Source Code Cross Referenced for ErodeBinaryOpImage.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » com » sun » media » jai » opimage » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » com.sun.media.jai.opimage 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: ErodeBinaryOpImage.java,v $
003:         *
004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Use is subject to license terms.
007:         *
008:         * $Revision: 1.2 $
009:         * $Date: 2005/12/08 20:27:59 $
010:         * $State: Exp $
011:         */
012:        package com.sun.media.jai.opimage;
013:
014:        import java.awt.Rectangle;
015:        import java.awt.RenderingHints;
016:        import java.awt.image.DataBuffer;
017:        import java.awt.image.DataBufferByte;
018:        import java.awt.image.DataBufferInt;
019:        import java.awt.image.DataBufferUShort;
020:        import java.awt.image.MultiPixelPackedSampleModel;
021:        import java.awt.image.SampleModel;
022:        import java.awt.image.Raster;
023:        import java.awt.image.RenderedImage;
024:        import java.awt.image.WritableRaster;
025:        import java.awt.image.renderable.ParameterBlock;
026:        import java.awt.image.renderable.RenderedImageFactory;
027:        import javax.media.jai.AreaOpImage;
028:        import javax.media.jai.BorderExtender;
029:        import javax.media.jai.ImageLayout;
030:        import javax.media.jai.JAI;
031:        import javax.media.jai.KernelJAI;
032:        import javax.media.jai.OpImage;
033:        import javax.media.jai.RasterAccessor;
034:        import javax.media.jai.RasterFormatTag;
035:        import java.util.Map;
036:        import javax.media.jai.PixelAccessor;
037:        import javax.media.jai.PackedImageData;
038:
039:        /**
040:         *
041:         * An OpImage class to perform erosion on a source image.
042:         *
043:         * <p> This class implements an erosion operation.
044:         * 
045:         * <p> <b>Grey Scale Erosion</b>
046:         * is a spatial operation that computes
047:         * each output sample by subtract elements of a kernel to the samples
048:         * surrounding a particular source sample with some care.
049:         * A mathematical expression is:
050:         *
051:         * <p> For a kernel K with a key position (xKey, yKey), the erosion
052:         * of image I at (x,y) is given by:
053:         * <pre>
054:         *     max{a:  a + K(xKey+i, yKey+j) <= I(x+i,y+j): all (i,j) }
055:         *
056:         *      all possible (i,j) means that both I(x+i,y+j) and K(xKey+i, yKey+j)
057:         *      are in bounds. Otherwise, the value is set to 0.
058:         *
059:         * </pre> 
060:         * <p> Intuitively, the kernel is like an unbrella and the key point
061:         * is the handle. At every point, you try to push the umbrella up as high
062:         * as possible but still underneath the image surface. The final height
063:         * of the handle is the value after erosion. Thus if you want the image
064:         * to erode from the upper right to bottom left, the following would do.
065:         *
066:         * <p><center>
067:         * <table border=1>
068:         * <tr align=center><td>0</td><td>0</td><td>X</td> </tr>
069:         * <tr align=center><td>0</td><td>X</td><td>0</td> </tr>
070:         * <tr align=center><td><b>X</b></td><td>0</td><td>0</td> </tr>
071:         * </table></center>
072:         *
073:         * <p> Note that zero kernel erosion has effects on the image, the
074:         * location of the key position and size of kernel all matter.
075:         * 
076:         * <p> Pseudo code for the erosion operation is as follows.
077:         * Assuming the kernel K is of size M rows x N cols
078:         * and the key position is (xKey, yKey).
079:         * 
080:         * <pre>
081:         * 
082:         * // erosion
083:         * for every dst pixel location (x,y){
084:         *    tmp = infinity;
085:         *    for (i = -xKey; i < M - xKey; i++){
086:         *       for (j = -yKey; j < N - yKey; j++){
087:         *          if((x+i, y+j) are in bounds of src){
088:         *             tmp = min{tmp, src[x + i][y + j] - K[xKey + i][yKey + j]};
089:         *          }
090:         *       }
091:         *    }
092:         *    dst[x][y] = tmp;
093:         *    if (dst[x][y] == infinity)
094:         *        dst[x][y] = 0;
095:         * }
096:         * </pre>
097:         *
098:         * <p> The kernel cannot be bigger in any dimension than the image data.
099:         *
100:         * <p> <b>Binary Image Erosion</b>
101:         * requires the kernel to be binary as well.
102:         * Intuitively, binary erosion slides the kernel
103:         * key position and place it at every non-zero point (x,y) in the src image.
104:         * The dst value at this position is set to 1 if all the kernel
105:         * are fully supported by the src image, and the src image value is 1
106:         * whenever the kernel has value 1.
107:         * Otherwise, the value after erosion at (x,y) is set to 0.
108:         * Erosion usually shrinks images, but it can fill holes
109:         * with kernels like 
110:         * <pre> [1 0 1] </pre>
111:         * and the key position at the center.
112:         *
113:         * <p> Pseudo code for the erosion operation is as follows.
114:         * 
115:         * <pre>
116:         * // erosion
117:         * for every dst pixel location (x,y){
118:         *    dst[x][y] = 1;
119:         *    for (i = -xKey; i < M - xKey; i++){
120:         *       for (j = -yKey; j < N - yKey; j++){
121:         *         if((x+i,y+j) is out of bounds of src ||
122:         *             src(x+i, y+j)==0 && Key(xKey+i, yKey+j)==1){
123:         *            dst[x][y] = 0; break;
124:         *          }
125:         *       }
126:         *    }
127:         * }
128:         * </pre>
129:         *
130:         * <p> Reference: An Introduction to Nonlinear Image Processing,
131:         * by Edward R. Bougherty and Jaakko Astola,
132:         * Spie Optical Engineering Press, 1994.
133:         *
134:         *
135:         * @see KernelJAI
136:         */
137:
138:        final class ErodeBinaryOpImage extends AreaOpImage {
139:
140:            /**
141:             * The kernel with which to do the erode operation.
142:             */
143:            protected KernelJAI kernel;
144:
145:            /** Kernel variables. */
146:            private int kw, kh, kx, ky;
147:            private int[] kdataPack; // Pack kernel into integers;
148:            private int kwPack;
149:
150:            // for factoring things out
151:            private int dwidth, dheight;
152:            private int dnumBands; // should be 1; gray images
153:
154:            private int bits; // per packed unit, 8, 16 or 32
155:
156:            //private int dstBandOffsets[];
157:            private int dstDBOffset;
158:            private int dstScanlineStride;
159:            private int dstScanlineStrideBits;
160:            private int dstMinX, dstMinY, dstTransX, dstTransY;
161:            private int dstDataBitOffset;
162:
163:            //private int srcBandOffsets[];
164:            private int srcDBOffset;
165:            private int srcScanlineStride;
166:            private int srcScanlineStrideBits;
167:            private int srcMinX, srcMinY, srcTransX, srcTransY;
168:            private int srcDataBitOffset;
169:
170:            // Since this operation deals with packed binary data, we do not need
171:            // to expand the IndexColorModel
172:            private static Map configHelper(Map configuration) {
173:
174:                Map config;
175:
176:                if (configuration == null) {
177:                    config = new RenderingHints(
178:                            JAI.KEY_REPLACE_INDEX_COLOR_MODEL, Boolean.FALSE);
179:                } else {
180:
181:                    config = configuration;
182:
183:                    if (!(config.containsKey(JAI.KEY_REPLACE_INDEX_COLOR_MODEL))) {
184:                        RenderingHints hints = (RenderingHints) configuration;
185:                        config = (RenderingHints) hints.clone();
186:                        config.put(JAI.KEY_REPLACE_INDEX_COLOR_MODEL,
187:                                Boolean.FALSE);
188:                    }
189:                }
190:
191:                return config;
192:            }
193:
194:            /**
195:             * Creates a ErodeBinaryOpImage given a ParameterBlock containing the image
196:             * source and pre-rotated erosion kernel.  The image dimensions are 
197:             * derived
198:             * from the source image.  The tile grid layout, SampleModel, and
199:             * ColorModel may optionally be specified by an ImageLayout
200:             * object.
201:             *
202:             * @param source a RenderedImage.
203:             * @param extender a BorderExtender, or null.
204:             * @param layout an ImageLayout optionally containing the tile grid layout,
205:             *        SampleModel, and ColorModel, or null.
206:             * @param kernel the pre-rotated erosion KernelJAI.
207:             */
208:            public ErodeBinaryOpImage(RenderedImage source,
209:                    BorderExtender extender, Map config, ImageLayout layout,
210:                    KernelJAI kernel) {
211:                super (source, layout, configHelper(config), true, extender,
212:                        kernel.getLeftPadding(), kernel.getRightPadding(),
213:                        kernel.getTopPadding(), kernel.getBottomPadding());
214:
215:                this .kernel = kernel;
216:                kw = kernel.getWidth();
217:                kh = kernel.getHeight();
218:                kx = kernel.getXOrigin();
219:                ky = kernel.getYOrigin();
220:
221:                kwPack = (kw + 31) / 32;
222:                kdataPack = packKernel(kernel);
223:            }
224:
225:            /**
226:             * Performs erosion on a specified rectangle. The sources are
227:             * cobbled.
228:             *
229:             * @param sources an array of source Rasters, guaranteed to provide all
230:             *                necessary source data for computing the output.
231:             * @param dest a WritableRaster tile containing the area to be computed.
232:             * @param destRect the rectangle within dest to be processed.
233:             */
234:            protected void computeRect(Raster[] sources, WritableRaster dest,
235:                    Rectangle destRect) {
236:
237:                Raster source = sources[0];
238:
239:                PixelAccessor pa = new PixelAccessor(source.getSampleModel(),
240:                        null);
241:                PackedImageData srcIm = pa.getPackedPixels(source, source
242:                        .getBounds(), false, false);
243:
244:                pa = new PixelAccessor(dest.getSampleModel(), null);
245:                PackedImageData dstIm = pa.getPackedPixels(dest, destRect,
246:                        true, false);
247:
248:                // src data under kernel, packed in int.
249:                int[] srcUK = new int[kwPack * kh];
250:
251:                // sliding the kernel row by row
252:                // general the packed matrix under the row
253:                int dheight = destRect.height;
254:                int dwidth = destRect.width;
255:
256:                int sOffset = srcIm.offset;
257:                int dOffset = dstIm.offset;
258:                for (int j = 0; j < dheight; j++) {
259:                    int selement, val, dindex, delement;
260:
261:                    // reset srcUK for each row beginning
262:                    // src[sOffset +[-kx:kw-kx, -ky:kh-ky]] placed in srcUK
263:                    //
264:                    for (int m = 0; m < srcUK.length; m++) {
265:                        srcUK[m] = 0;
266:                    }
267:
268:                    // initial srcUK
269:                    // first shift left the packed bits under the sliding kernel by 1 bit
270:                    // then fill (compute) in the last bit of each row
271:                    for (int i = 0; i < kw - 1; i++) {
272:                        bitShiftMatrixLeft(srcUK, kh, kwPack); // expand for speedup?
273:                        int lastCol = kwPack - 1;
274:                        int bitLoc = srcIm.bitOffset + i;
275:                        int byteLoc = bitLoc >> 3;
276:                        bitLoc = 7 - (bitLoc & 7);
277:                        for (int m = 0, sOffsetB = sOffset; m < kh; m++, sOffsetB += srcIm.lineStride) {
278:
279:                            selement = (int) srcIm.data[sOffsetB + byteLoc];
280:                            val = (selement >> bitLoc) & 0x1;
281:                            srcUK[lastCol] |= val;
282:                            lastCol += kwPack;
283:                        }
284:                    }
285:
286:                    // same as above
287:                    // also setting dest 
288:                    for (int i = 0; i < dwidth; i++) {
289:
290:                        bitShiftMatrixLeft(srcUK, kh, kwPack); // expand for speedup?
291:                        int lastCol = kwPack - 1;
292:                        int bitLoc = srcIm.bitOffset + i + kw - 1;
293:                        int byteLoc = bitLoc >> 3;
294:                        bitLoc = 7 - (bitLoc & 7);
295:                        for (int m = 0, sOffsetB = sOffset; m < kh; m++, sOffsetB += srcIm.lineStride) {
296:
297:                            selement = (int) srcIm.data[sOffsetB + byteLoc];
298:                            val = (selement >> bitLoc) & 0x1;
299:                            srcUK[lastCol] |= val;
300:                            lastCol += kwPack;
301:                        }
302:
303:                        int dBitLoc = dstIm.bitOffset + i;
304:                        int dshift = 7 - (dBitLoc & 7);
305:                        int dByteLoc = (dBitLoc >> 3) + dOffset;
306:                        delement = (int) dstIm.data[dByteLoc];
307:                        delement |= (0x1) << dshift;
308:
309:                        for (int m = 0; m < srcUK.length; m++) {
310:                            if ((srcUK[m] & kdataPack[m]) != kdataPack[m]) {
311:                                delement &= ~((0x1) << dshift);
312:                                break;
313:                            }
314:                        }
315:                        dstIm.data[dByteLoc] = (byte) delement;
316:                    }
317:                    sOffset += srcIm.lineStride;
318:                    dOffset += dstIm.lineStride;
319:                }
320:                pa.setPackedPixels(dstIm);
321:            }
322:
323:            /** pack kernel into integers by row, aligned to the right;
324:             *  extra bits on the left are filled with 0 bits
325:             *  @params  kernel - the given kernel (already rotated)
326:             *  @returns an integer array of ints from packed kernel data
327:             */
328:            private final int[] packKernel(KernelJAI kernel) {
329:                int kw = kernel.getWidth();
330:                int kh = kernel.getHeight();
331:                int kwPack = (31 + kw) / 32;
332:                int kerPacked[] = new int[kwPack * kh];
333:                float[] kdata = kernel.getKernelData();
334:                for (int j = 0; j < kw; j++) {
335:                    int m = j;
336:                    int lastCol = kwPack - 1;
337:                    bitShiftMatrixLeft(kerPacked, kh, kwPack);
338:                    for (int i = 0; i < kh; i++, lastCol += kwPack, m += kw) {
339:                        if (kdata[m] > .9F) { // same as == 1.0F
340:                            kerPacked[lastCol] |= 0x1;
341:                        }
342:                    }
343:                }
344:                return kerPacked;
345:            }
346:
347:            // to shift an integer matrix one bit left
348:            // assuming that the matrix is row oriented
349:            // each row is viewed as a long bit array
350:            // rows and cols are the dimention after packing
351:            private final static void bitShiftMatrixLeft(int[] mat, int rows,
352:                    int cols) {
353:                int m = 0;
354:                for (int i = 0; i < rows; i++) {
355:                    for (int j = 0; j < cols - 1; j++) {
356:                        mat[m] = (mat[m] << 1) | (mat[m + 1] >>> 31);
357:                        m++;
358:                    }
359:                    mat[m] <<= 1;
360:                    m++;
361:                }
362:            }
363:
364:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.