Source Code Cross Referenced for DFTOpImage.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » com » sun » media » jai » opimage » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » com.sun.media.jai.opimage 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: DFTOpImage.java,v $
003:         *
004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Use is subject to license terms.
007:         *
008:         * $Revision: 1.1 $
009:         * $Date: 2005/02/11 04:56:22 $
010:         * $State: Exp $
011:         */
012:        package com.sun.media.jai.opimage;
013:
014:        import java.awt.Image;
015:        import java.awt.Rectangle;
016:        import java.awt.geom.Point2D;
017:        import java.awt.image.ColorModel;
018:        import java.awt.image.DataBuffer;
019:        import java.awt.image.Raster;
020:        import java.awt.image.RenderedImage;
021:        import java.awt.image.SampleModel;
022:        import java.awt.image.WritableRaster;
023:        import java.text.NumberFormat;
024:        import java.util.Arrays;
025:        import java.util.Locale;
026:        import java.util.Map;
027:        import javax.media.jai.EnumeratedParameter;
028:        import javax.media.jai.ImageLayout;
029:        import javax.media.jai.RasterAccessor;
030:        import javax.media.jai.RasterFormatTag;
031:        import javax.media.jai.RasterFactory;
032:        import javax.media.jai.UntiledOpImage;
033:        import javax.media.jai.operator.DFTDescriptor;
034:        import com.sun.media.jai.util.JDKWorkarounds;
035:        import com.sun.media.jai.util.MathJAI;
036:
037:        /**
038:         * An <code>OpImage</code> implementing the forward and inverse discrete
039:         * Fourier transform (DFT) operations as described in
040:         * <code>javax.media.jai.operator.DFTDescriptor</code> and
041:         * <code>javax.media.jai.operator.IDFTDescriptor</code>.
042:         *
043:         * <p> The DFT operation is implemented using a one-dimensional decimation
044:         * in time fast Fourier transform (FFT) which is applied successively to the
045:         * rows and the columns of the image. All image dimensions are enlarged to the
046:         * next positive power of 2 greater than or equal to the respective dimension
047:         * unless the dimension is unity in which case it is not modified. Source
048:         * image values are padded with zeros when the dimension is smaller than the
049:         * output power-of-2 dimension.
050:         *
051:         * @since EA3
052:         *
053:         * @see javax.media.jai.UntiledOpImage
054:         * @see javax.media.jai.operator.DFTDescriptor
055:         * @see javax.media.jai.operator.IDFTDescriptor
056:         *
057:         */
058:        public class DFTOpImage extends UntiledOpImage {
059:            /** The Fast Fourier Transform object. */
060:            FFT fft;
061:
062:            /** Flag indicating whether the source image is complex. */
063:            protected boolean complexSrc;
064:
065:            /** Flag indicating whether the destination image is complex. */
066:            protected boolean complexDst;
067:
068:            /**
069:             * Override the dimension specification for the destination such that it
070:             * has width and height which are equal to non-negative powers of 2.
071:             */
072:            private static ImageLayout layoutHelper(ImageLayout layout,
073:                    RenderedImage source, EnumeratedParameter dataNature) {
074:                // Create an ImageLayout or clone the one passed in.
075:                ImageLayout il = layout == null ? new ImageLayout()
076:                        : (ImageLayout) layout.clone();
077:
078:                // Force the origin to coincide with that of the source.
079:                il.setMinX(source.getMinX());
080:                il.setMinY(source.getMinY());
081:
082:                // Recalculate the non-unity dimensions to be a positive power of 2.
083:                // XXX This calculation should not be effected if an implementation
084:                // of the FFT which supports arbitrary dimensions is used.
085:                int currentWidth = il.getWidth(source);
086:                int currentHeight = il.getHeight(source);
087:                int newWidth;
088:                int newHeight;
089:                if (currentWidth == 1 && currentHeight == 1) {
090:                    newWidth = newHeight = 1;
091:                } else if (currentWidth == 1 && currentHeight > 1) {
092:                    newWidth = 1;
093:                    newHeight = MathJAI.nextPositivePowerOf2(currentHeight);
094:                } else if (currentWidth > 1 && currentHeight == 1) {
095:                    newWidth = MathJAI.nextPositivePowerOf2(currentWidth);
096:                    newHeight = 1;
097:                } else { // Neither dimension equal to unity.
098:                    newWidth = MathJAI.nextPositivePowerOf2(currentWidth);
099:                    newHeight = MathJAI.nextPositivePowerOf2(currentHeight);
100:                }
101:                il.setWidth(newWidth);
102:                il.setHeight(newHeight);
103:
104:                // Set the complex flags for source and destination.
105:                boolean isComplexSource = !dataNature
106:                        .equals(DFTDescriptor.REAL_TO_COMPLEX);
107:                boolean isComplexDest = !dataNature
108:                        .equals(DFTDescriptor.COMPLEX_TO_REAL);
109:
110:                // Initialize the SampleModel creation flag.
111:                boolean createNewSampleModel = false;
112:
113:                // Determine the number of required bands.
114:                SampleModel srcSampleModel = source.getSampleModel();
115:                int requiredNumBands = srcSampleModel.getNumBands();
116:                if (isComplexSource && !isComplexDest) {
117:                    requiredNumBands /= 2;
118:                } else if (!isComplexSource && isComplexDest) {
119:                    requiredNumBands *= 2;
120:                }
121:
122:                // Set the number of bands.
123:                SampleModel sm = il.getSampleModel(source);
124:                int numBands = sm.getNumBands();
125:                if (numBands != requiredNumBands) {
126:                    numBands = requiredNumBands;
127:                    createNewSampleModel = true;
128:                }
129:
130:                // Force the image to contain floating point data.
131:                int dataType = sm.getTransferType();
132:                if (dataType != DataBuffer.TYPE_FLOAT
133:                        && dataType != DataBuffer.TYPE_DOUBLE) {
134:                    dataType = DataBuffer.TYPE_FLOAT;
135:                    createNewSampleModel = true;
136:                }
137:
138:                // Create a new SampleModel for the destination if necessary.
139:                if (createNewSampleModel) {
140:                    sm = RasterFactory.createComponentSampleModel(sm, dataType,
141:                            newWidth, newHeight, numBands);
142:                    il.setSampleModel(sm);
143:
144:                    // Clear the ColorModel mask if needed.
145:                    ColorModel cm = il.getColorModel(null);
146:                    if (cm != null
147:                            && !JDKWorkarounds.areCompatibleDataModels(sm, cm)) {
148:                        // Clear the mask bit if incompatible.
149:                        il.unsetValid(ImageLayout.COLOR_MODEL_MASK);
150:                    }
151:                }
152:
153:                return il;
154:            }
155:
156:            /**
157:             * Constructs a <code>DFTOpImage</code> object.
158:             *
159:             * <p>The image dimensions are the respective next positive powers of 2
160:             * greater than or equal to the dimensions of the source image. The tile
161:             * grid layout, SampleModel, and ColorModel may optionally be specified
162:             * by an ImageLayout object.
163:             *
164:             * @param source A RenderedImage.
165:             * @param layout An ImageLayout optionally containing the tile grid layout,
166:             * SampleModel, and ColorModel, or null.
167:             * @param fft The Fast Fourier Transform object.
168:             *
169:             * @see DFTDescriptor.
170:             */
171:            public DFTOpImage(RenderedImage source, Map config,
172:                    ImageLayout layout, EnumeratedParameter dataNature, FFT fft) {
173:                super (source, config, layoutHelper(layout, source, dataNature));
174:
175:                // Cache the FFT object.
176:                this .fft = fft;
177:
178:                // Set the complex flags for source and destination.
179:                complexSrc = !dataNature.equals(DFTDescriptor.REAL_TO_COMPLEX);
180:                complexDst = !dataNature.equals(DFTDescriptor.COMPLEX_TO_REAL);
181:            }
182:
183:            /**
184:             * Computes the source point corresponding to the supplied point.
185:             *
186:             * @param destPt the position in destination image coordinates
187:             * to map to source image coordinates.
188:             *
189:             * @return <code>null</code>.
190:             *
191:             * @throws IllegalArgumentException if <code>destPt</code> is
192:             * <code>null</code>.
193:             *
194:             * @since JAI 1.1.2
195:             */
196:            public Point2D mapDestPoint(Point2D destPt) {
197:                if (destPt == null) {
198:                    throw new IllegalArgumentException(JaiI18N
199:                            .getString("Generic0"));
200:                }
201:
202:                return null;
203:            }
204:
205:            /**
206:             * Computes the destination point corresponding to the supplied point.
207:             *
208:             * @return <code>null</code>.
209:             *
210:             * @throws IllegalArgumentException if <code>sourcePt</code> is
211:             * <code>null</code>.
212:             *
213:             * @since JAI 1.1.2
214:             */
215:            public Point2D mapSourcePoint(Point2D sourcePt) {
216:                if (sourcePt == null) {
217:                    throw new IllegalArgumentException(JaiI18N
218:                            .getString("Generic0"));
219:                }
220:
221:                return null;
222:            }
223:
224:            /**
225:             * Calculate the discrete Fourier transform of the source image.
226:             *
227:             * @param source The source Raster; should be the whole image.
228:             * @param dest The destination WritableRaster; should be the whole image.
229:             * @param destRect The destination Rectangle; should be the image bounds.
230:             */
231:            protected void computeImage(Raster[] sources, WritableRaster dest,
232:                    Rectangle destRect) {
233:                Raster source = sources[0];
234:
235:                // Degenerate case.
236:                if (destRect.width == 1 && destRect.height == 1) {
237:                    int nDstBands = sampleModel.getNumBands();
238:                    double[] srcPixel = new double[source.getSampleModel()
239:                            .getNumBands()];
240:                    source.getPixel(destRect.x, destRect.y, srcPixel);
241:                    if (complexSrc && complexDst) { // Complex -> Complex
242:                        dest.setPixel(destRect.x, destRect.y, srcPixel);
243:                    } else if (complexSrc) { // Complex -> Real.
244:                        for (int i = 0; i < nDstBands; i++) {
245:                            // Set destination to real part.
246:                            dest.setSample(destRect.x, destRect.y, i,
247:                                    srcPixel[2 * i]);
248:                        }
249:                    } else if (complexDst) { // Real -> Complex
250:                        for (int i = 0; i < nDstBands; i++) {
251:                            // Set destination real part to source.
252:                            dest.setSample(destRect.x, destRect.y, i,
253:                                    i % 2 == 0 ? srcPixel[i / 2] : 0.0);
254:                        }
255:                    } else { // Real -> Real.
256:                        // NB This statement should be unreachable.
257:                        throw new RuntimeException(JaiI18N
258:                                .getString("DFTOpImage1"));
259:                    }
260:                    return;
261:                }
262:
263:                // Initialize to first non-unity length to be encountered.
264:                fft.setLength(destRect.width > 1 ? getWidth() : getHeight());
265:
266:                // Get some information about the source image.
267:                int srcWidth = source.getWidth();
268:                int srcHeight = source.getHeight();
269:                int srcX = source.getMinX();
270:                int srcY = source.getMinY();
271:
272:                // Retrieve format tags.
273:                RasterFormatTag[] formatTags = getFormatTags();
274:
275:                RasterAccessor srcAccessor = new RasterAccessor(source,
276:                        new Rectangle(srcX, srcY, srcWidth, srcHeight),
277:                        formatTags[0], getSourceImage(0).getColorModel());
278:                RasterAccessor dstAccessor = new RasterAccessor(dest, destRect,
279:                        formatTags[1], getColorModel());
280:
281:                // Set data type flags.
282:                int srcDataType = srcAccessor.getDataType();
283:                int dstDataType = dstAccessor.getDataType();
284:
285:                // Set pixel and line strides.
286:                int srcPixelStride = srcAccessor.getPixelStride();
287:                int srcScanlineStride = srcAccessor.getScanlineStride();
288:                int dstPixelStride = dstAccessor.getPixelStride();
289:                int dstScanlineStride = dstAccessor.getScanlineStride();
290:                int dstPixelStrideImag = 1;
291:                int dstLineStrideImag = destRect.width;
292:                if (complexDst) {
293:                    dstPixelStrideImag = dstPixelStride;
294:                    dstLineStrideImag = dstScanlineStride;
295:                }
296:
297:                // Set indices and strides for image bands (real/imaginary).
298:                int srcBandIndex = 0;
299:                int srcBandStride = complexSrc ? 2 : 1;
300:                int dstBandIndex = 0;
301:                int dstBandStride = complexDst ? 2 : 1;
302:
303:                // Get the number of components.
304:                int numComponents = (complexDst ? dest.getSampleModel()
305:                        .getNumBands() / 2 : dest.getSampleModel()
306:                        .getNumBands());
307:
308:                // Loop over the components.
309:                for (int comp = 0; comp < numComponents; comp++) {
310:                    // Get the real source data for this component.
311:                    Object srcReal = srcAccessor.getDataArray(srcBandIndex);
312:
313:                    // Get the imaginary source data for this component if present.
314:                    Object srcImag = null;
315:                    if (complexSrc) {
316:                        srcImag = srcAccessor.getDataArray(srcBandIndex + 1);
317:                    }
318:
319:                    // Specify the destination components.
320:                    Object dstReal = dstAccessor.getDataArray(dstBandIndex);
321:                    Object dstImag = null;
322:                    if (complexDst) {
323:                        dstImag = dstAccessor.getDataArray(dstBandIndex + 1);
324:                    } else {
325:                        // Need to allocate an array for the entire band anyway
326:                        // even though the destination is real because it is needed
327:                        // for storage of the result of the row transforms.
328:                        if (dstDataType == DataBuffer.TYPE_FLOAT) {
329:                            dstImag = new float[destRect.width
330:                                    * destRect.height];
331:                        } else {
332:                            dstImag = new double[destRect.width
333:                                    * destRect.height];
334:                        }
335:                    }
336:
337:                    if (destRect.width > 1) {
338:                        // Set the FFT length.
339:                        fft.setLength(getWidth());
340:
341:                        // Initialize the source offsets for this component.
342:                        int srcOffsetReal = srcAccessor
343:                                .getBandOffset(srcBandIndex);
344:                        int srcOffsetImag = 0;
345:                        if (complexSrc) {
346:                            srcOffsetImag = srcAccessor
347:                                    .getBandOffset(srcBandIndex + 1);
348:                        }
349:
350:                        // Initialize destination offsets and strides.
351:                        int dstOffsetReal = dstAccessor
352:                                .getBandOffset(dstBandIndex);
353:                        int dstOffsetImag = 0;
354:                        if (complexDst) {
355:                            dstOffsetImag = dstAccessor
356:                                    .getBandOffset(dstBandIndex + 1);
357:                        }
358:
359:                        // Perform the row transforms.
360:                        for (int row = 0; row < srcHeight; row++) {
361:                            // Set the input data of the FFT.
362:                            fft.setData(srcDataType, srcReal, srcOffsetReal,
363:                                    srcPixelStride, srcImag, srcOffsetImag,
364:                                    srcPixelStride, srcWidth);
365:
366:                            // Calculate the DFT of the row.
367:                            fft.transform();
368:
369:                            // Get the output data of the FFT.
370:                            fft.getData(dstDataType, dstReal, dstOffsetReal,
371:                                    dstPixelStride, dstImag, dstOffsetImag,
372:                                    dstPixelStrideImag);
373:
374:                            // Increment the data offsets.
375:                            srcOffsetReal += srcScanlineStride;
376:                            srcOffsetImag += srcScanlineStride;
377:                            dstOffsetReal += dstScanlineStride;
378:                            dstOffsetImag += dstLineStrideImag;
379:                        }
380:                    }
381:
382:                    if (destRect.width == 1) { // destRect.height > 1
383:                        // NB 1) destRect.height has to be greater than one or this
384:                        // would be the degenerate case of a single point which is
385:                        // handled above. 2) There is no need to do setLength() on
386:                        // the FFT object here as the length will already have been
387:                        // set to the maximum of destRect.width amd destRect.height
388:                        // which must be destRect.height.
389:
390:                        // Initialize the source offsets for this component.
391:                        int srcOffsetReal = srcAccessor
392:                                .getBandOffset(srcBandIndex);
393:                        int srcOffsetImag = 0;
394:                        if (complexSrc) {
395:                            srcOffsetImag = srcAccessor
396:                                    .getBandOffset(srcBandIndex + 1);
397:                        }
398:
399:                        // Initialize destination offsets and strides.
400:                        int dstOffsetReal = dstAccessor
401:                                .getBandOffset(dstBandIndex);
402:                        int dstOffsetImag = 0;
403:                        if (complexDst) {
404:                            dstOffsetImag = dstAccessor
405:                                    .getBandOffset(dstBandIndex + 1);
406:                        }
407:
408:                        // Set the input data of the FFT.
409:                        fft.setData(srcDataType, srcReal, srcOffsetReal,
410:                                srcScanlineStride, srcImag, srcOffsetImag,
411:                                srcScanlineStride, srcHeight);
412:
413:                        // Calculate the DFT of the column.
414:                        fft.transform();
415:
416:                        // Get the output data of the FFT.
417:                        fft.getData(dstDataType, dstReal, dstOffsetReal,
418:                                dstScanlineStride, dstImag, dstOffsetImag,
419:                                dstLineStrideImag);
420:                    } else if (destRect.height > 1) { // destRect.width > 1
421:                        // Reset the FFT length.
422:                        fft.setLength(getHeight());
423:
424:                        // Initialize destination offsets and strides.
425:                        int dstOffsetReal = dstAccessor
426:                                .getBandOffset(dstBandIndex);
427:                        int dstOffsetImag = 0;
428:                        if (complexDst) {
429:                            dstOffsetImag = dstAccessor
430:                                    .getBandOffset(dstBandIndex + 1);
431:                        }
432:
433:                        // Perform the column transforms.
434:                        for (int col = 0; col < destRect.width; col++) {
435:                            // Set the input data of the FFT.
436:                            fft.setData(dstDataType, dstReal, dstOffsetReal,
437:                                    dstScanlineStride, dstImag, dstOffsetImag,
438:                                    dstLineStrideImag, destRect.height);
439:
440:                            // Calculate the DFT of the column.
441:                            fft.transform();
442:
443:                            // Get the output data of the FFT.
444:                            fft.getData(dstDataType, dstReal, dstOffsetReal,
445:                                    dstScanlineStride, complexDst ? dstImag
446:                                            : null, dstOffsetImag,
447:                                    dstLineStrideImag);
448:
449:                            // Increment the data offset.
450:                            dstOffsetReal += dstPixelStride;
451:                            dstOffsetImag += dstPixelStrideImag;
452:                        }
453:                    }
454:
455:                    // Increment the indices of the real bands in both images.
456:                    srcBandIndex += srcBandStride;
457:                    dstBandIndex += dstBandStride;
458:                }
459:
460:                if (dstAccessor.needsClamping()) {
461:                    dstAccessor.clampDataArrays();
462:                }
463:
464:                // Make sure that the output data is copied to the destination.
465:                dstAccessor.copyDataToRaster();
466:            }
467:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.