Source Code Cross Referenced for MedianCutOpImage.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » com » sun » media » jai » opimage » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » com.sun.media.jai.opimage 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: MedianCutOpImage.java,v $
003:         *
004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Use is subject to license terms.
007:         *
008:         * $Revision: 1.2 $
009:         * $Date: 2005/05/10 01:03:22 $
010:         * $State: Exp $
011:         */
012:        package com.sun.media.jai.opimage;
013:
014:        import java.awt.Image;
015:        import java.awt.Rectangle;
016:        import java.awt.image.DataBuffer;
017:        import java.awt.image.Raster;
018:        import java.awt.image.RenderedImage;
019:        import java.awt.image.WritableRaster;
020:        import java.util.ArrayList;
021:        import java.util.Hashtable;
022:        import java.util.LinkedList;
023:        import java.util.ListIterator;
024:        import java.util.Map;
025:        import javax.media.jai.ImageLayout;
026:        import javax.media.jai.LookupTableJAI;
027:        import javax.media.jai.OpImage;
028:        import javax.media.jai.PixelAccessor;
029:        import javax.media.jai.PlanarImage;
030:        import javax.media.jai.ROI;
031:        import javax.media.jai.ROIShape;
032:        import javax.media.jai.UnpackedImageData;
033:        import com.sun.media.jai.util.ImageUtil;
034:
035:        /**
036:         * An <code>OpImage</code> implementing the "ColorQuantizer" operation as
037:         * described in <code>javax.media.jai.operator.ExtremaDescriptor</code>
038:         * based on the median-cut algorithm.
039:         *
040:         * @see javax.media.jai.operator.ExtremaDescriptor
041:         * @see ExtremaCRIF
042:         */
043:        public class MedianCutOpImage extends ColorQuantizerOpImage {
044:            /** The size of the histogram. */
045:            private int histogramSize;
046:
047:            /** The counts of the colors. */
048:            private int[] counts;
049:
050:            /** The colors for the color histogram. */
051:            private int[] colors;
052:
053:            /** The partition of the RGB color space.  Each cube contains one
054:             *  cluster.
055:             */
056:            private Cube[] partition;
057:
058:            /** The maximum number of bits to contains 32768 colors. */
059:            private int bits = 8;
060:
061:            /** The mask to generate the low bits colors from the original colors. */
062:            private int mask;
063:
064:            /** The histgram hash. */
065:            HistogramHash histogram;
066:
067:            /**
068:             * Constructs an <code>MedianCutOpImage</code>.
069:             *
070:             * @param source  The source image.
071:             */
072:            public MedianCutOpImage(RenderedImage source, Map config,
073:                    ImageLayout layout, int maxColorNum, int upperBound,
074:                    ROI roi, int xPeriod, int yPeriod) {
075:                super (source, config, layout, maxColorNum, roi, xPeriod,
076:                        yPeriod);
077:
078:                colorMap = null;
079:                this .histogramSize = upperBound;
080:            }
081:
082:            protected synchronized void train() {
083:                PlanarImage source = getSourceImage(0);
084:                if (roi == null)
085:                    roi = new ROIShape(source.getBounds());
086:
087:                // Cycle throw all source tiles.
088:                int minTileX = source.getMinTileX();
089:                int maxTileX = source.getMaxTileX();
090:                int minTileY = source.getMinTileY();
091:                int maxTileY = source.getMaxTileY();
092:                int xStart = source.getMinX();
093:                int yStart = source.getMinY();
094:
095:                histogram = new HistogramHash(histogramSize);
096:
097:                while (true) {
098:                    histogram.init();
099:                    int oldbits = bits;
100:                    mask = (255 << 8 - bits) & 255;
101:                    mask = mask | (mask << 8) | (mask << 16);
102:
103:                    for (int y = minTileY; y <= maxTileY; y++) {
104:                        for (int x = minTileX; x <= maxTileX; x++) {
105:                            // Determine the required region of this tile.
106:                            // (Note that getTileRect() instersects tile and
107:                            // image bounds.)
108:                            Rectangle tileRect = source.getTileRect(x, y);
109:
110:                            // Process if and only if within ROI bounds.
111:                            if (roi.intersects(tileRect)) {
112:
113:                                // If checking for skipped tiles determine
114:                                // whether this tile is "hit".
115:                                if (checkForSkippedTiles
116:                                        && tileRect.x >= xStart
117:                                        && tileRect.y >= yStart) {
118:                                    // Determine the offset within the tile.
119:                                    int offsetX = (xPeriod - ((tileRect.x - xStart) % xPeriod))
120:                                            % xPeriod;
121:                                    int offsetY = (yPeriod - ((tileRect.y - yStart) % yPeriod))
122:                                            % yPeriod;
123:
124:                                    // Continue with next tile if offset
125:                                    // is larger than either tile dimension.
126:                                    if (offsetX >= tileRect.width
127:                                            || offsetY >= tileRect.height) {
128:                                        continue;
129:                                    }
130:                                }
131:
132:                                // add the histogram.
133:                                computeHistogram(source.getData(tileRect));
134:                                if (histogram.isFull())
135:                                    break;
136:                            }
137:                        }
138:
139:                        if (histogram.isFull())
140:                            break;
141:                    }
142:
143:                    if (oldbits == bits) {
144:                        counts = histogram.getCounts();
145:                        colors = histogram.getColors();
146:                        break;
147:                    }
148:                }
149:
150:                medianCut(maxColorNum);
151:                setProperty("LUT", colorMap);
152:                setProperty("JAI.LookupTable", colorMap);
153:            }
154:
155:            private void computeHistogram(Raster source) {
156:                if (!isInitialized) {
157:                    srcPA = new PixelAccessor(getSourceImage(0));
158:                    srcSampleType = srcPA.sampleType == PixelAccessor.TYPE_BIT ? DataBuffer.TYPE_BYTE
159:                            : srcPA.sampleType;
160:                    isInitialized = true;
161:                }
162:
163:                Rectangle srcBounds = getSourceImage(0).getBounds()
164:                        .intersection(source.getBounds());
165:
166:                LinkedList rectList;
167:                if (roi == null) { // ROI is the whole Raster
168:                    rectList = new LinkedList();
169:                    rectList.addLast(srcBounds);
170:                } else {
171:                    rectList = roi.getAsRectangleList(srcBounds.x, srcBounds.y,
172:                            srcBounds.width, srcBounds.height);
173:                    if (rectList == null) {
174:                        return; // ROI does not intersect with Raster boundary.
175:                    }
176:                }
177:
178:                ListIterator iterator = rectList.listIterator(0);
179:                int xStart = source.getMinX();
180:                int yStart = source.getMinY();
181:
182:                while (iterator.hasNext()) {
183:                    Rectangle rect = srcBounds
184:                            .intersection((Rectangle) iterator.next());
185:                    int tx = rect.x;
186:                    int ty = rect.y;
187:
188:                    // Find the actual ROI based on start and period.
189:                    rect.x = startPosition(tx, xStart, xPeriod);
190:                    rect.y = startPosition(ty, yStart, yPeriod);
191:                    rect.width = tx + rect.width - rect.x;
192:                    rect.height = ty + rect.height - rect.y;
193:
194:                    if (rect.isEmpty()) {
195:                        continue; // no pixel to count in this rectangle
196:                    }
197:
198:                    UnpackedImageData uid = srcPA.getPixels(source, rect,
199:                            srcSampleType, false);
200:                    switch (uid.type) {
201:                    case DataBuffer.TYPE_BYTE:
202:                        computeHistogramByte(uid);
203:                        break;
204:                    }
205:                }
206:            }
207:
208:            private void computeHistogramByte(UnpackedImageData uid) {
209:                Rectangle rect = uid.rect;
210:                byte[][] data = uid.getByteData();
211:                int lineStride = uid.lineStride;
212:                int pixelStride = uid.pixelStride;
213:                byte[] rBand = data[0];
214:                byte[] gBand = data[1];
215:                byte[] bBand = data[2];
216:
217:                int lineInc = lineStride * yPeriod;
218:                int pixelInc = pixelStride * xPeriod;
219:
220:                int lastLine = rect.height * lineStride;
221:
222:                for (int lo = 0; lo < lastLine; lo += lineInc) {
223:                    int lastPixel = lo + rect.width * pixelStride;
224:
225:                    for (int po = lo; po < lastPixel; po += pixelInc) {
226:                        int p = ((rBand[po + uid.bandOffsets[0]] & 0xff) << 16)
227:                                | ((gBand[po + uid.bandOffsets[1]] & 0xff) << 8)
228:                                | (bBand[po + uid.bandOffsets[2]] & 0xff);
229:                        if (!histogram.insert(p & mask)) {
230:                            bits--;
231:                            return;
232:                        }
233:                    }
234:                }
235:            }
236:
237:            /** Applies the Heckbert's median-cut algorithm to partition the color
238:             *  space into <code>maxcubes</code> cubes. The centroids
239:             *  of each cube are are used to create a color table.
240:             */
241:            public void medianCut(int expectedColorNum) {
242:                int k;
243:                int num, width;
244:
245:                Cube cubeA, cubeB;
246:
247:                // Creates the first color cube
248:                partition = new Cube[expectedColorNum];
249:                int numCubes = 0;
250:                Cube cube = new Cube();
251:                int numColors = 0;
252:                for (int i = 0; i < histogramSize; i++) {
253:                    if (counts[i] != 0) {
254:                        numColors++;
255:                        cube.count = cube.count + counts[i];
256:                    }
257:                }
258:
259:                cube.lower = 0;
260:                cube.upper = numColors - 1;
261:                cube.level = 0;
262:                shrinkCube(cube);
263:                partition[numCubes++] = cube;
264:
265:                //Partition the cubes until the expected number of cubes are reached, or
266:                // cannot further partition
267:                while (numCubes < expectedColorNum) {
268:                    // Search the list of cubes for next cube to split, the lowest level cube
269:                    int level = 255;
270:                    int splitableCube = -1;
271:
272:                    for (k = 0; k < numCubes; k++) {
273:                        if (partition[k].lower != partition[k].upper
274:                                && partition[k].level < level) {
275:                            level = partition[k].level;
276:                            splitableCube = k;
277:                        }
278:                    }
279:
280:                    // no more cubes to split
281:                    if (splitableCube == -1)
282:                        break;
283:
284:                    // Find longest dimension of this cube: 0 - red, 1 - green, 2 - blue
285:                    cube = partition[splitableCube];
286:                    level = cube.level;
287:
288:                    // Weigted with luminosities
289:                    int lr = 77 * (cube.rmax - cube.rmin);
290:                    int lg = 150 * (cube.gmax - cube.gmin);
291:                    int lb = 29 * (cube.bmax - cube.bmin);
292:
293:                    int longDimMask = 0;
294:                    if (lr >= lg && lr >= lb)
295:                        longDimMask = 0xFF0000;
296:                    if (lg >= lr && lg >= lb)
297:                        longDimMask = 0xFF00;
298:                    if (lb >= lr && lb >= lg)
299:                        longDimMask = 0xFF;
300:
301:                    // Sort along "longdim"
302:                    quickSort(colors, cube.lower, cube.upper, longDimMask);
303:
304:                    // Find median
305:                    int count = 0;
306:                    int median = cube.lower;
307:                    for (; median <= cube.upper - 1; median++) {
308:                        if (count >= cube.count / 2)
309:                            break;
310:                        count = count + counts[median];
311:                    }
312:
313:                    // Now split "cube" at the median and add the two new
314:                    // cubes to the list of cubes.
315:                    cubeA = new Cube();
316:                    cubeA.lower = cube.lower;
317:                    cubeA.upper = median - 1;
318:                    cubeA.count = count;
319:                    cubeA.level = cube.level + 1;
320:                    shrinkCube(cubeA);
321:                    partition[splitableCube] = cubeA; // add in old slot
322:
323:                    cubeB = new Cube();
324:                    cubeB.lower = median;
325:                    cubeB.upper = cube.upper;
326:                    cubeB.count = cube.count - count;
327:                    cubeB.level = cube.level + 1;
328:                    shrinkCube(cubeB);
329:                    partition[numCubes++] = cubeB; // add in new slot */
330:                }
331:
332:                // creates the lookup table and the inverse mapping
333:                createLUT(numCubes);
334:            }
335:
336:            /** Shrinks the provided <code>Cube</code> to a smallest contains
337:             *  the same colors defined in the histogram.
338:             */
339:            private void shrinkCube(Cube cube) {
340:                int rmin = 255;
341:                int rmax = 0;
342:                int gmin = 255;
343:                int gmax = 0;
344:                int bmin = 255;
345:                int bmax = 0;
346:                for (int i = cube.lower; i <= cube.upper; i++) {
347:                    int color = colors[i];
348:                    int r = color >> 16;
349:                    int g = (color >> 8) & 255;
350:                    int b = color & 255;
351:                    if (r > rmax)
352:                        rmax = r;
353:                    else if (r < rmin)
354:                        rmin = r;
355:
356:                    if (g > gmax)
357:                        gmax = g;
358:                    else if (g < gmin)
359:                        gmin = g;
360:
361:                    if (b > bmax)
362:                        bmax = b;
363:                    else if (b < bmin)
364:                        bmin = b;
365:                }
366:
367:                cube.rmin = rmin;
368:                cube.rmax = rmax;
369:                cube.gmin = gmin;
370:                cube.gmax = gmax;
371:                cube.bmin = bmin;
372:                cube.bmax = bmax;
373:            }
374:
375:            /** Creates the lookup table and computes the inverse mapping. */
376:            private void createLUT(int ncubes) {
377:                if (colorMap == null) {
378:                    colorMap = new LookupTableJAI(new byte[3][ncubes]);
379:                }
380:
381:                byte[] rLUT = colorMap.getByteData(0);
382:                byte[] gLUT = colorMap.getByteData(1);
383:                byte[] bLUT = colorMap.getByteData(2);
384:
385:                float scale = 255.0f / (mask & 255);
386:
387:                for (int k = 0; k < ncubes; k++) {
388:                    Cube cube = partition[k];
389:                    float rsum = 0.0f, gsum = 0.0f, bsum = 0.0f;
390:                    int r, g, b;
391:                    for (int i = cube.lower; i <= cube.upper; i++) {
392:                        int color = colors[i];
393:                        r = color >> 16;
394:                        rsum += (float) r * (float) counts[i];
395:                        g = (color >> 8) & 255;
396:                        gsum += (float) g * (float) counts[i];
397:                        b = color & 255;
398:                        bsum += (float) b * (float) counts[i];
399:                    }
400:
401:                    // Update the color map
402:                    rLUT[k] = (byte) (rsum / (float) cube.count * scale);
403:                    gLUT[k] = (byte) (gsum / (float) cube.count * scale);
404:                    bLUT[k] = (byte) (bsum / (float) cube.count * scale);
405:                }
406:            }
407:
408:            void quickSort(int a[], int lo0, int hi0, int longDimMask) {
409:                // Based on the QuickSort method by James Gosling from Sun's SortDemo applet
410:
411:                int lo = lo0;
412:                int hi = hi0;
413:                int mid, t;
414:
415:                if (hi0 > lo0) {
416:                    mid = a[(lo0 + hi0) / 2] & longDimMask;
417:                    while (lo <= hi) {
418:                        while ((lo < hi0) && ((a[lo] & longDimMask) < mid))
419:                            ++lo;
420:                        while ((hi > lo0) && ((a[hi] & longDimMask) > mid))
421:                            --hi;
422:                        if (lo <= hi) {
423:                            t = a[lo];
424:                            a[lo] = a[hi];
425:                            a[hi] = t;
426:
427:                            t = counts[lo];
428:                            counts[lo] = counts[hi];
429:                            counts[hi] = t;
430:
431:                            ++lo;
432:                            --hi;
433:                        }
434:                    }
435:                    if (lo0 < hi)
436:                        quickSort(a, lo0, hi, longDimMask);
437:                    if (lo < hi0)
438:                        quickSort(a, lo, hi0, longDimMask);
439:                }
440:            }
441:        }
442:
443:        class Cube { // structure for a cube in color space
444:            int lower; // one corner's index in histogram
445:            int upper; // another corner's index in histogram
446:            int count; // cube's histogram count
447:            int level; // cube's level
448:            int rmin, rmax;
449:            int gmin, gmax;
450:            int bmin, bmax;
451:
452:            Cube() {
453:                count = 0;
454:            }
455:        }
456:
457:        /** A hash table for the color histogram.  This is based on the first
458:         *  hashtable algorithm I learnt.
459:         */
460:        class HistogramHash {
461:            int capacity;
462:            int[] colors;
463:            int[] counts;
464:            int size;
465:            int hashsize;
466:            boolean packed = false;
467:            int[] newColors;
468:            int[] newCounts;
469:
470:            public HistogramHash(int capacity) {
471:                this .capacity = capacity;
472:                this .hashsize = capacity * 4 / 3;
473:                this .colors = new int[hashsize];
474:                this .counts = new int[hashsize];
475:            }
476:
477:            void init() {
478:                this .size = 0;
479:                this .packed = false;
480:                for (int i = 0; i < hashsize; i++) {
481:                    colors[i] = -1;
482:                    counts[i] = 0;
483:                }
484:            }
485:
486:            boolean insert(int node) {
487:                int hashPos = hashCode(node);
488:                if (colors[hashPos] == -1) {
489:                    colors[hashPos] = node;
490:                    counts[hashPos]++;
491:                    size++;
492:                    return size <= capacity;
493:                } else if (colors[hashPos] == node) {
494:                    counts[hashPos]++;
495:                    return size <= capacity;
496:                } else {
497:                    for (int next = hashPos + 1; next != hashPos; next++) {
498:                        next %= hashsize;
499:                        if (colors[next] == -1) {
500:                            colors[next] = node;
501:                            counts[next]++;
502:                            size++;
503:                            return size <= capacity;
504:                        } else if (colors[next] == node) {
505:                            counts[next]++;
506:                            return size <= capacity;
507:                        }
508:                    }
509:                }
510:                return size <= capacity;
511:            }
512:
513:            boolean isFull() {
514:                return size > capacity;
515:            }
516:
517:            void put(int node, int value) {
518:                int hashPos = hashCode(node);
519:                if (colors[hashPos] == -1) {
520:                    colors[hashPos] = node;
521:                    counts[hashPos] = value;
522:                    size++;
523:                    return;
524:                } else if (colors[hashPos] == node) {
525:                    counts[hashPos] = value;
526:                    return;
527:                } else {
528:                    for (int next = hashPos + 1; next != hashPos; next++) {
529:                        next %= hashsize;
530:                        if (colors[next] == -1) {
531:                            colors[next] = node;
532:                            counts[next] = value;
533:                            size++;
534:                            return;
535:                        } else if (colors[next] == node) {
536:                            counts[next] = value;
537:                            return;
538:                        }
539:                    }
540:                }
541:                return;
542:            }
543:
544:            int get(int node) {
545:                int hashPos = hashCode(node);
546:                if (colors[hashPos] == node) {
547:                    return counts[hashPos];
548:                } else {
549:                    for (int next = hashPos + 1; next != hashPos; next++) {
550:                        next %= hashsize;
551:                        if (colors[next] == node) {
552:                            return counts[next];
553:                        }
554:                    }
555:                }
556:                return -1;
557:            }
558:
559:            int[] getCounts() {
560:                if (!packed)
561:                    pack();
562:                return newCounts;
563:            }
564:
565:            int[] getColors() {
566:                if (!packed)
567:                    pack();
568:                return newColors;
569:            }
570:
571:            void pack() {
572:                newColors = new int[capacity];
573:                newCounts = new int[capacity];
574:
575:                for (int i = 0, j = 0; i < hashsize; i++) {
576:                    if (colors[i] != -1) {
577:                        newColors[j] = colors[i];
578:                        newCounts[j] = counts[i];
579:                        j++;
580:                    }
581:                }
582:
583:                packed = true;
584:            }
585:
586:            int hashCode(int value) {
587:                return ((value >> 16) * 33023 + ((value >> 8) & 255) * 30013 + (value & 255) * 27011)
588:                        % hashsize;
589:
590:            }
591:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.