Source Code Cross Referenced for MedianFilterOpImage.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » com » sun » media » jai » opimage » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » com.sun.media.jai.opimage 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: MedianFilterOpImage.java,v $
003:         *
004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Use is subject to license terms.
007:         *
008:         * $Revision: 1.1 $
009:         * $Date: 2005/02/11 04:56:33 $
010:         * $State: Exp $
011:         */
012:        package com.sun.media.jai.opimage;
013:
014:        import java.awt.Rectangle;
015:        import java.awt.image.DataBuffer;
016:        import java.awt.image.SampleModel;
017:        import java.awt.image.Raster;
018:        import java.awt.image.RenderedImage;
019:        import java.awt.image.WritableRaster;
020:        import java.awt.image.renderable.ParameterBlock;
021:        import java.awt.image.renderable.RenderedImageFactory;
022:        import javax.media.jai.AreaOpImage;
023:        import javax.media.jai.BorderExtender;
024:        import javax.media.jai.ImageLayout;
025:        import javax.media.jai.OpImage;
026:        import javax.media.jai.RasterAccessor;
027:        import javax.media.jai.RasterFormatTag;
028:        import java.util.Map;
029:        import javax.media.jai.operator.MedianFilterShape;
030:
031:        // import com.sun.media.jai.test.OpImageTester;
032:
033:        /**
034:         * An abstract OpImage class that subclasses will use to perform
035:         * MedianFiltering with specific masks.
036:         *
037:         *
038:         */
039:        abstract class MedianFilterOpImage extends AreaOpImage {
040:
041:            protected MedianFilterShape maskType;
042:            protected int maskSize;
043:
044:            /**
045:             * Creates a MedianFilterOpImage given an image source, an
046:             * optional BorderExtender, a maskType and maskSize.  The image
047:             * dimensions are derived the source image.  The tile grid layout,
048:             * SampleModel, and ColorModel may optionally be specified by an
049:             * ImageLayout object.
050:             *
051:             * @param source a RenderedImage.
052:             * @param extender a BorderExtender, or null.
053:             * @param layout an ImageLayout optionally containing the tile grid layout,
054:             *        SampleModel, and ColorModel, or null.
055:             * @param maskType the filter mask type.
056:             * @param maskSize the filter mask size.
057:             */
058:            public MedianFilterOpImage(RenderedImage source,
059:                    BorderExtender extender, Map config, ImageLayout layout,
060:                    MedianFilterShape maskType, int maskSize) {
061:                super (source, layout, config, true, extender,
062:                        (maskSize - 1) / 2, (maskSize - 1) / 2, (maskSize / 2),
063:                        (maskSize / 2));
064:                this .maskType = maskType;
065:                this .maskSize = maskSize;
066:            }
067:
068:            /**
069:             * Performs median filtering on a specified rectangle. The sources are
070:             * cobbled.
071:             *
072:             * @param sources an array of source Rasters, guaranteed to provide all
073:             *                necessary source data for computing the output.
074:             * @param dest a WritableRaster tile containing the area to be computed.
075:             * @param destRect the rectangle within dest to be processed.
076:             */
077:            protected void computeRect(Raster[] sources, WritableRaster dest,
078:                    Rectangle destRect) {
079:                // Retrieve format tags.
080:                RasterFormatTag[] formatTags = getFormatTags();
081:
082:                Raster source = sources[0];
083:                Rectangle srcRect = mapDestRect(destRect, 0);
084:
085:                RasterAccessor srcAccessor = new RasterAccessor(source,
086:                        srcRect, formatTags[0], getSource(0).getColorModel());
087:                RasterAccessor dstAccessor = new RasterAccessor(dest, destRect,
088:                        formatTags[1], getColorModel());
089:
090:                switch (dstAccessor.getDataType()) {
091:                case DataBuffer.TYPE_BYTE:
092:                    byteLoop(srcAccessor, dstAccessor, maskSize);
093:                    break;
094:                case DataBuffer.TYPE_SHORT:
095:                    shortLoop(srcAccessor, dstAccessor, maskSize);
096:                    break;
097:                case DataBuffer.TYPE_USHORT:
098:                    ushortLoop(srcAccessor, dstAccessor, maskSize);
099:                    break;
100:                case DataBuffer.TYPE_INT:
101:                    intLoop(srcAccessor, dstAccessor, maskSize);
102:                    break;
103:                case DataBuffer.TYPE_FLOAT:
104:                    floatLoop(srcAccessor, dstAccessor, maskSize);
105:                    break;
106:                case DataBuffer.TYPE_DOUBLE:
107:                    doubleLoop(srcAccessor, dstAccessor, maskSize);
108:                    break;
109:                }
110:
111:                // If the RasterAccessor object set up a temporary buffer for the
112:                // op to write to, tell the RasterAccessor to write that data
113:                // to the raster no that we're done with it.
114:                if (dstAccessor.isDataCopy()) {
115:                    dstAccessor.clampDataArrays();
116:                    dstAccessor.copyDataToRaster();
117:                }
118:            }
119:
120:            /** Performs median filtering using the subclass's mask on byte data */
121:            protected abstract void byteLoop(RasterAccessor src,
122:                    RasterAccessor dst, int filterSize);
123:
124:            /** Performs median filtering using the subclass's mask on short data */
125:            protected abstract void shortLoop(RasterAccessor src,
126:                    RasterAccessor dst, int filterSize);
127:
128:            /** Performs median filtering using the subclass's mask on ushort data */
129:            protected abstract void ushortLoop(RasterAccessor src,
130:                    RasterAccessor dst, int filterSize);
131:
132:            /** Performs median filtering using the subclass's mask on int data */
133:            protected abstract void intLoop(RasterAccessor src,
134:                    RasterAccessor dst, int filterSize);
135:
136:            /** Performs median filtering using the subclass's mask on float data */
137:            protected abstract void floatLoop(RasterAccessor src,
138:                    RasterAccessor dst, int filterSize);
139:
140:            /** Performs median filtering using the subclass's mask on double data */
141:            protected abstract void doubleLoop(RasterAccessor src,
142:                    RasterAccessor dst, int filterSize);
143:
144:            /** Returns the median of the input integer array */
145:            protected int medianFilter(int data[]) {
146:                if (data.length == 3) {
147:                    int a = data[0];
148:                    int b = data[1];
149:                    int c = data[2];
150:                    if (a < b) {
151:                        if (b < c) {
152:                            return b;
153:                        } else {
154:                            if (c > a) {
155:                                return c;
156:                            } else {
157:                                return a;
158:                            }
159:                        }
160:                    } else {
161:                        if (a < c) {
162:                            return a;
163:                        } else {
164:                            if (b < c) {
165:                                return c;
166:                            } else {
167:                                return b;
168:                            }
169:                        }
170:                    }
171:                }
172:                int left = 0;
173:                int right = data.length - 1;
174:                int target = data.length / 2;
175:
176:                while (true) {
177:                    int oleft = left;
178:                    int oright = right;
179:                    int mid = data[(left + right) / 2];
180:                    do {
181:                        while (data[left] < mid) {
182:                            left++;
183:                        }
184:                        while (mid < data[right]) {
185:                            right--;
186:                        }
187:                        if (left <= right) {
188:                            int tmp = data[left];
189:                            data[left] = data[right];
190:                            data[right] = tmp;
191:                            left++;
192:                            right--;
193:                        }
194:                    } while (left <= right);
195:                    if (oleft < right && right >= target) {
196:                        left = oleft;
197:                    } else if (left < oright && left <= target) {
198:                        right = oright;
199:                    } else {
200:                        return data[target];
201:                    }
202:                }
203:            }
204:
205:            /** Returns the median of the input float array */
206:            protected float medianFilterFloat(float data[]) {
207:                if (data.length == 3) {
208:                    float a = data[0];
209:                    float b = data[1];
210:                    float c = data[2];
211:                    if (a < b) {
212:                        if (b < c) {
213:                            return b;
214:                        } else {
215:                            if (c > a) {
216:                                return c;
217:                            } else {
218:                                return a;
219:                            }
220:                        }
221:                    } else {
222:                        if (a < c) {
223:                            return a;
224:                        } else {
225:                            if (b < c) {
226:                                return c;
227:                            } else {
228:                                return b;
229:                            }
230:                        }
231:                    }
232:                }
233:                int left = 0;
234:                int right = data.length - 1;
235:                int target = data.length / 2;
236:
237:                while (true) {
238:                    int oleft = left;
239:                    int oright = right;
240:                    float mid = data[(left + right) / 2];
241:                    do {
242:                        while (data[left] < mid) {
243:                            left++;
244:                        }
245:                        while (mid < data[right]) {
246:                            right--;
247:                        }
248:                        if (left <= right) {
249:                            float tmp = data[left];
250:                            data[left] = data[right];
251:                            data[right] = tmp;
252:                            left++;
253:                            right--;
254:                        }
255:                    } while (left <= right);
256:                    if (oleft < right && right >= target) {
257:                        left = oleft;
258:                    } else if (left < oright && left <= target) {
259:                        right = oright;
260:                    } else {
261:                        return data[target];
262:                    }
263:                }
264:            }
265:
266:            /** Returns the median of the input double array */
267:            protected double medianFilterDouble(double data[]) {
268:                if (data.length == 3) {
269:                    double a = data[0];
270:                    double b = data[1];
271:                    double c = data[2];
272:                    if (a < b) {
273:                        if (b < c) {
274:                            return b;
275:                        } else {
276:                            if (c > a) {
277:                                return c;
278:                            } else {
279:                                return a;
280:                            }
281:                        }
282:                    } else {
283:                        if (a < c) {
284:                            return a;
285:                        } else {
286:                            if (b < c) {
287:                                return c;
288:                            } else {
289:                                return b;
290:                            }
291:                        }
292:                    }
293:                }
294:                int left = 0;
295:                int right = data.length - 1;
296:                int target = data.length / 2;
297:
298:                while (true) {
299:                    int oleft = left;
300:                    int oright = right;
301:                    double mid = data[(left + right) / 2];
302:                    do {
303:                        while (data[left] < mid) {
304:                            left++;
305:                        }
306:                        while (mid < data[right]) {
307:                            right--;
308:                        }
309:                        if (left <= right) {
310:                            double tmp = data[left];
311:                            data[left] = data[right];
312:                            data[right] = tmp;
313:                            left++;
314:                            right--;
315:                        }
316:                    } while (left <= right);
317:                    if (oleft < right && right >= target) {
318:                        left = oleft;
319:                    } else if (left < oright && left <= target) {
320:                        right = oright;
321:                    } else {
322:                        return data[target];
323:                    }
324:                }
325:            }
326:
327:            //     // Calls a method on OpImage that uses introspection, to make this
328:            //     // class, discover it's createTestImage() call, call it and then
329:            //     // benchmark the performance of the created OpImage chain.
330:            //     public static void main(String args[]) {
331:            //         String classname = 
332:            //                "com.sun.media.jai.opimage.MedianFilterSquareOpImage";
333:            //         OpImageTester.performDiagnostics(classname,args);
334:            //         classname = 
335:            //                "com.sun.media.jai.opimage.MedianFilterXOpImage";
336:            //         OpImageTester.performDiagnostics(classname,args);
337:            //         classname = 
338:            //                "com.sun.media.jai.opimage.MedianFilterPlusOpImage";
339:            //         OpImageTester.performDiagnostics(classname,args);
340:            //         classname = 
341:            //                "com.sun.media.jai.opimage.MedianFilterSeparableOpImage";
342:            //         OpImageTester.performDiagnostics(classname,args);
343:            //     }
344:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.