Source Code Cross Referenced for BinarizeOpImage.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » com » sun » media » jai » opimage » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » com.sun.media.jai.opimage 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: BinarizeOpImage.java,v $
003:         *
004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Use is subject to license terms.
007:         *
008:         * $Revision: 1.1 $
009:         * $Date: 2005/02/11 04:56:15 $
010:         * $State: Exp $
011:         */
012:        package com.sun.media.jai.opimage;
013:
014:        import java.awt.Rectangle;
015:        import java.awt.color.ColorSpace;
016:        import java.awt.image.DataBuffer;
017:        import java.awt.image.Raster;
018:        import java.awt.image.RenderedImage;
019:        import java.awt.image.SampleModel;
020:        import java.awt.image.MultiPixelPackedSampleModel;
021:        import java.awt.image.ColorModel;
022:        import java.awt.image.PackedColorModel;
023:        import java.awt.image.WritableRaster;
024:        import java.util.Map;
025:        import javax.media.jai.ImageLayout;
026:        import javax.media.jai.OpImage;
027:        import javax.media.jai.PlanarImage;
028:        import javax.media.jai.PointOpImage;
029:        import javax.media.jai.PixelAccessor;
030:        import javax.media.jai.PackedImageData;
031:        import javax.media.jai.UnpackedImageData;
032:        import com.sun.media.jai.util.JDKWorkarounds;
033:        import com.sun.media.jai.util.ImageUtil;
034:
035:        /**
036:         * An <code>OpImage</code> implementing the "Binarize" operation as
037:         * described in <code>javax.media.jai.operator.BinarizeDescriptor</code>.
038:         *
039:         * <p>This <code>OpImage</code> maps all the pixels of an image
040:         * whose value falls within a given range to a constant on a per-band basis.
041:         * Each of the lower bound, upper bound, and constant arrays may have only
042:         * one value in it. If that is the case, that value is used for all bands.
043:         *
044:         * @see javax.media.jai.operator.BinarizeDescriptor
045:         * @see BinarizeCRIF
046:         *
047:         * @since version 1.1
048:         */
049:        final class BinarizeOpImage extends PointOpImage {
050:
051:            /**
052:             * Lookup table for ORing bytes of output.
053:             */
054:            private static byte[] byteTable = new byte[] { (byte) 0x80,
055:                    (byte) 0x40, (byte) 0x20, (byte) 0x10, (byte) 0x08,
056:                    (byte) 0x04, (byte) 0x02, (byte) 0x01, };
057:
058:            /** 
059:             *  bitsOn[j + (i<<3)]
060:             *  sets bits on from i to j 
061:             */
062:            private static int[] bitsOn = null;
063:
064:            /** The threshold. */
065:            private double threshold;
066:
067:            /**
068:             * Constructor.
069:             *
070:             * @param source     The source image.
071:             * @param layout     The destination image layout.
072:             * @param threshold  The threshold value for binarization.
073:             */
074:            public BinarizeOpImage(RenderedImage source, Map config,
075:                    ImageLayout layout, double threshold) {
076:                super (source, layoutHelper(source, layout, config), config,
077:                        true);
078:
079:                if (source.getSampleModel().getNumBands() != 1) {
080:                    throw new IllegalArgumentException(JaiI18N
081:                            .getString("BinarizeOpImage0"));
082:                }
083:
084:                this .threshold = threshold;
085:            }
086:
087:            // set the OpImage's SM to be MultiPixelPackedSampleModel
088:            private static ImageLayout layoutHelper(RenderedImage source,
089:                    ImageLayout il, Map config) {
090:
091:                ImageLayout layout = (il == null) ? new ImageLayout()
092:                        : (ImageLayout) il.clone();
093:
094:                SampleModel sm = layout.getSampleModel(source);
095:                if (!ImageUtil.isBinary(sm)) {
096:                    sm = new MultiPixelPackedSampleModel(DataBuffer.TYPE_BYTE,
097:                            layout.getTileWidth(source), layout
098:                                    .getTileHeight(source), 1);
099:                    layout.setSampleModel(sm);
100:                }
101:
102:                ColorModel cm = layout.getColorModel(null);
103:                if (cm == null
104:                        || !JDKWorkarounds.areCompatibleDataModels(sm, cm)) {
105:                    layout.setColorModel(ImageUtil.getCompatibleColorModel(sm,
106:                            config));
107:                }
108:
109:                return layout;
110:            }
111:
112:            /**
113:             * Map the pixels inside a specified rectangle whose value is within a 
114:             * rang to a constant on a per-band basis.
115:             *
116:             * @param sources   Cobbled sources, guaranteed to provide all the
117:             *                  source data necessary for computing the rectangle.
118:             * @param dest      The tile containing the rectangle to be computed.
119:             * @param destRect  The rectangle within the tile to be computed.
120:             */
121:            protected void computeRect(Raster[] sources, WritableRaster dest,
122:                    Rectangle destRect) {
123:                switch (sources[0].getSampleModel().getDataType()) {
124:                case DataBuffer.TYPE_BYTE:
125:                    byteLoop(sources[0], dest, destRect);
126:                    break;
127:
128:                case DataBuffer.TYPE_SHORT:
129:                    shortLoop(sources[0], dest, destRect);
130:                    break;
131:                case DataBuffer.TYPE_USHORT:
132:                    ushortLoop(sources[0], dest, destRect);
133:                    break;
134:                case DataBuffer.TYPE_INT:
135:                    intLoop(sources[0], dest, destRect);
136:                    break;
137:
138:                case DataBuffer.TYPE_FLOAT:
139:                    floatLoop(sources[0], dest, destRect);
140:                    break;
141:                case DataBuffer.TYPE_DOUBLE:
142:                    doubleLoop(sources[0], dest, destRect);
143:                    break;
144:
145:                default:
146:                    throw new RuntimeException(JaiI18N
147:                            .getString("BinarizeOpImage1"));
148:                }
149:            }
150:
151:            private void byteLoop(Raster source, WritableRaster dest,
152:                    Rectangle destRect) {
153:
154:                if (threshold <= 0.0D) {
155:                    // every bit is 1
156:                    setTo1(dest, destRect);
157:                    return;
158:                } else if (threshold > 255.0D) {
159:                    //every bit is zeros;
160:                    return;
161:                }
162:
163:                short thresholdI = (short) Math.ceil(threshold);
164:                // computation can be done in integer
165:                // even though threshold is of double type
166:                // int thresholdI = (int)Math.ceil(this.threshold);
167:                // or through a lookup table for byte case
168:
169:                Rectangle srcRect = mapDestRect(destRect, 0); // should be identical to destRect
170:
171:                PixelAccessor pa = new PixelAccessor(dest.getSampleModel(),
172:                        null);
173:                PackedImageData pid = pa.getPackedPixels(dest, destRect, true,
174:                        false);
175:                int offset = pid.offset;
176:                PixelAccessor srcPa = new PixelAccessor(
177:                        source.getSampleModel(), null);
178:
179:                UnpackedImageData srcImD = srcPa.getPixels(source, srcRect,
180:                        DataBuffer.TYPE_BYTE, false);
181:                int srcOffset = srcImD.bandOffsets[0];
182:                byte[] srcData = ((byte[][]) srcImD.data)[0];
183:                int pixelStride = srcImD.pixelStride;
184:
185:                int ind0 = pid.bitOffset;
186:                for (int h = 0; h < destRect.height; h++) {
187:                    int indE = ind0 + destRect.width;
188:                    for (int b = ind0, s = srcOffset; b < indE; b++, s += pixelStride) {
189:                        if ((srcData[s] & 0xFF) >= thresholdI) {
190:                            pid.data[offset + (b >> 3)] |= byteTable[b % 8];
191:                        }
192:                    }
193:                    offset += pid.lineStride;
194:                    srcOffset += srcImD.lineStride;
195:                }
196:                pa.setPackedPixels(pid);
197:            }
198:
199:            // computation in short
200:            private void shortLoop(Raster source, WritableRaster dest,
201:                    Rectangle destRect) {
202:
203:                if (threshold <= Short.MIN_VALUE) {
204:                    // every bit is 1
205:                    setTo1(dest, destRect);
206:                    return;
207:                } else if (threshold > Short.MAX_VALUE) {
208:                    //every bit is zeros;
209:                    return;
210:                }
211:
212:                short thresholdS = (short) (Math.ceil(threshold));
213:                // computation can be done in integer
214:                // even though threshold is of double type
215:                // int thresholdI = (int)Math.ceil(this.threshold);
216:                // or through a lookup table for byte case
217:
218:                Rectangle srcRect = mapDestRect(destRect, 0); // should be identical to destRect
219:
220:                PixelAccessor pa = new PixelAccessor(dest.getSampleModel(),
221:                        null);
222:                PackedImageData pid = pa.getPackedPixels(dest, destRect, true,
223:                        false);
224:                int offset = pid.offset;
225:                PixelAccessor srcPa = new PixelAccessor(
226:                        source.getSampleModel(), null);
227:
228:                UnpackedImageData srcImD = srcPa.getPixels(source, srcRect,
229:                        DataBuffer.TYPE_SHORT, false);
230:                int srcOffset = srcImD.bandOffsets[0];
231:                short[] srcData = ((short[][]) srcImD.data)[0];
232:                int pixelStride = srcImD.pixelStride;
233:
234:                int ind0 = pid.bitOffset;
235:                for (int h = 0; h < destRect.height; h++) {
236:                    int indE = ind0 + destRect.width;
237:                    for (int b = ind0, s = srcOffset; b < indE; b++, s += pixelStride) {
238:                        if (srcData[s] >= thresholdS) {
239:                            pid.data[offset + (b >> 3)] |= byteTable[b % 8];
240:                        }
241:                    }
242:                    offset += pid.lineStride;
243:                    srcOffset += srcImD.lineStride;
244:                }
245:                pa.setPackedPixels(pid);
246:            }
247:
248:            // computation in short
249:            private void ushortLoop(Raster source, WritableRaster dest,
250:                    Rectangle destRect) {
251:
252:                if (threshold <= 0.0D) {
253:                    // every bit is 1
254:                    setTo1(dest, destRect);
255:                    return;
256:                } else if (threshold > (double) (0xFFFF)) {
257:                    //every bit is zeros;
258:                    return;
259:                }
260:
261:                int thresholdI = (int) (Math.ceil(threshold));
262:                // computation can be done in integer
263:                // even though threshold is of double type
264:                // int thresholdI = (int)Math.ceil(this.threshold);
265:                // or through a lookup table for byte case
266:
267:                Rectangle srcRect = mapDestRect(destRect, 0); // should be identical to destRect
268:
269:                PixelAccessor pa = new PixelAccessor(dest.getSampleModel(),
270:                        null);
271:                PackedImageData pid = pa.getPackedPixels(dest, destRect, true,
272:                        false);
273:                int offset = pid.offset;
274:                PixelAccessor srcPa = new PixelAccessor(
275:                        source.getSampleModel(), null);
276:
277:                UnpackedImageData srcImD = srcPa.getPixels(source, srcRect,
278:                        DataBuffer.TYPE_USHORT, false);
279:                int srcOffset = srcImD.bandOffsets[0];
280:                short[] srcData = ((short[][]) srcImD.data)[0];
281:                int pixelStride = srcImD.pixelStride;
282:
283:                int ind0 = pid.bitOffset;
284:                for (int h = 0; h < destRect.height; h++) {
285:                    int indE = ind0 + destRect.width;
286:                    for (int b = ind0, s = srcOffset; b < indE; b++, s += pixelStride) {
287:                        if ((srcData[s] & 0xFFFF) >= thresholdI) {
288:                            pid.data[offset + (b >> 3)] |= byteTable[b % 8];
289:                        }
290:                    }
291:                    offset += pid.lineStride;
292:                    srcOffset += srcImD.lineStride;
293:                }
294:                pa.setPackedPixels(pid);
295:            }
296:
297:            private void intLoop(Raster source, WritableRaster dest,
298:                    Rectangle destRect) {
299:
300:                if (threshold <= Integer.MIN_VALUE) {
301:                    // every bit is 1
302:                    setTo1(dest, destRect);
303:                    return;
304:                } else if (threshold > (double) Integer.MAX_VALUE) {
305:                    //every bit is zeros;
306:                    return;
307:                }
308:
309:                // computation can be done in integer
310:                // even though threshold is of double type
311:                int thresholdI = (int) Math.ceil(this .threshold);
312:
313:                // computation can be done in integer
314:                // even though threshold is of double type
315:                // int thresholdI = (int)Math.ceil(this.threshold);
316:
317:                Rectangle srcRect = mapDestRect(destRect, 0); // should be identical to destRect
318:
319:                PixelAccessor pa = new PixelAccessor(dest.getSampleModel(),
320:                        null);
321:                PackedImageData pid = pa.getPackedPixels(dest, destRect, true,
322:                        false);
323:                int offset = pid.offset;
324:                PixelAccessor srcPa = new PixelAccessor(
325:                        source.getSampleModel(), null);
326:
327:                UnpackedImageData srcImD = srcPa.getPixels(source, srcRect,
328:                        DataBuffer.TYPE_INT, false);
329:                int srcOffset = srcImD.bandOffsets[0];
330:                int[] srcData = ((int[][]) srcImD.data)[0];
331:                int pixelStride = srcImD.pixelStride;
332:
333:                int ind0 = pid.bitOffset;
334:                for (int h = 0; h < destRect.height; h++) {
335:                    int indE = ind0 + destRect.width;
336:                    for (int b = ind0, s = srcOffset; b < indE; b++, s += pixelStride) {
337:                        if (srcData[s] >= threshold) {
338:                            pid.data[offset + (b >> 3)] |= byteTable[b % 8];
339:                        }
340:                    }
341:                    offset += pid.lineStride;
342:                    srcOffset += srcImD.lineStride;
343:                }
344:                pa.setPackedPixels(pid);
345:            }
346:
347:            // computation in float
348:            private void floatLoop(Raster source, WritableRaster dest,
349:                    Rectangle destRect) {
350:
351:                Rectangle srcRect = mapDestRect(destRect, 0); // should be identical to destRect
352:
353:                PixelAccessor pa = new PixelAccessor(dest.getSampleModel(),
354:                        null);
355:                PackedImageData pid = pa.getPackedPixels(dest, destRect, true,
356:                        false);
357:                int offset = pid.offset;
358:                PixelAccessor srcPa = new PixelAccessor(
359:                        source.getSampleModel(), null);
360:
361:                UnpackedImageData srcImD = srcPa.getPixels(source, srcRect,
362:                        DataBuffer.TYPE_FLOAT, false);
363:                int srcOffset = srcImD.bandOffsets[0];
364:                float[] srcData = ((float[][]) srcImD.data)[0];
365:                int pixelStride = srcImD.pixelStride;
366:
367:                int ind0 = pid.bitOffset;
368:                for (int h = 0; h < destRect.height; h++) {
369:                    int indE = ind0 + destRect.width;
370:                    for (int b = ind0, s = srcOffset; b < indE; b++, s += pixelStride) {
371:                        if (srcData[s] > threshold) {
372:                            pid.data[offset + (b >> 3)] |= byteTable[b % 8];
373:                        }
374:                    }
375:                    offset += pid.lineStride;
376:                    srcOffset += srcImD.lineStride;
377:                }
378:                pa.setPackedPixels(pid);
379:            }
380:
381:            // computation in double
382:            private void doubleLoop(Raster source, WritableRaster dest,
383:                    Rectangle destRect) {
384:
385:                Rectangle srcRect = mapDestRect(destRect, 0); // should be identical to destRect
386:
387:                PixelAccessor pa = new PixelAccessor(dest.getSampleModel(),
388:                        null);
389:                PackedImageData pid = pa.getPackedPixels(dest, destRect, true,
390:                        false);
391:                int offset = pid.offset;
392:                PixelAccessor srcPa = new PixelAccessor(
393:                        source.getSampleModel(), null);
394:
395:                UnpackedImageData srcImD = srcPa.getPixels(source, srcRect,
396:                        DataBuffer.TYPE_DOUBLE, false);
397:                int srcOffset = srcImD.bandOffsets[0];
398:                double[] srcData = ((double[][]) srcImD.data)[0];
399:                int pixelStride = srcImD.pixelStride;
400:
401:                int ind0 = pid.bitOffset;
402:                for (int h = 0; h < destRect.height; h++) {
403:                    int indE = ind0 + destRect.width;
404:                    for (int b = ind0, s = srcOffset; b < indE; b++, s += pixelStride) {
405:                        if (srcData[s] > threshold) {
406:                            pid.data[offset + (b >> 3)] |= byteTable[b % 8];
407:                        }
408:                    }
409:                    offset += pid.lineStride;
410:                    srcOffset += srcImD.lineStride;
411:                }
412:                pa.setPackedPixels(pid);
413:            }
414:
415:            // set all bits in a rectangular region to be 1
416:            // need to be sure that paddings not changing
417:            private void setTo1(Raster dest, Rectangle destRect) {
418:                initBitsOn();
419:                PixelAccessor pa = new PixelAccessor(dest.getSampleModel(),
420:                        null);
421:                PackedImageData pid = pa.getPackedPixels(dest, destRect, true,
422:                        false);
423:                int offset = pid.offset;
424:
425:                for (int h = 0; h < destRect.height; h++) {
426:                    int ind0 = pid.bitOffset;
427:                    int indE = ind0 + destRect.width - 1;
428:                    if (indE < 8) {
429:                        // the entire row in data[offset]
430:                        pid.data[offset] = (byte) (pid.data[offset] | bitsOn[indE]); // (0<<3) + indE
431:                    } else {
432:                        //1st byte
433:                        pid.data[offset] = (byte) (pid.data[offset] | bitsOn[7]); // (0<<3) + 7
434:                        //middle bytes
435:                        for (int b = offset + 1; b <= offset + (indE - 7) / 8; b++) {
436:                            pid.data[b] = (byte) (0xff);
437:                        }
438:                        //last byte
439:
440:                        int remBits = indE % 8;
441:                        if (remBits % 8 != 7) {
442:                            indE = offset + indE / 8;
443:                            pid.data[indE] = (byte) (pid.data[indE] | bitsOn[remBits]); // (0<<3)+remBits
444:                        }
445:                    }
446:                    offset += pid.lineStride;
447:                }
448:                pa.setPackedPixels(pid);
449:            }
450:
451:            // setting bits i to j to 1;
452:            //  i <= j
453:            private static synchronized void initBitsOn() {
454:
455:                if (bitsOn != null)
456:                    return;
457:
458:                bitsOn = new int[64];
459:                for (int i = 0; i < 8; i++) {
460:                    for (int j = i; j < 8; j++) {
461:                        int bi = (0x00ff) >> i;
462:                        int bj = (0x00ff) << (7 - j);
463:                        bitsOn[j + (i << 3)] = bi & bj;
464:                    }
465:                }
466:            }
467:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.