Source Code Cross Referenced for BandCombineOpImage.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » com » sun » media » jai » opimage » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » com.sun.media.jai.opimage 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: BandCombineOpImage.java,v $
003:         *
004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Use is subject to license terms.
007:         *
008:         * $Revision: 1.1 $
009:         * $Date: 2005/02/11 04:56:15 $
010:         * $State: Exp $
011:         */
012:        package com.sun.media.jai.opimage;
013:
014:        import java.awt.Rectangle;
015:        import java.awt.image.DataBuffer;
016:        import java.awt.image.Raster;
017:        import java.awt.image.RenderedImage;
018:        import java.awt.image.ComponentSampleModel;
019:        import java.awt.image.WritableRaster;
020:        import java.util.Map;
021:        import javax.media.jai.ImageLayout;
022:        import javax.media.jai.PlanarImage;
023:        import javax.media.jai.PointOpImage;
024:        import javax.media.jai.RasterAccessor;
025:        import javax.media.jai.RasterFormatTag;
026:        import javax.media.jai.RasterFactory;
027:        import com.sun.media.jai.util.ImageUtil;
028:        import com.sun.media.jai.util.JDKWorkarounds;
029:
030:        /**
031:         * An <code>OpImage</code> implementing the "BandCombine" operation.
032:         *
033:         * <p>This <code>OpImage</code> performs the arbitrary interband
034:         * linear combination of an image using the specified matrix.  The
035:         * width of the matrix must be one larger that the number of bands
036:         * in the source image.  The height of the matrix must be equal to
037:         * the number of bands in the destination image.  Because the matrix
038:         * can be of arbitrary size, this function can be used to produce
039:         * a destination image with a different number of bands from the
040:         * source image.
041:         * <p>The destination image is formed by performing a matrix-
042:         * multiply operation between the bands of the source image and
043:         * the specified matrix.  The extra column of values is a constant
044:         * that is added after the matrix-multiply operation takes place.
045:         *
046:         * @see javax.media.jai.operator.BandCombineDescriptor
047:         * @see BandCombineCRIF
048:         *
049:         *
050:         * @since EA3
051:         */
052:        final class BandCombineOpImage extends PointOpImage {
053:
054:            private double[][] matrix;
055:
056:            /**
057:             * Constructor.
058:             *
059:             * @param source       The source image.
060:             * @param layout       The destination image layout.
061:             * @param matrix       The matrix of values used to perform the
062:             *                     linear combination.
063:             */
064:            public BandCombineOpImage(RenderedImage source, Map config,
065:                    ImageLayout layout, double[][] matrix) {
066:                super (source, layout, config, true);
067:
068:                this .matrix = matrix;
069:
070:                int numBands = matrix.length; // matrix height is dst numBands
071:                if (getSampleModel().getNumBands() != numBands) {
072:                    sampleModel = RasterFactory.createComponentSampleModel(
073:                            sampleModel, sampleModel.getDataType(), tileWidth,
074:                            tileHeight, numBands);
075:
076:                    if (colorModel != null
077:                            && !JDKWorkarounds.areCompatibleDataModels(
078:                                    sampleModel, colorModel)) {
079:                        colorModel = ImageUtil.getCompatibleColorModel(
080:                                sampleModel, config);
081:                    }
082:                }
083:            }
084:
085:            /**
086:             * Performs linear combination of source image with matrix
087:             *
088:             * @param sources   Cobbled sources, guaranteed to provide all the
089:             *                  source data necessary for computing the rectangle.
090:             * @param dest      The tile containing the rectangle to be computed.
091:             * @param destRect  The rectangle within the tile to be computed.
092:             */
093:            protected void computeRect(Raster[] sources, WritableRaster dest,
094:                    Rectangle destRect) {
095:                // Retrieve format tags.
096:                RasterFormatTag[] formatTags = getFormatTags();
097:
098:                RasterAccessor s = new RasterAccessor(sources[0], destRect,
099:                        formatTags[0], getSourceImage(0).getColorModel());
100:                RasterAccessor d = new RasterAccessor(dest, destRect,
101:                        formatTags[1], getColorModel());
102:
103:                switch (d.getDataType()) {
104:                case DataBuffer.TYPE_BYTE:
105:                    computeRectByte(s, d);
106:                    break;
107:                case DataBuffer.TYPE_USHORT:
108:                    computeRectUShort(s, d);
109:                    break;
110:                case DataBuffer.TYPE_SHORT:
111:                    computeRectShort(s, d);
112:                    break;
113:                case DataBuffer.TYPE_INT:
114:                    computeRectInt(s, d);
115:                    break;
116:                case DataBuffer.TYPE_FLOAT:
117:                    computeRectFloat(s, d);
118:                    break;
119:                case DataBuffer.TYPE_DOUBLE:
120:                    computeRectDouble(s, d);
121:                    break;
122:                }
123:
124:                if (d.isDataCopy()) {
125:                    d.clampDataArrays();
126:                    d.copyDataToRaster();
127:                }
128:            }
129:
130:            private void computeRectByte(RasterAccessor src, RasterAccessor dst) {
131:                int sLineStride = src.getScanlineStride();
132:                int sPixelStride = src.getPixelStride();
133:                int sbands = src.getNumBands();
134:                int[] sBandOffsets = src.getBandOffsets();
135:                byte[][] sData = src.getByteDataArrays();
136:
137:                int dwidth = dst.getWidth();
138:                int dheight = dst.getHeight();
139:                int dbands = dst.getNumBands();
140:                int dLineStride = dst.getScanlineStride();
141:                int dPixelStride = dst.getPixelStride();
142:                int[] dBandOffsets = dst.getBandOffsets();
143:                byte[][] dData = dst.getByteDataArrays();
144:
145:                int sso = 0, dso = 0;
146:
147:                for (int h = 0; h < dheight; h++) {
148:                    int spo = sso;
149:                    int dpo = dso;
150:
151:                    for (int w = 0; w < dwidth; w++) {
152:                        for (int b = 0; b < dbands; b++) {
153:                            float sum = 0.0F;
154:                            double[] mat = matrix[b];
155:
156:                            for (int k = 0; k < sbands; k++) {
157:                                sum += (float) mat[k]
158:                                        * (float) (sData[k][spo
159:                                                + sBandOffsets[k]] & 0xFF);
160:                            }
161:
162:                            dData[b][dpo + dBandOffsets[b]] = ImageUtil
163:                                    .clampRoundByte(sum + (float) mat[sbands]);
164:                        }
165:
166:                        spo += sPixelStride;
167:                        dpo += dPixelStride;
168:                    }
169:
170:                    sso += sLineStride;
171:                    dso += dLineStride;
172:                }
173:            }
174:
175:            private void computeRectUShort(RasterAccessor src,
176:                    RasterAccessor dst) {
177:                int sLineStride = src.getScanlineStride();
178:                int sPixelStride = src.getPixelStride();
179:                int sbands = src.getNumBands();
180:                int[] sBandOffsets = src.getBandOffsets();
181:                short[][] sData = src.getShortDataArrays();
182:
183:                int dwidth = dst.getWidth();
184:                int dheight = dst.getHeight();
185:                int dbands = dst.getNumBands();
186:                int dLineStride = dst.getScanlineStride();
187:                int dPixelStride = dst.getPixelStride();
188:                int[] dBandOffsets = dst.getBandOffsets();
189:                short[][] dData = dst.getShortDataArrays();
190:
191:                int sso = 0, dso = 0;
192:
193:                for (int h = 0; h < dheight; h++) {
194:                    int spo = sso;
195:                    int dpo = dso;
196:
197:                    for (int w = 0; w < dwidth; w++) {
198:                        for (int b = 0; b < dbands; b++) {
199:                            float sum = 0.0F;
200:                            double[] mat = matrix[b];
201:
202:                            for (int k = 0; k < sbands; k++) {
203:                                sum += (float) mat[k]
204:                                        * (float) (sData[k][spo
205:                                                + sBandOffsets[k]] & 0xFFFF);
206:                            }
207:
208:                            dData[b][dpo + dBandOffsets[b]] = ImageUtil
209:                                    .clampRoundUShort(sum
210:                                            + (float) matrix[b][sbands]);
211:                        }
212:
213:                        spo += sPixelStride;
214:                        dpo += dPixelStride;
215:                    }
216:
217:                    sso += sLineStride;
218:                    dso += dLineStride;
219:                }
220:            }
221:
222:            private void computeRectShort(RasterAccessor src, RasterAccessor dst) {
223:                int sLineStride = src.getScanlineStride();
224:                int sPixelStride = src.getPixelStride();
225:                int sbands = src.getNumBands();
226:                int[] sBandOffsets = src.getBandOffsets();
227:                short[][] sData = src.getShortDataArrays();
228:
229:                int dwidth = dst.getWidth();
230:                int dheight = dst.getHeight();
231:                int dbands = dst.getNumBands();
232:                int dLineStride = dst.getScanlineStride();
233:                int dPixelStride = dst.getPixelStride();
234:                int[] dBandOffsets = dst.getBandOffsets();
235:                short[][] dData = dst.getShortDataArrays();
236:
237:                int sso = 0, dso = 0;
238:
239:                for (int h = 0; h < dheight; h++) {
240:                    int spo = sso;
241:                    int dpo = dso;
242:
243:                    for (int w = 0; w < dwidth; w++) {
244:                        for (int b = 0; b < dbands; b++) {
245:                            float sum = 0.0F;
246:                            double[] mat = matrix[b];
247:
248:                            for (int k = 0; k < sbands; k++) {
249:                                sum += (float) mat[k]
250:                                        * (float) (sData[k][spo
251:                                                + sBandOffsets[k]]);
252:                            }
253:
254:                            dData[b][dpo + dBandOffsets[b]] = ImageUtil
255:                                    .clampRoundUShort(sum
256:                                            + (float) matrix[b][sbands]);
257:                        }
258:
259:                        spo += sPixelStride;
260:                        dpo += dPixelStride;
261:                    }
262:
263:                    sso += sLineStride;
264:                    dso += dLineStride;
265:                }
266:
267:            }
268:
269:            private void computeRectInt(RasterAccessor src, RasterAccessor dst) {
270:                int sLineStride = src.getScanlineStride();
271:                int sPixelStride = src.getPixelStride();
272:                int sbands = src.getNumBands();
273:                int[] sBandOffsets = src.getBandOffsets();
274:                int[][] sData = src.getIntDataArrays();
275:
276:                int dwidth = dst.getWidth();
277:                int dheight = dst.getHeight();
278:                int dbands = dst.getNumBands();
279:                int dLineStride = dst.getScanlineStride();
280:                int dPixelStride = dst.getPixelStride();
281:                int[] dBandOffsets = dst.getBandOffsets();
282:                int[][] dData = dst.getIntDataArrays();
283:
284:                int sso = 0, dso = 0;
285:
286:                for (int h = 0; h < dheight; h++) {
287:                    int spo = sso;
288:                    int dpo = dso;
289:
290:                    for (int w = 0; w < dwidth; w++) {
291:                        for (int b = 0; b < dbands; b++) {
292:                            float sum = 0.0F;
293:                            double[] mat = matrix[b];
294:
295:                            for (int k = 0; k < sbands; k++) {
296:                                sum += (float) mat[k]
297:                                        * (float) (sData[k][spo
298:                                                + sBandOffsets[k]]);
299:                            }
300:
301:                            dData[b][dpo + dBandOffsets[b]] = ImageUtil
302:                                    .clampRoundInt(sum
303:                                            + (float) matrix[b][sbands]);
304:                        }
305:
306:                        spo += sPixelStride;
307:                        dpo += dPixelStride;
308:                    }
309:
310:                    sso += sLineStride;
311:                    dso += dLineStride;
312:                }
313:            }
314:
315:            private void computeRectFloat(RasterAccessor src, RasterAccessor dst) {
316:                int sLineStride = src.getScanlineStride();
317:                int sPixelStride = src.getPixelStride();
318:                int sbands = src.getNumBands();
319:                int[] sBandOffsets = src.getBandOffsets();
320:                float[][] sData = src.getFloatDataArrays();
321:
322:                int dwidth = dst.getWidth();
323:                int dheight = dst.getHeight();
324:                int dbands = dst.getNumBands();
325:                int dLineStride = dst.getScanlineStride();
326:                int dPixelStride = dst.getPixelStride();
327:                int[] dBandOffsets = dst.getBandOffsets();
328:                float[][] dData = dst.getFloatDataArrays();
329:
330:                int sso = 0, dso = 0;
331:
332:                for (int h = 0; h < dheight; h++) {
333:                    int spo = sso;
334:                    int dpo = dso;
335:
336:                    for (int w = 0; w < dwidth; w++) {
337:                        for (int b = 0; b < dbands; b++) {
338:                            float sum = 0.0F;
339:                            double[] mat = matrix[b];
340:
341:                            for (int k = 0; k < sbands; k++) {
342:                                sum += (float) mat[k]
343:                                        * sData[k][spo + sBandOffsets[k]];
344:                            }
345:
346:                            dData[b][dpo + dBandOffsets[b]] = sum
347:                                    + (float) matrix[b][sbands];
348:                        }
349:
350:                        spo += sPixelStride;
351:                        dpo += dPixelStride;
352:                    }
353:
354:                    sso += sLineStride;
355:                    dso += dLineStride;
356:                }
357:            }
358:
359:            private void computeRectDouble(RasterAccessor src,
360:                    RasterAccessor dst) {
361:                int sLineStride = src.getScanlineStride();
362:                int sPixelStride = src.getPixelStride();
363:                int sbands = src.getNumBands();
364:                int[] sBandOffsets = src.getBandOffsets();
365:                double[][] sData = src.getDoubleDataArrays();
366:
367:                int dwidth = dst.getWidth();
368:                int dheight = dst.getHeight();
369:                int dbands = dst.getNumBands();
370:                int dLineStride = dst.getScanlineStride();
371:                int dPixelStride = dst.getPixelStride();
372:                int[] dBandOffsets = dst.getBandOffsets();
373:                double[][] dData = dst.getDoubleDataArrays();
374:
375:                int sso = 0, dso = 0;
376:
377:                for (int h = 0; h < dheight; h++) {
378:                    int spo = sso;
379:                    int dpo = dso;
380:
381:                    for (int w = 0; w < dwidth; w++) {
382:                        for (int b = 0; b < dbands; b++) {
383:                            double sum = 0.0D;
384:                            double[] mat = matrix[b];
385:
386:                            for (int k = 0; k < sbands; k++) {
387:                                sum += mat[k] * sData[k][spo + sBandOffsets[k]];
388:                            }
389:
390:                            dData[b][dpo + dBandOffsets[b]] = sum
391:                                    + matrix[b][sbands];
392:                        }
393:
394:                        spo += sPixelStride;
395:                        dpo += dPixelStride;
396:                    }
397:
398:                    sso += sLineStride;
399:                    dso += dLineStride;
400:                }
401:            }
402:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.