Source Code Cross Referenced for ExpOpImage.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » com » sun » media » jai » opimage » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » com.sun.media.jai.opimage 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: ExpOpImage.java,v $
003:         *
004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Use is subject to license terms.
007:         *
008:         * $Revision: 1.1 $
009:         * $Date: 2005/02/11 04:56:25 $
010:         * $State: Exp $
011:         */
012:        package com.sun.media.jai.opimage;
013:
014:        import javax.media.jai.ColormapOpImage;
015:        import java.awt.Rectangle;
016:        import java.awt.image.DataBuffer;
017:        import java.awt.image.Raster;
018:        import java.awt.image.RenderedImage;
019:        import java.awt.image.SampleModel;
020:        import java.awt.image.WritableRaster;
021:        import javax.media.jai.ImageLayout;
022:        import javax.media.jai.RasterAccessor;
023:        import javax.media.jai.RasterFormatTag;
024:        import java.util.Map;
025:        import com.sun.media.jai.util.ImageUtil;
026:
027:        /**
028:         * An <code>OpImage</code> implementing the "Exp" operation as
029:         * described in <code>javax.media.jai.operator.ExpDescriptor</code>.
030:         *
031:         * The result is rounded to the closest integer for intergral data types.
032:         * <p> This <code>OpImage</code> takes the natural exponential of the pixel
033:         * values of an image.  The operation is done on a per-pixel, per-band
034:         * basis.
035:         *
036:         * @see javax.media.jai.operator.ExpDescriptor
037:         * @see ExpCRIF
038:         *
039:         * @since EA2
040:         *
041:         */
042:        final class ExpOpImage extends ColormapOpImage {
043:
044:            /** A lookup table for byte data type. */
045:            private byte[] byteTable = null;
046:
047:            /**
048:             * The largest unsigned short to get a non-overflowed exponential result.
049:             * i.e. cloeset to 65536.
050:             * exp(11) = 59874.14171, exp(12) = 162754.7914
051:             */
052:            private static int USHORT_UP_BOUND = 11;
053:
054:            /**
055:             * The largest short to get a non-overflowed exponential result.
056:             * i.e. closest to 32767.
057:             * exp(10) = 22026.46579, exp(11) = 59874.14171
058:             */
059:            private static int SHORT_UP_BOUND = 10;
060:
061:            /**
062:             * The largest int to get a non-overflown exponential result.
063:             * i.e. cloeset to 2**31-1 = 2147483647.
064:             * exp(21) = 1318815734, exp(22) = 3584912846.
065:             */
066:            private static int INT_UP_BOUND = 21;
067:
068:            /**
069:             * The smallest integer to get a non-zero exponential result is
070:             * 0. i.e. exp(0) = 1; exp(-1) = 0.367879441, which will be stored as 0. 
071:             * all other negative values will result in 0.
072:             */
073:            private static int LOW_BOUND = 0;
074:
075:            /**
076:             * Constructor.
077:             *
078:             * <p> The layout of the source is used as the fall-back for
079:             * the layout of the destination.  Any layout parameters not
080:             * specified in the <code>layout</code> argument are set to
081:             * the same value as that of the source.
082:             *
083:             * @param source  The source image.
084:
085:             * @param layout  The destination image layout.
086:             */
087:            public ExpOpImage(RenderedImage source, Map config,
088:                    ImageLayout layout) {
089:                super (source, layout, config, true);
090:
091:                /* Set flag to permit in-place operation. */
092:                permitInPlaceOperation();
093:
094:                // Initialize the colormap if necessary.
095:                initializeColormapOperation();
096:            }
097:
098:            /**
099:             * Transform the colormap according to the rescaling parameters.
100:             */
101:            protected void transformColormap(byte[][] colormap) {
102:                initByteTable();
103:
104:                for (int b = 0; b < 3; b++) {
105:                    byte[] map = colormap[b];
106:                    int mapSize = map.length;
107:
108:                    for (int i = 0; i < mapSize; i++) {
109:                        map[i] = byteTable[(map[i] & 0xFF)];
110:                    }
111:                }
112:            }
113:
114:            /**
115:             * Map the pixels inside a specified rectangle whose value is within a 
116:             * range to a constant on a per-band basis.
117:             *
118:             * @param sources   Cobbled sources, guaranteed to provide all the
119:             *                  source data necessary for computing the rectangle.
120:             * @param dest      The tile containing the rectangle to be computed.
121:             * @param destRect  The rectangle within the tile to be computed.
122:             */
123:            protected void computeRect(Raster[] sources, WritableRaster dest,
124:                    Rectangle destRect) {
125:                /* Retrieve format tags. */
126:                RasterFormatTag[] formatTags = getFormatTags();
127:
128:                /* No need to mapSourceRect for PointOps. */
129:                RasterAccessor s = new RasterAccessor(sources[0], destRect,
130:                        formatTags[0], getSourceImage(0).getColorModel());
131:                RasterAccessor d = new RasterAccessor(dest, destRect,
132:                        formatTags[1], getColorModel());
133:
134:                switch (d.getDataType()) {
135:                case DataBuffer.TYPE_BYTE:
136:                    computeRectByte(s, d);
137:                    break;
138:                case DataBuffer.TYPE_USHORT:
139:                    computeRectUShort(s, d);
140:                    break;
141:                case DataBuffer.TYPE_SHORT:
142:                    computeRectShort(s, d);
143:                    break;
144:                case DataBuffer.TYPE_INT:
145:                    computeRectInt(s, d);
146:                    break;
147:                case DataBuffer.TYPE_FLOAT:
148:                    computeRectFloat(s, d);
149:                    break;
150:                case DataBuffer.TYPE_DOUBLE:
151:                    computeRectDouble(s, d);
152:                    break;
153:                }
154:
155:                if (d.needsClamping()) {
156:                    d.clampDataArrays();
157:                }
158:                d.copyDataToRaster();
159:            }
160:
161:            private void computeRectByte(RasterAccessor src, RasterAccessor dst) {
162:                initByteTable();
163:
164:                int srcLineStride = src.getScanlineStride();
165:                int srcPixelStride = src.getPixelStride();
166:                int[] srcBandOffsets = src.getBandOffsets();
167:                byte[][] srcData = src.getByteDataArrays();
168:
169:                int dstLineStride = dst.getScanlineStride();
170:                int dstPixelStride = dst.getPixelStride();
171:                int[] dstBandOffsets = dst.getBandOffsets();
172:                byte[][] dstData = dst.getByteDataArrays();
173:
174:                int dstWidth = dst.getWidth();
175:                int dstHeight = dst.getHeight();
176:                int dstBands = dst.getNumBands();
177:
178:                for (int b = 0; b < dstBands; b++) {
179:                    byte[] s = srcData[b];
180:                    byte[] d = dstData[b];
181:
182:                    int srcLineOffset = srcBandOffsets[b];
183:                    int dstLineOffset = dstBandOffsets[b];
184:
185:                    for (int h = 0; h < dstHeight; h++) {
186:                        int srcPixelOffset = srcLineOffset;
187:                        int dstPixelOffset = dstLineOffset;
188:
189:                        srcLineOffset += srcLineStride;
190:                        dstLineOffset += dstLineStride;
191:
192:                        for (int w = 0; w < dstWidth; w++) {
193:                            d[dstPixelOffset] = byteTable[s[srcPixelOffset]
194:                                    & ImageUtil.BYTE_MASK];
195:
196:                            srcPixelOffset += srcPixelStride;
197:                            dstPixelOffset += dstPixelStride;
198:                        }
199:                    }
200:                }
201:            }
202:
203:            private void computeRectUShort(RasterAccessor src,
204:                    RasterAccessor dst) {
205:
206:                int srcLineStride = src.getScanlineStride();
207:                int srcPixelStride = src.getPixelStride();
208:                int[] srcBandOffsets = src.getBandOffsets();
209:                short[][] srcData = src.getShortDataArrays();
210:
211:                int dstLineStride = dst.getScanlineStride();
212:                int dstPixelStride = dst.getPixelStride();
213:                int[] dstBandOffsets = dst.getBandOffsets();
214:                short[][] dstData = dst.getShortDataArrays();
215:
216:                int dstWidth = dst.getWidth();
217:                int dstHeight = dst.getHeight();
218:                int dstBands = dst.getNumBands();
219:
220:                short max = (short) ImageUtil.USHORT_MASK;
221:
222:                for (int b = 0; b < dstBands; b++) {
223:                    short[] s = srcData[b];
224:                    short[] d = dstData[b];
225:
226:                    int srcLineOffset = srcBandOffsets[b];
227:                    int dstLineOffset = dstBandOffsets[b];
228:
229:                    for (int h = 0; h < dstHeight; h++) {
230:                        int srcPixelOffset = srcLineOffset;
231:                        int dstPixelOffset = dstLineOffset;
232:
233:                        srcLineOffset += srcLineStride;
234:                        dstLineOffset += dstLineStride;
235:
236:                        for (int w = 0; w < dstWidth; w++) {
237:                            double p = s[srcPixelOffset]
238:                                    & ImageUtil.USHORT_MASK;
239:                            if (p == 0) {
240:                                d[dstPixelOffset] = 1;
241:                            } else if (p > USHORT_UP_BOUND) {
242:                                d[dstPixelOffset] = max;
243:                            } else {
244:                                d[dstPixelOffset] = (short) (Math.exp(p) + 0.5);
245:                            }
246:
247:                            srcPixelOffset += srcPixelStride;
248:                            dstPixelOffset += dstPixelStride;
249:                        }
250:                    }
251:                }
252:            }
253:
254:            private void computeRectShort(RasterAccessor src, RasterAccessor dst) {
255:
256:                int srcLineStride = src.getScanlineStride();
257:                int srcPixelStride = src.getPixelStride();
258:                int[] srcBandOffsets = src.getBandOffsets();
259:                short[][] srcData = src.getShortDataArrays();
260:
261:                int dstLineStride = dst.getScanlineStride();
262:                int dstPixelStride = dst.getPixelStride();
263:                int[] dstBandOffsets = dst.getBandOffsets();
264:                short[][] dstData = dst.getShortDataArrays();
265:
266:                int dstWidth = dst.getWidth();
267:                int dstHeight = dst.getHeight();
268:                int dstBands = dst.getNumBands();
269:
270:                for (int b = 0; b < dstBands; b++) {
271:                    short[] s = srcData[b];
272:                    short[] d = dstData[b];
273:
274:                    int srcLineOffset = srcBandOffsets[b];
275:                    int dstLineOffset = dstBandOffsets[b];
276:
277:                    for (int h = 0; h < dstHeight; h++) {
278:                        int srcPixelOffset = srcLineOffset;
279:                        int dstPixelOffset = dstLineOffset;
280:
281:                        srcLineOffset += srcLineStride;
282:                        dstLineOffset += dstLineStride;
283:
284:                        for (int w = 0; w < dstWidth; w++) {
285:                            double p = s[srcPixelOffset];
286:                            if (p < LOW_BOUND) {
287:                                d[dstPixelOffset] = 0;
288:                            } else if (p == 0) {
289:                                d[dstPixelOffset] = 1;
290:                            } else if (p > SHORT_UP_BOUND) {
291:                                d[dstPixelOffset] = Short.MAX_VALUE;
292:                            } else {
293:                                d[dstPixelOffset] = (short) (Math.exp(p) + 0.5);
294:                            }
295:
296:                            srcPixelOffset += srcPixelStride;
297:                            dstPixelOffset += dstPixelStride;
298:                        }
299:                    }
300:                }
301:            }
302:
303:            private void computeRectInt(RasterAccessor src, RasterAccessor dst) {
304:
305:                int srcLineStride = src.getScanlineStride();
306:                int srcPixelStride = src.getPixelStride();
307:                int[] srcBandOffsets = src.getBandOffsets();
308:                int[][] srcData = src.getIntDataArrays();
309:
310:                int dstLineStride = dst.getScanlineStride();
311:                int dstPixelStride = dst.getPixelStride();
312:                int[] dstBandOffsets = dst.getBandOffsets();
313:                int[][] dstData = dst.getIntDataArrays();
314:
315:                int dstWidth = dst.getWidth();
316:                int dstHeight = dst.getHeight();
317:                int dstBands = dst.getNumBands();
318:
319:                for (int b = 0; b < dstBands; b++) {
320:                    int[] s = srcData[b];
321:                    int[] d = dstData[b];
322:
323:                    int srcLineOffset = srcBandOffsets[b];
324:                    int dstLineOffset = dstBandOffsets[b];
325:
326:                    for (int h = 0; h < dstHeight; h++) {
327:                        int srcPixelOffset = srcLineOffset;
328:                        int dstPixelOffset = dstLineOffset;
329:
330:                        srcLineOffset += srcLineStride;
331:                        dstLineOffset += dstLineStride;
332:
333:                        for (int w = 0; w < dstWidth; w++) {
334:                            double p = s[srcPixelOffset];
335:                            if (p < LOW_BOUND) {
336:                                d[dstPixelOffset] = 0;
337:                            } else if (p == 0) {
338:                                d[dstPixelOffset] = 1;
339:                            } else if (p > INT_UP_BOUND) {
340:                                d[dstPixelOffset] = Integer.MAX_VALUE;
341:                            } else {
342:                                d[dstPixelOffset] = (int) (Math.exp(p) + 0.5);
343:                            }
344:
345:                            srcPixelOffset += srcPixelStride;
346:                            dstPixelOffset += dstPixelStride;
347:                        }
348:                    }
349:                }
350:            }
351:
352:            private void computeRectFloat(RasterAccessor src, RasterAccessor dst) {
353:
354:                int srcLineStride = src.getScanlineStride();
355:                int srcPixelStride = src.getPixelStride();
356:                int[] srcBandOffsets = src.getBandOffsets();
357:                float[][] srcData = src.getFloatDataArrays();
358:
359:                int dstLineStride = dst.getScanlineStride();
360:                int dstPixelStride = dst.getPixelStride();
361:                int[] dstBandOffsets = dst.getBandOffsets();
362:                float[][] dstData = dst.getFloatDataArrays();
363:
364:                int dstWidth = dst.getWidth();
365:                int dstHeight = dst.getHeight();
366:                int dstBands = dst.getNumBands();
367:
368:                for (int b = 0; b < dstBands; b++) {
369:                    float[] s = srcData[b];
370:                    float[] d = dstData[b];
371:
372:                    int srcLineOffset = srcBandOffsets[b];
373:                    int dstLineOffset = dstBandOffsets[b];
374:
375:                    for (int h = 0; h < dstHeight; h++) {
376:                        int srcPixelOffset = srcLineOffset;
377:                        int dstPixelOffset = dstLineOffset;
378:
379:                        srcLineOffset += srcLineStride;
380:                        dstLineOffset += dstLineStride;
381:
382:                        for (int w = 0; w < dstWidth; w++) {
383:                            d[dstPixelOffset] = (float) Math
384:                                    .exp(s[srcPixelOffset]);
385:
386:                            srcPixelOffset += srcPixelStride;
387:                            dstPixelOffset += dstPixelStride;
388:                        }
389:                    }
390:                }
391:            }
392:
393:            private void computeRectDouble(RasterAccessor src,
394:                    RasterAccessor dst) {
395:
396:                int srcLineStride = src.getScanlineStride();
397:                int srcPixelStride = src.getPixelStride();
398:                int[] srcBandOffsets = src.getBandOffsets();
399:                double[][] srcData = src.getDoubleDataArrays();
400:
401:                int dstLineStride = dst.getScanlineStride();
402:                int dstPixelStride = dst.getPixelStride();
403:                int[] dstBandOffsets = dst.getBandOffsets();
404:                double[][] dstData = dst.getDoubleDataArrays();
405:
406:                int dstWidth = dst.getWidth();
407:                int dstHeight = dst.getHeight();
408:                int dstBands = dst.getNumBands();
409:
410:                for (int b = 0; b < dstBands; b++) {
411:                    double[] s = srcData[b];
412:                    double[] d = dstData[b];
413:
414:                    int srcLineOffset = srcBandOffsets[b];
415:                    int dstLineOffset = dstBandOffsets[b];
416:
417:                    for (int h = 0; h < dstHeight; h++) {
418:                        int srcPixelOffset = srcLineOffset;
419:                        int dstPixelOffset = dstLineOffset;
420:
421:                        srcLineOffset += srcLineStride;
422:                        dstLineOffset += dstLineStride;
423:
424:                        for (int w = 0; w < dstWidth; w++) {
425:                            d[dstPixelOffset] = Math.exp(s[srcPixelOffset]);
426:
427:                            srcPixelOffset += srcPixelStride;
428:                            dstPixelOffset += dstPixelStride;
429:                        }
430:                    }
431:                }
432:            }
433:
434:            private synchronized void initByteTable() {
435:
436:                if (byteTable != null)
437:                    return;
438:
439:                byteTable = new byte[0x100];
440:
441:                /*
442:                 * exp(5) = 148.4131591...
443:                 * exp(6) = 403.4287935...
444:                 * Calculate up to 5 and set the rest to the maximum value.
445:                 */
446:                byteTable[0] = 1;
447:
448:                for (int i = 1; i < 6; i++) {
449:                    byteTable[i] = (byte) (Math.exp(i) + 0.5);
450:                }
451:
452:                for (int i = 6; i < 0x100; i++) {
453:                    byteTable[i] = (byte) ImageUtil.BYTE_MASK;
454:                }
455:            }
456:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.