Source Code Cross Referenced for ErodeOpImage.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » com » sun » media » jai » opimage » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » com.sun.media.jai.opimage 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: ErodeOpImage.java,v $
003:         *
004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Use is subject to license terms.
007:         *
008:         * $Revision: 1.1 $
009:         * $Date: 2005/02/11 04:56:24 $
010:         * $State: Exp $
011:         */
012:        package com.sun.media.jai.opimage;
013:
014:        import java.awt.Rectangle;
015:        import java.awt.image.DataBuffer;
016:        import java.awt.image.SampleModel;
017:        import java.awt.image.Raster;
018:        import java.awt.image.RenderedImage;
019:        import java.awt.image.WritableRaster;
020:        import java.awt.image.renderable.ParameterBlock;
021:        import java.awt.image.renderable.RenderedImageFactory;
022:        import javax.media.jai.AreaOpImage;
023:        import javax.media.jai.BorderExtender;
024:        import javax.media.jai.ImageLayout;
025:        import javax.media.jai.KernelJAI;
026:        import javax.media.jai.OpImage;
027:        import javax.media.jai.RasterAccessor;
028:        import javax.media.jai.RasterFormatTag;
029:        import java.util.Map;
030:
031:        // import com.sun.media.jai.test.OpImageTester;
032:
033:        /**
034:         *
035:         * An OpImage class to perform erosion on a source image.
036:         *
037:         * <p> This class implements an erosion operation.
038:         * 
039:         * <p> <b>Grey Scale Erosion</b>
040:         * is a spatial operation that computes
041:         * each output sample by subtract elements of a kernel to the samples
042:         * surrounding a particular source sample with some care.
043:         * A mathematical expression is:
044:         *
045:         * <p> For a kernel K with a key position (xKey, yKey), the erosion
046:         * of image I at (x,y) is given by:
047:         * <pre>
048:         *     max{a:  a + K(xKey+i, yKey+j) <= I(x+i,y+j): all (i,j) }
049:         *
050:         *      all possible (i,j) means that both I(x+i,y+j) and K(xKey+i, yKey+j)
051:         *      are in bounds. Otherwise, the value is set to 0.
052:         *
053:         * </pre> 
054:         * <p> Intuitively, the kernel is like an unbrella and the key point
055:         * is the handle. At every point, you try to push the umbrella up as high
056:         * as possible but still underneath the image surface. The final height
057:         * of the handle is the value after erosion. Thus if you want the image
058:         * to erode from the upper right to bottom left, the following would do.
059:         *
060:         * <p><center>
061:         * <table border=1>
062:         * <tr align=center><td>0</td><td>0</td><td>X</td> </tr>
063:         * <tr align=center><td>0</td><td>X</td><td>0</td> </tr>
064:         * <tr align=center><td><b>X</b></td><td>0</td><td>0</td> </tr>
065:         * </table></center>
066:         *
067:         * <p> Note that zero kernel erosion has effects on the image, the
068:         * location of the key position and size of kernel all matter.
069:         * 
070:         * <p> Pseudo code for the erosion operation is as follows.
071:         * Assuming the kernel K is of size M rows x N cols
072:         * and the key position is (xKey, yKey).
073:         * 
074:         * <pre>
075:         * 
076:         * // erosion
077:         * for every dst pixel location (x,y){
078:         *    tmp = infinity;
079:         *    for (i = -xKey; i < M - xKey; i++){
080:         *       for (j = -yKey; j < N - yKey; j++){
081:         *          if((x+i, y+j) are in bounds of src){
082:         *             tmp = min{tmp, src[x + i][y + j] - K[xKey + i][yKey + j]};
083:         *          }
084:         *       }
085:         *    }
086:         *    dst[x][y] = tmp;
087:         *    if (dst[x][y] == infinity)
088:         *        dst[x][y] = 0;
089:         * }
090:         * </pre>
091:         *
092:         * <p> The kernel cannot be bigger in any dimension than the image data.
093:         *
094:         * <p> <b>Binary Image Erosion</b>
095:         * requires the kernel to be binary as well.
096:         * Intuitively, binary erosion slides the kernel
097:         * key position and place it at every point (x,y) in the src image.
098:         * The dst value at this position is set to 1 if all the kernel
099:         * are fully supported by the src image, and the src image value is 1
100:         * whenever the kernel has value 1.
101:         * Otherwise, the value after erosion at (x,y) is set to 0.
102:         * Erosion usually shrinks images, but it can fill holes
103:         * with kernels like 
104:         * <pre> [1 <b>0</b> 1] </pre>
105:         * and the key position at the center.
106:         *
107:         * <p> Pseudo code for the erosion operation is as follows.
108:         * 
109:         * <pre>
110:         * // erosion
111:         * for every dst pixel location (x,y){
112:         *    dst[x][y] = 1;
113:         *    for (i = -xKey; i < M - xKey; i++){
114:         *       for (j = -yKey; j < N - yKey; j++){
115:         *         if((x+i,y+j) is out of bounds of src ||
116:         *             src(x+i, y+j)==0 && Key(xKey+i, yKey+j)==1){
117:         *            dst[x][y] = 0; break;
118:         *          }
119:         *       }
120:         *    }
121:         * }
122:         * </pre>
123:         *
124:         * <p> Reference: An Introduction to Nonlinear Image Processing,
125:         * by Edward R. Bougherty and Jaakko Astola,
126:         * Spie Optical Engineering Press, 1994.
127:         *
128:         *
129:         * @see KernelJAI
130:         */
131:        final class ErodeOpImage extends AreaOpImage {
132:
133:            /**
134:             * The kernel with which to do the erode operation.
135:             */
136:            protected KernelJAI kernel;
137:
138:            /** Kernel variables. */
139:            private int kw, kh, kx, ky;
140:            private float[] kdata;
141:
142:            /**
143:             * Creates a ErodeOpImage given a ParameterBlock containing the image
144:             * source and pre-rotated erosion kernel.  The image dimensions are 
145:             * derived
146:             * from the source image.  The tile grid layout, SampleModel, and
147:             * ColorModel may optionally be specified by an ImageLayout
148:             * object.
149:             *
150:             * @param source a RenderedImage.
151:             * @param extender a BorderExtender, or null.
152:             * @param layout an ImageLayout optionally containing the tile grid layout,
153:             *        SampleModel, and ColorModel, or null.
154:             * @param kernel the pre-rotated erosion KernelJAI.
155:             */
156:            public ErodeOpImage(RenderedImage source, BorderExtender extender,
157:                    Map config, ImageLayout layout, KernelJAI kernel) {
158:                super (source, layout, config, true, extender, kernel
159:                        .getLeftPadding(), kernel.getRightPadding(), kernel
160:                        .getTopPadding(), kernel.getBottomPadding());
161:
162:                this .kernel = kernel;
163:                kw = kernel.getWidth();
164:                kh = kernel.getHeight();
165:                kx = kernel.getXOrigin();
166:                ky = kernel.getYOrigin();
167:
168:                kdata = kernel.getKernelData();
169:            }
170:
171:            /**
172:             * Performs erosion on a specified rectangle. The sources are
173:             * cobbled.
174:             *
175:             * @param sources an array of source Rasters, guaranteed to provide all
176:             *                necessary source data for computing the output.
177:             * @param dest a WritableRaster tile containing the area to be computed.
178:             * @param destRect the rectangle within dest to be processed.
179:             */
180:            protected void computeRect(Raster[] sources, WritableRaster dest,
181:                    Rectangle destRect) {
182:                // Retrieve format tags.
183:                RasterFormatTag[] formatTags = getFormatTags();
184:
185:                Raster source = sources[0];
186:                Rectangle srcRect = mapDestRect(destRect, 0);
187:
188:                RasterAccessor srcAccessor = new RasterAccessor(source,
189:                        srcRect, formatTags[0], getSourceImage(0)
190:                                .getColorModel());
191:                RasterAccessor dstAccessor = new RasterAccessor(dest, destRect,
192:                        formatTags[1], getColorModel());
193:
194:                switch (dstAccessor.getDataType()) {
195:                case DataBuffer.TYPE_BYTE:
196:                    byteLoop(srcAccessor, dstAccessor);
197:                    break;
198:                case DataBuffer.TYPE_INT:
199:                    intLoop(srcAccessor, dstAccessor);
200:                    break;
201:                case DataBuffer.TYPE_SHORT:
202:                    shortLoop(srcAccessor, dstAccessor);
203:                    break;
204:                case DataBuffer.TYPE_USHORT:
205:                    ushortLoop(srcAccessor, dstAccessor);
206:                    break;
207:                case DataBuffer.TYPE_FLOAT:
208:                    floatLoop(srcAccessor, dstAccessor);
209:                    break;
210:                case DataBuffer.TYPE_DOUBLE:
211:                    doubleLoop(srcAccessor, dstAccessor);
212:                    break;
213:
214:                default:
215:                }
216:
217:                // If the RasterAccessor object set up a temporary buffer for the
218:                // op to write to, tell the RasterAccessor to write that data
219:                // to the raster no that we're done with it.
220:                if (dstAccessor.isDataCopy()) {
221:                    dstAccessor.clampDataArrays();
222:                    dstAccessor.copyDataToRaster();
223:                }
224:            }
225:
226:            private void byteLoop(RasterAccessor src, RasterAccessor dst) {
227:
228:                int dwidth = dst.getWidth();
229:                int dheight = dst.getHeight();
230:                int dnumBands = dst.getNumBands();
231:
232:                int dstBandOffsets[] = dst.getBandOffsets();
233:                int dstPixelStride = dst.getPixelStride();
234:                int dstScanlineStride = dst.getScanlineStride();
235:
236:                int srcBandOffsets[] = src.getBandOffsets();
237:                int srcPixelStride = src.getPixelStride();
238:                int srcScanlineStride = src.getScanlineStride();
239:
240:                byte dstDataArrays[][] = dst.getByteDataArrays();
241:                byte srcDataArrays[][] = src.getByteDataArrays();
242:
243:                for (int k = 0; k < dnumBands; k++) {
244:                    byte dstData[] = dstDataArrays[k];
245:                    byte srcData[] = srcDataArrays[k];
246:                    int srcScanlineOffset = srcBandOffsets[k];
247:                    int dstScanlineOffset = dstBandOffsets[k];
248:                    for (int j = 0; j < dheight; j++) {
249:                        int srcPixelOffset = srcScanlineOffset;
250:                        int dstPixelOffset = dstScanlineOffset;
251:
252:                        for (int i = 0; i < dwidth; i++) {
253:                            int kernelVerticalOffset = 0;
254:                            int imageVerticalOffset = srcPixelOffset;
255:                            float f = Float.POSITIVE_INFINITY;
256:                            for (int u = 0; u < kh; u++) {
257:                                int imageOffset = imageVerticalOffset;
258:                                for (int v = 0; v < kw; v++) {
259:                                    float tmpIK = ((int) srcData[imageOffset] & 0xff)
260:                                            - kdata[kernelVerticalOffset + v];
261:                                    if (tmpIK < f) {
262:                                        f = tmpIK;
263:                                    }
264:                                    imageOffset += srcPixelStride;
265:                                }
266:                                kernelVerticalOffset += kw;
267:                                imageVerticalOffset += srcScanlineStride;
268:                            }
269:
270:                            if (Float.isInfinite(f)) {
271:                                f = 0;
272:                            }
273:                            int val = (int) f;
274:
275:                            if (val < 0) {
276:                                val = 0;
277:                            } else if (val > 255) {
278:                                val = 255;
279:                            }
280:                            dstData[dstPixelOffset] = (byte) val;
281:                            srcPixelOffset += srcPixelStride;
282:                            dstPixelOffset += dstPixelStride;
283:                        }
284:                        srcScanlineOffset += srcScanlineStride;
285:                        dstScanlineOffset += dstScanlineStride;
286:                    }
287:                }
288:            }
289:
290:            private void shortLoop(RasterAccessor src, RasterAccessor dst) {
291:
292:                int dwidth = dst.getWidth();
293:                int dheight = dst.getHeight();
294:                int dnumBands = dst.getNumBands();
295:
296:                int dstBandOffsets[] = dst.getBandOffsets();
297:                int dstPixelStride = dst.getPixelStride();
298:                int dstScanlineStride = dst.getScanlineStride();
299:
300:                int srcBandOffsets[] = src.getBandOffsets();
301:                int srcPixelStride = src.getPixelStride();
302:                int srcScanlineStride = src.getScanlineStride();
303:
304:                short dstDataArrays[][] = dst.getShortDataArrays();
305:                short srcDataArrays[][] = src.getShortDataArrays();
306:
307:                for (int k = 0; k < dnumBands; k++) {
308:                    short dstData[] = dstDataArrays[k];
309:                    short srcData[] = srcDataArrays[k];
310:                    int srcScanlineOffset = srcBandOffsets[k];
311:                    int dstScanlineOffset = dstBandOffsets[k];
312:                    for (int j = 0; j < dheight; j++) {
313:                        int srcPixelOffset = srcScanlineOffset;
314:                        int dstPixelOffset = dstScanlineOffset;
315:
316:                        for (int i = 0; i < dwidth; i++) {
317:                            int kernelVerticalOffset = 0;
318:                            int imageVerticalOffset = srcPixelOffset;
319:                            float f = Float.POSITIVE_INFINITY;
320:                            for (int u = 0; u < kh; u++) {
321:                                int imageOffset = imageVerticalOffset;
322:                                for (int v = 0; v < kw; v++) {
323:                                    float tmpIK = srcData[imageOffset]
324:                                            - kdata[kernelVerticalOffset + v];
325:                                    if (tmpIK < f) {
326:                                        f = tmpIK;
327:                                    }
328:                                    imageOffset += srcPixelStride;
329:                                }
330:                                kernelVerticalOffset += kw;
331:                                imageVerticalOffset += srcScanlineStride;
332:                            }
333:                            if (Float.isInfinite(f)) {
334:                                f = 0.0F;
335:                            }
336:                            int val = (int) f;
337:                            if (val < Short.MIN_VALUE) {
338:                                val = Short.MIN_VALUE;
339:                            } else if (val > Short.MAX_VALUE) {
340:                                val = Short.MAX_VALUE;
341:                            }
342:                            dstData[dstPixelOffset] = (short) val;
343:                            srcPixelOffset += srcPixelStride;
344:                            dstPixelOffset += dstPixelStride;
345:                        }
346:                        srcScanlineOffset += srcScanlineStride;
347:                        dstScanlineOffset += dstScanlineStride;
348:                    }
349:                }
350:            }
351:
352:            private void ushortLoop(RasterAccessor src, RasterAccessor dst) {
353:
354:                int dwidth = dst.getWidth();
355:                int dheight = dst.getHeight();
356:                int dnumBands = dst.getNumBands();
357:
358:                int dstBandOffsets[] = dst.getBandOffsets();
359:                int dstPixelStride = dst.getPixelStride();
360:                int dstScanlineStride = dst.getScanlineStride();
361:
362:                int srcBandOffsets[] = src.getBandOffsets();
363:                int srcPixelStride = src.getPixelStride();
364:                int srcScanlineStride = src.getScanlineStride();
365:
366:                short dstDataArrays[][] = dst.getShortDataArrays();
367:                short srcDataArrays[][] = src.getShortDataArrays();
368:
369:                for (int k = 0; k < dnumBands; k++) {
370:                    short dstData[] = dstDataArrays[k];
371:                    short srcData[] = srcDataArrays[k];
372:                    int srcScanlineOffset = srcBandOffsets[k];
373:                    int dstScanlineOffset = dstBandOffsets[k];
374:                    for (int j = 0; j < dheight; j++) {
375:                        int srcPixelOffset = srcScanlineOffset;
376:                        int dstPixelOffset = dstScanlineOffset;
377:
378:                        for (int i = 0; i < dwidth; i++) {
379:                            int kernelVerticalOffset = 0;
380:                            int imageVerticalOffset = srcPixelOffset;
381:                            float f = Float.POSITIVE_INFINITY;
382:                            for (int u = 0; u < kh; u++) {
383:                                int imageOffset = imageVerticalOffset;
384:                                for (int v = 0; v < kw; v++) {
385:                                    float tmpIK = (srcData[imageOffset] & 0xffff)
386:                                            - kdata[kernelVerticalOffset + v];
387:                                    if (tmpIK < f) {
388:                                        f = tmpIK;
389:                                    }
390:                                    imageOffset += srcPixelStride;
391:                                }
392:                                kernelVerticalOffset += kw;
393:                                imageVerticalOffset += srcScanlineStride;
394:                            }
395:                            if (Float.isInfinite(f)) {
396:                                f = 0.0F;
397:                            }
398:                            int val = (int) f;
399:                            if (val < 0) {
400:                                val = 0;
401:                            } else if (val > 0xffff) {
402:                                val = 0xffff;
403:                            }
404:                            dstData[dstPixelOffset] = (short) val;
405:                            srcPixelOffset += srcPixelStride;
406:                            dstPixelOffset += dstPixelStride;
407:                        }
408:                        srcScanlineOffset += srcScanlineStride;
409:                        dstScanlineOffset += dstScanlineStride;
410:                    }
411:                }
412:            }
413:
414:            private void intLoop(RasterAccessor src, RasterAccessor dst) {
415:
416:                int dwidth = dst.getWidth();
417:                int dheight = dst.getHeight();
418:                int dnumBands = dst.getNumBands();
419:
420:                int dstBandOffsets[] = dst.getBandOffsets();
421:                int dstPixelStride = dst.getPixelStride();
422:                int dstScanlineStride = dst.getScanlineStride();
423:
424:                int srcBandOffsets[] = src.getBandOffsets();
425:                int srcPixelStride = src.getPixelStride();
426:                int srcScanlineStride = src.getScanlineStride();
427:
428:                int dstDataArrays[][] = dst.getIntDataArrays();
429:                int srcDataArrays[][] = src.getIntDataArrays();
430:
431:                for (int k = 0; k < dnumBands; k++) {
432:                    int dstData[] = dstDataArrays[k];
433:                    int srcData[] = srcDataArrays[k];
434:                    int srcScanlineOffset = srcBandOffsets[k];
435:                    int dstScanlineOffset = dstBandOffsets[k];
436:                    for (int j = 0; j < dheight; j++) {
437:                        int srcPixelOffset = srcScanlineOffset;
438:                        int dstPixelOffset = dstScanlineOffset;
439:
440:                        for (int i = 0; i < dwidth; i++) {
441:                            int kernelVerticalOffset = 0;
442:                            int imageVerticalOffset = srcPixelOffset;
443:                            float f = Float.POSITIVE_INFINITY;
444:                            for (int u = 0; u < kh; u++) {
445:                                int imageOffset = imageVerticalOffset;
446:                                for (int v = 0; v < kw; v++) {
447:                                    float tmpIK = (int) srcData[imageOffset]
448:                                            - kdata[kernelVerticalOffset + v];
449:                                    if (tmpIK < f) {
450:                                        f = tmpIK;
451:                                    }
452:                                    imageOffset += srcPixelStride;
453:                                }
454:                                kernelVerticalOffset += kw;
455:                                imageVerticalOffset += srcScanlineStride;
456:                            }
457:                            if (Float.isInfinite(f)) {
458:                                f = 0.0F;
459:                            }
460:                            dstData[dstPixelOffset] = (int) f;
461:                            srcPixelOffset += srcPixelStride;
462:                            dstPixelOffset += dstPixelStride;
463:                        }
464:                        srcScanlineOffset += srcScanlineStride;
465:                        dstScanlineOffset += dstScanlineStride;
466:                    }
467:                }
468:            }
469:
470:            private void floatLoop(RasterAccessor src, RasterAccessor dst) {
471:
472:                int dwidth = dst.getWidth();
473:                int dheight = dst.getHeight();
474:                int dnumBands = dst.getNumBands();
475:
476:                int dstBandOffsets[] = dst.getBandOffsets();
477:                int dstPixelStride = dst.getPixelStride();
478:                int dstScanlineStride = dst.getScanlineStride();
479:
480:                int srcBandOffsets[] = src.getBandOffsets();
481:                int srcPixelStride = src.getPixelStride();
482:                int srcScanlineStride = src.getScanlineStride();
483:
484:                float dstDataArrays[][] = dst.getFloatDataArrays();
485:                float srcDataArrays[][] = src.getFloatDataArrays();
486:
487:                for (int k = 0; k < dnumBands; k++) {
488:                    float dstData[] = dstDataArrays[k];
489:                    float srcData[] = srcDataArrays[k];
490:                    int srcScanlineOffset = srcBandOffsets[k];
491:                    int dstScanlineOffset = dstBandOffsets[k];
492:                    for (int j = 0; j < dheight; j++) {
493:                        int srcPixelOffset = srcScanlineOffset;
494:                        int dstPixelOffset = dstScanlineOffset;
495:
496:                        for (int i = 0; i < dwidth; i++) {
497:                            int kernelVerticalOffset = 0;
498:                            int imageVerticalOffset = srcPixelOffset;
499:                            float f = Float.POSITIVE_INFINITY;
500:                            for (int u = 0; u < kh; u++) {
501:                                int imageOffset = imageVerticalOffset;
502:                                for (int v = 0; v < kw; v++) {
503:                                    float tmpIK = srcData[imageOffset]
504:                                            - kdata[kernelVerticalOffset + v];
505:                                    if (tmpIK < f) {
506:                                        f = tmpIK;
507:                                    }
508:                                    imageOffset += srcPixelStride;
509:                                }
510:                                kernelVerticalOffset += kw;
511:                                imageVerticalOffset += srcScanlineStride;
512:                            }
513:                            if (Float.isInfinite(f)) {
514:                                f = 0.0F;
515:                            }
516:                            dstData[dstPixelOffset] = f;
517:                            srcPixelOffset += srcPixelStride;
518:                            dstPixelOffset += dstPixelStride;
519:                        }
520:                        srcScanlineOffset += srcScanlineStride;
521:                        dstScanlineOffset += dstScanlineStride;
522:                    }
523:                }
524:            }
525:
526:            private void doubleLoop(RasterAccessor src, RasterAccessor dst) {
527:
528:                int dwidth = dst.getWidth();
529:                int dheight = dst.getHeight();
530:                int dnumBands = dst.getNumBands();
531:
532:                int dstBandOffsets[] = dst.getBandOffsets();
533:                int dstPixelStride = dst.getPixelStride();
534:                int dstScanlineStride = dst.getScanlineStride();
535:
536:                int srcBandOffsets[] = src.getBandOffsets();
537:                int srcPixelStride = src.getPixelStride();
538:                int srcScanlineStride = src.getScanlineStride();
539:
540:                double dstDataArrays[][] = dst.getDoubleDataArrays();
541:                double srcDataArrays[][] = src.getDoubleDataArrays();
542:
543:                for (int k = 0; k < dnumBands; k++) {
544:                    double dstData[] = dstDataArrays[k];
545:                    double srcData[] = srcDataArrays[k];
546:                    int srcScanlineOffset = srcBandOffsets[k];
547:                    int dstScanlineOffset = dstBandOffsets[k];
548:                    for (int j = 0; j < dheight; j++) {
549:                        int srcPixelOffset = srcScanlineOffset;
550:                        int dstPixelOffset = dstScanlineOffset;
551:
552:                        for (int i = 0; i < dwidth; i++) {
553:                            int kernelVerticalOffset = 0;
554:                            int imageVerticalOffset = srcPixelOffset;
555:                            double f = Double.POSITIVE_INFINITY;
556:                            for (int u = 0; u < kh; u++) {
557:                                int imageOffset = imageVerticalOffset;
558:                                for (int v = 0; v < kw; v++) {
559:                                    double tmpIK = srcData[imageOffset]
560:                                            - kdata[kernelVerticalOffset + v];
561:                                    if (tmpIK < f) {
562:                                        f = tmpIK;
563:                                    }
564:                                    imageOffset += srcPixelStride;
565:                                }
566:                                kernelVerticalOffset += kw;
567:                                imageVerticalOffset += srcScanlineStride;
568:                            }
569:
570:                            if (Double.isInfinite(f)) {
571:                                f = 0.0D;
572:                            }
573:                            dstData[dstPixelOffset] = f;
574:                            srcPixelOffset += srcPixelStride;
575:                            dstPixelOffset += dstPixelStride;
576:                        }
577:                        srcScanlineOffset += srcScanlineStride;
578:                        dstScanlineOffset += dstScanlineStride;
579:                    }
580:                }
581:            }
582:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.