral coordinate
0717:                    int s_ix = (int) Math.floor(s_x);
0718:                    int s_iy = (int) Math.floor(s_y);
0719:
0720:                    fracx = s_x - (float) s_ix;
0721:                    fracy = s_y - (float) s_iy;
0722:
0723:                    // Translate to/from SampleModel space & Raster space
0724:                    pylow = (s_iy - srcRectY) * srcScanlineStride;
0725:                    pxlow = (s_ix - srcRectX) * srcPixelStride;
0726:                    pyhigh = pylow + srcScanlineStride;
0727:                    pxhigh = pxlow + srcPixelStride;
0728:
0729:                    int tmp00 = pxlow + pylow;
0730:                    int tmp01 = pxhigh + pylow;
0731:                    int tmp10 = pxlow + pyhigh;
0732:                    int tmp11 = pxhigh + pyhigh;
0733:
0734:                    for (int x = dst_min_x; x < dst_max_x; x++) {
0735:                        //
0736:                        // Check against the source rectangle
0737:                        //
0738:                        if ((s_ix >= src_rect_x1) && (s_ix < (src_rect_x2 - 1))
0739:                                && (s_iy >= src_rect_y1)
0740:                                && (s_iy < (src_rect_y2 - 1))) {
0741:                            for (int k2 = 0; k2 < dst_num_bands; k2++) {
0742:                                //
0743:                                // Get the 4 neighbourhood pixels
0744:                                //
0745:                                short tmp_row[];
0746:                                int tmp_col;
0747:
0748:                                // Get to the right row
0749:                                tmp_row = srcDataArrays[k2];
0750:
0751:                                // Position at the bandOffset
0752:                                tmp_col = bandOffsets[k2];
0753:
0754:                                s00 = tmp_row[tmp00 + tmp_col] & 0xffff;
0755:                                s01 = tmp_row[tmp01 + tmp_col] & 0xffff;
0756:                                s10 = tmp_row[tmp10 + tmp_col] & 0xffff;
0757:                                s11 = tmp_row[tmp11 + tmp_col] & 0xffff;
0758:
0759:                                // Weighted Average of these 4 pixels
0760:                                s0 = (float) s00
0761:                                        + ((float) (s01 - s00) * fracx);
0762:                                s1 = (float) s10
0763:                                        + ((float) (s11 - s10) * fracx);
0764:                                tmp = s0 + ((s1 - s0) * fracy);
0765:
0766:                                // Round
0767:                                if (tmp < 0.0) {
0768:                                    s = 0;
0769:                                } else if (tmp > (float) (USHORT_MAX)) {
0770:                                    s = (int) (USHORT_MAX);
0771:                                } else {
0772:                                    s = (int) (tmp + 0.5F);
0773:                                }
0774:
0775:                                // Write the result
0776:                                dstDataArrays[k2][dstPixelOffset
0777:                                        + dstBandOffsets[k2]] = (short) (s & 0xFFFF);
0778:                            }
0779:                        } else if (setBackground) {
0780:                            for (int k = 0; k < dst_num_bands; k++)
0781:                                dstDataArrays[k][dstPixelOffset
0782:                                        + dstBandOffsets[k]] = backgroundUShort[k];
0783:                        }
0784:
0785:                        // walk
0786:                        if (fracx < fracdx1) {
0787:                            s_ix += incx;
0788:                            fracx += fracdx;
0789:                        } else {
0790:                            s_ix += incx1;
0791:                            fracx -= fracdx1;
0792:                        }
0793:
0794:                        if (fracy < fracdy1) {
0795:                            s_iy += incy;
0796:                            fracy += fracdy;
0797:                        } else {
0798:                            s_iy += incy1;
0799:                            fracy -= fracdy1;
0800:                        }
0801:
0802:                        // Translate to/from SampleModel space & Raster space
0803:                        pylow = (s_iy - srcRectY) * srcScanlineStride;
0804:                        pxlow = (s_ix - srcRectX) * srcPixelStride;
0805:                        pyhigh = pylow + srcScanlineStride;
0806:                        pxhigh = pxlow + srcPixelStride;
0807:
0808:                        tmp00 = pxlow + pylow;
0809:                        tmp01 = pxhigh + pylow;
0810:                        tmp10 = pxlow + pyhigh;
0811:                        tmp11 = pxhigh + pyhigh;
0812:
0813:                        dstPixelOffset += dstPixelStride;
0814:                    }
0815:
0816:                    dstOffset += dstScanlineStride;
0817:                }
0818:            }
0819:
0820:            private void floatLoop(RasterAccessor src, Rectangle destRect,
0821:                    int srcRectX, int srcRectY, RasterAccessor dst) {
0822:
0823:                float src_rect_x1 = src.getX();
0824:                float src_rect_y1 = src.getY();
0825:                float src_rect_x2 = src_rect_x1 + src.getWidth();
0826:                float src_rect_y2 = src_rect_y1 + src.getHeight();
0827:
0828:                float s_x, s_y;
0829:
0830:                float fracx, fracy;
0831:
0832:                int pxlow, pylow, pxhigh, pyhigh;
0833:
0834:                float s, s00, s01, s10, s11;
0835:                float s0, s1;
0836:
0837:                int dstPixelOffset;
0838:                int dstOffset = 0;
0839:
0840:                Point2D dst_pt = new Point2D.Float();
0841:                Point2D src_pt = new Point2D.Float();
0842:
0843:                int dwidth = dst.getWidth();
0844:                int dheight = dst.getHeight();
0845:                int dnumBands = dst.getNumBands();
0846:
0847:                float dstDataArrays[][] = dst.getFloatDataArrays();
0848:                int dstBandOffsets[] = dst.getBandOffsets();
0849:                int dstPixelStride = dst.getPixelStride();
0850:                int dstScanlineStride = dst.getScanlineStride();
0851:
0852:                float srcDataArrays[][] = src.getFloatDataArrays();
0853:                int bandOffsets[] = src.getBandOffsets();
0854:                int srcPixelStride = src.getPixelStride();
0855:                int srcScanlineStride = src.getScanlineStride();
0856:
0857:                int dst_num_bands = dst.getNumBands();
0858:
0859:                int dst_min_x = destRect.x;
0860:                int dst_min_y = destRect.y;
0861:                int dst_max_x = destRect.x + destRect.width;
0862:                int dst_max_y = destRect.y + destRect.height;
0863:
0864:                float[] backgroundFloat = new float[dst_num_bands];
0865:                for (int i = 0; i < dst_num_bands; i++)
0866:                    backgroundFloat[i] = (float) backgroundValues[i];
0867:
0868:                for (int y = dst_min_y; y < dst_max_y; y++) {
0869:
0870:                    dstPixelOffset = dstOffset;
0871:
0872:                    // Backward map the first point in the line
0873:                    dst_pt.setLocation((double) dst_min_x + 0.5,
0874:                            (double) y + 0.5);
0875:                    mapDestPoint(dst_pt, src_pt);
0876:
0877:                    // Get the mapped source coordinates
0878:                    s_x = (float) src_pt.getX();
0879:                    s_y = (float) src_pt.getY();
0880:
0881:                    // As per definition of bilinear interpolation
0882:                    s_x -= 0.5;
0883:                    s_y -= 0.5;
0884:
0885:                    // Floor to get the integral coordinate
0886:                    int s_ix = (int) Math.floor(s_x);
0887:                    int s_iy = (int) Math.floor(s_y);
0888:
0889:                    fracx = s_x - (float) s_ix;
0890:                    fracy = s_y - (float) s_iy;
0891:
0892:                    // Translate to/from SampleModel space & Raster space
0893:                    pylow = (s_iy - srcRectY) * srcScanlineStride;
0894:                    pxlow = (s_ix - srcRectX) * srcPixelStride;
0895:                    pyhigh = pylow + srcScanlineStride;
0896:                    pxhigh = pxlow + srcPixelStride;
0897:
0898:                    int tmp00 = pxlow + pylow;
0899:                    int tmp01 = pxhigh + pylow;
0900:                    int tmp10 = pxlow + pyhigh;
0901:                    int tmp11 = pxhigh + pyhigh;
0902:
0903:                    for (int x = dst_min_x; x < dst_max_x; x++) {
0904:                        //
0905:                        // Check against the source rectangle
0906:                        //
0907:                        if ((s_ix >= src_rect_x1) && (s_ix < (src_rect_x2 - 1))
0908:                                && (s_iy >= src_rect_y1)
0909:                                && (s_iy < (src_rect_y2 - 1))) {
0910:                            for (int k2 = 0; k2 < dst_num_bands; k2++) {
0911:                                //
0912:                                // Get the 4 neighbourhood pixels
0913:                                //
0914:                                float tmp_row[];
0915:                                int tmp_col;
0916:
0917:                                // Get to the right row
0918:                                tmp_row = srcDataArrays[k2];
0919:
0920:                                // Position at the bandOffset
0921:                                tmp_col = bandOffsets[k2];
0922:
0923:                                s00 = tmp_row[tmp00 + tmp_col];
0924:                                s01 = tmp_row[tmp01 + tmp_col];
0925:                                s10 = tmp_row[tmp10 + tmp_col];
0926:                                s11 = tmp_row[tmp11 + tmp_col];
0927:
0928:                                // Weighted Average of these 4 pixels
0929:                                s0 = s00 + ((s01 - s00) * fracx);
0930:                                s1 = s10 + ((s11 - s10) * fracx);
0931:                                s = s0 + ((s1 - s0) * fracy);
0932:
0933:                                // Write the result
0934:                                dstDataArrays[k2][dstPixelOffset
0935:                                        + dstBandOffsets[k2]] = s;
0936:                            }
0937:                        } else if (setBackground) {
0938:                            for (int k = 0; k < dst_num_bands; k++)
0939:                                dstDataArrays[k][dstPixelOffset
0940:                                        + dstBandOffsets[k]] = backgroundFloat[k];
0941:                        }
0942:
0943:                        // walk
0944:                        if (fracx < fracdx1) {
0945:                            s_ix += incx;
0946:                            fracx += fracdx;
0947:                        } else {
0948:                            s_ix += incx1;
0949:                            fracx -= fracdx1;
0950:                        }
0951:
0952:                        if (fracy < fracdy1) {
0953:                            s_iy += incy;
0954:                            fracy += fracdy;
0955:                        } else {
0956:                            s_iy += incy1;
0957:                            fracy -= fracdy1;
0958:                        }
0959:
0960:                        // Translate to/from SampleModel space & Raster space
0961:                        pylow = (s_iy - srcRectY) * srcScanlineStride;
0962:                        pxlow = (s_ix - srcRectX) * srcPixelStride;
0963:                        pyhigh = pylow + srcScanlineStride;
0964:                        pxhigh = pxlow + srcPixelStride;
0965:
0966:                        tmp00 = pxlow + pylow;
0967:                        tmp01 = pxhigh + pylow;
0968:                        tmp10 = pxlow + pyhigh;
0969:                        tmp11 = pxhigh + pyhigh;
0970:
0971:                        dstPixelOffset += dstPixelStride;
0972:                    }
0973:
0974:                    dstOffset += dstScanlineStride;
0975:                }
0976:            }
0977:
0978:            private void doubleLoop(RasterAccessor src, Rectangle destRect,
0979:                    int srcRectX, int srcRectY, RasterAccessor dst) {
0980:
0981:                float src_rect_x1 = src.getX();
0982:                float src_rect_y1 = src.getY();
0983:                float src_rect_x2 = src_rect_x1 + src.getWidth();
0984:                float src_rect_y2 = src_rect_y1 + src.getHeight();
0985:
0986:                float s_x, s_y;
0987:
0988:                double fracx, fracy;
0989:
0990:                int pxlow, pylow, pxhigh, pyhigh;
0991:
0992:                double s, s00, s01, s10, s11;
0993:                double s0, s1;
0994:
0995:                int dstPixelOffset;
0996:                int dstOffset = 0;
0997:
0998:                Point2D dst_pt = new Point2D.Float();
0999:                Point2D src_pt = new Point2D.Float();
1000:
1001:                int dwidth = dst.getWidth();
1002:                int dheight = dst.getHeight();
1003:                int dnumBands = dst.getNumBands();
1004:
1005:                double dstDataArrays[][] = dst.getDoubleDataArrays();
1006:                int dstBandOffsets[] = dst.getBandOffsets();
1007:                int dstPixelStride = dst.getPixelStride();
1008:                int dstScanlineStride = dst.getScanlineStride();
1009:
1010:                double srcDataArrays[][] = src.getDoubleDataArrays();
1011:                int bandOffsets[] = src.getBandOffsets();
1012:                int srcPixelStride = src.getPixelStride();
1013:                int srcScanlineStride = src.getScanlineStride();
1014:
1015:                int dst_num_bands = dst.getNumBands();
1016:
1017:                int dst_min_x = destRect.x;
1018:                int dst_min_y = destRect.y;
1019:                int dst_max_x = destRect.x + destRect.width;
1020:                int dst_max_y = destRect.y + destRect.height;
1021:
1022:                for (int y = dst_min_y; y < dst_max_y; y++) {
1023:
1024:                    dstPixelOffset = dstOffset;
1025:
1026:                    // Backward map the first point in the line
1027:                    dst_pt.setLocation((double) dst_min_x + 0.5,
1028:                            (double) y + 0.5);
1029:                    mapDestPoint(dst_pt, src_pt);
1030:
1031:                    // Get the mapped source coordinates
1032:                    s_x = (float) src_pt.getX();
1033:                    s_y = (float) src_pt.getY();
1034:
1035:                    // As per definition of bilinear interpolation
1036:                    s_x -= 0.5;
1037:                    s_y -= 0.5;
1038:
1039:                    // Floor to get the integral coordinate
1040:                    int s_ix = (int) Math.floor(s_x);
1041:                    int s_iy = (int) Math.floor(s_y);
1042:
1043:                    fracx = s_x - (float) s_ix;
1044:                    fracy = s_y - (float) s_iy;
1045:
1046:                    // Translate to/from SampleModel space & Raster space
1047:                    pylow = (s_iy - srcRectY) * srcScanlineStride;
1048:                    pxlow = (s_ix - srcRectX) * srcPixelStride;
1049:                    pyhigh = pylow + srcScanlineStride;
1050:                    pxhigh = pxlow + srcPixelStride;
1051:
1052:                    int tmp00 = pxlow + pylow;
1053:                    int tmp01 = pxhigh + pylow;
1054:                    int tmp10 = pxlow + pyhigh;
1055:                    int tmp11 = pxhigh + pyhigh;
1056:
1057:                    for (int x = dst_min_x; x < dst_max_x; x++) {
1058:                        //
1059:                        // Check against the source rectangle
1060:                        //
1061:                        if ((s_ix >= src_rect_x1) && (s_ix < (src_rect_x2 - 1))
1062:                                && (s_iy >= src_rect_y1)
1063:                                && (s_iy < (src_rect_y2 - 1))) {
1064:                            for (int k2 = 0; k2 < dst_num_bands; k2++) {
1065:                                //
1066:                                // Get the 4 neighbourhood pixels
1067:                                //
1068:                                double tmp_row[];
1069:                                int tmp_col;
1070:
1071:                                // Get to the right row
1072:                                tmp_row = srcDataArrays[k2];
1073:
1074:                                // Position at the bandOffset
1075:                                tmp_col = bandOffsets[k2];
1076:
1077:                                s00 = tmp_row[tmp00 + tmp_col];
1078:                                s01 = tmp_row[tmp01 + tmp_col];
1079:                                s10 = tmp_row[tmp10 + tmp_col];
1080:                                s11 = tmp_row[tmp11 + tmp_col];
1081:
1082:                                // Weighted Average of these 4 pixels
1083:                                s0 = s00 + ((s01 - s00) * fracx);
1084:                                s1 = s10 + ((s11 - s10) * fracx);
1085:                                s = s0 + ((s1 - s0) * fracy);
1086:
1087:                                // Write the result
1088:                                dstDataArrays[k2][dstPixelOffset
1089:                                        + dstBandOffsets[k2]] = s;
1090:                            }
1091:                        } else if (setBackground) {
1092:                            for (int k = 0; k < dst_num_bands; k++)
1093:                                dstDataArrays[k][dstPixelOffset
1094:                                        + dstBandOffsets[k]] = backgroundValues[k];
1095:                        }
1096:
1097:                        // walk
1098:                        if (fracx < fracdx1) {
1099:                            s_ix += incx;
1100:                            fracx += fracdx;
1101:                        } else {
1102:                            s_ix += incx1;
1103:                            fracx -= fracdx1;
1104:                        }
1105:
1106:                        if (fracy < fracdy1) {
1107:                            s_iy += incy;
1108:                            fracy += fracdy;
1109:                        } else {
1110:                            s_iy += incy1;
1111:                            fracy -= fracdy1;
1112:                        }
1113:
1114:                        // Translate to/from SampleModel space & Raster space
1115:                        pylow = (s_iy - srcRectY) * srcScanlineStride;
1116:                        pxlow = (s_ix - srcRectX) * srcPixelStride;
1117:                        pyhigh = pylow + srcScanlineStride;
1118:                        pxhigh = pxlow + srcPixelStride;
1119:
1120:                        tmp00 = pxlow + pylow;
1121:                        tmp01 = pxhigh + pylow;
1122:                        tmp10 = pxlow + pyhigh;
1123:                        tmp11 = pxhigh + pyhigh;
1124:
1125:                        dstPixelOffset += dstPixelStride;
1126:                    }
1127:
1128:                    dstOffset += dstScanlineStride;
1129:                }
1130:            }
1131:
1132:            //     public static OpImage createTestImage(OpImageTester oit) {
1133:            // 	Interpolation interp = new InterpolationBilinear();
1134:            //         AffineTransform tr = new AffineTransform(0.707107,
1135:            //                                                  -0.707106,
1136:            //                                                  0.707106,
1137:            //                                                  0.707107,
1138:            //                                                  0.0,
1139:            //                                                  0.0);
1140:
1141:            //         return new AffineBilinearOpImage(oit.getSource(), null, null,
1142:            //                                          new ImageLayout(oit.getSource()),
1143:            //                                          tr,
1144:            //                                          interp);
1145:            //     }
1146:
1147:            //     // Calls a method on OpImage that uses introspection, to make this
1148:            //     // class, discover it's createTestImage() call, call it and then
1149:            //     // benchmark the performance of the created OpImage chain.
1150:            //     public static void main(String args[]) {
1151:            //         String classname = "com.sun.media.jai.opimage.AffineBilinearOpImage";
1152:            //         OpImageTester.performDiagnostics(classname, args);
1153:            //     }
1154:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.