Source Code Cross Referenced for NeuQuantOpImage.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » com » sun » media » jai » opimage » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » com.sun.media.jai.opimage 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: NeuQuantOpImage.java,v $
003:         *
004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Use is subject to license terms.
007:         *
008:         * $Revision: 1.2 $
009:         * $Date: 2005/05/10 01:03:23 $
010:         * $State: Exp $
011:         */
012:        package com.sun.media.jai.opimage;
013:
014:        import java.awt.Image;
015:        import java.awt.Rectangle;
016:        import java.awt.image.DataBuffer;
017:        import java.awt.image.Raster;
018:        import java.awt.image.RenderedImage;
019:        import java.util.ArrayList;
020:        import java.util.Hashtable;
021:        import java.util.LinkedList;
022:        import java.util.ListIterator;
023:        import java.util.Map;
024:        import javax.media.jai.ImageLayout;
025:        import javax.media.jai.LookupTableJAI;
026:        import javax.media.jai.OpImage;
027:        import javax.media.jai.PixelAccessor;
028:        import javax.media.jai.PlanarImage;
029:        import javax.media.jai.iterator.RandomIter;
030:        import javax.media.jai.iterator.RandomIterFactory;
031:        import javax.media.jai.ROI;
032:        import javax.media.jai.ROIShape;
033:        import javax.media.jai.UnpackedImageData;
034:        import com.sun.media.jai.util.ImageUtil;
035:
036:        /**
037:         * An <code>OpImage</code> implementing the "ColorQuantizer" operation as
038:         * described in <code>javax.media.jai.operator.ExtremaDescriptor</code>
039:         * based on the median-cut algorithm.
040:         *
041:         * This is based on a java-version of Anthony Dekker's implementation of
042:         * NeuQuant Neural-Net Quantization Algorithm
043:         *
044:         * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
045:         * See "Kohonen neural networks for optimal colour quantization"
046:         * in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
047:         * for a discussion of the algorithm.
048:         *
049:         * Any party obtaining a copy of these files from the author, directly or
050:         * indirectly, is granted, free of charge, a full and unrestricted irrevocable,
051:         * world-wide, paid up, royalty-free, nonexclusive right and license to deal
052:         * in this software and documentation files (the "Software"), including without
053:         * limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
054:         * and/or sell copies of the Software, and to permit persons who receive
055:         * copies from any such party to do so, with the only requirement being
056:         * that this copyright notice remain intact.
057:         *
058:         * @see javax.media.jai.operator.ExtremaDescriptor
059:         * @see ExtremaCRIF
060:         */
061:        public class NeuQuantOpImage extends ColorQuantizerOpImage {
062:            /** four primes near 500 - assume no image has a length so large
063:             * that it is divisible by all four primes
064:             */
065:            protected static final int prime1 = 499;
066:            protected static final int prime2 = 491;
067:            protected static final int prime3 = 487;
068:            protected static final int prime4 = 503;
069:
070:            /* minimum size for input image */
071:            protected static final int minpicturebytes = (3 * prime4);
072:
073:            /** The size of the histogram. */
074:            private int ncycles;
075:
076:            /* Program Skeleton
077:              ----------------
078:              [select samplefac in range 1..30]
079:              [read image from input file]
080:              pic = (unsigned char*) malloc(3*width*height);
081:              initnet(pic,3*width*height,samplefac);
082:              learn();
083:              unbiasnet();
084:              [write output image header, using writecolourmap(f)]
085:              inxbuild();
086:              write output image using inxsearch(b,g,r)      */
087:
088:            /* Network Definitions
089:              ------------------- */
090:
091:            private final int maxnetpos = maxColorNum - 1;
092:            private final int netbiasshift = 4; /* bias for colour values */
093:
094:            /* defs for freq and bias */
095:            private final int intbiasshift = 16; /* bias for fractions */
096:            private final int intbias = 1 << intbiasshift;
097:            private final int gammashift = 10; /* gamma = 1024 */
098:            private final int gamma = 1 << gammashift;
099:            private final int betashift = 10;
100:            private final int beta = intbias >> betashift; /* beta = 1/1024 */
101:            private final int betagamma = intbias << (gammashift - betashift);
102:
103:            /* defs for decreasing radius factor */
104:            private final int initrad = maxColorNum >> 3;
105:            private final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
106:            private final int radiusbias = 1 << radiusbiasshift;
107:            private final int initradius = initrad * radiusbias; /* and decreases by a */
108:            private final int radiusdec = 30; /* factor of 1/30 each cycle */
109:
110:            /* defs for decreasing alpha factor */
111:            private final int alphabiasshift = 10; /* alpha starts at 1.0 */
112:            private final int initalpha = 1 << alphabiasshift;
113:
114:            private int alphadec; /* biased by 10 bits */
115:
116:            /* radbias and alpharadbias used for radpower calculation */
117:            private final int radbiasshift = 8;
118:            private final int radbias = 1 << radbiasshift;
119:            private final int alpharadbshift = alphabiasshift + radbiasshift;
120:            private final int alpharadbias = 1 << alpharadbshift;
121:
122:            //   typedef int pixel[4];                /* BGRc */
123:            private int[][] network; /* the network itself - [maxColorNum][4] */
124:
125:            private int[] netindex = new int[256]; /* for network lookup - really 256 */
126:
127:            private int[] bias = new int[maxColorNum]; /* bias and freq arrays for learning */
128:            private int[] freq = new int[maxColorNum];
129:            private int[] radpower = new int[initrad]; /* radpower for precomputation */
130:
131:            /**
132:             * Constructs an <code>NeuQuantOpImage</code>.
133:             *
134:             * @param source  The source image.
135:             */
136:            public NeuQuantOpImage(RenderedImage source, Map config,
137:                    ImageLayout layout, int maxColorNum, int upperBound,
138:                    ROI roi, int xPeriod, int yPeriod) {
139:                super (source, config, layout, maxColorNum, roi, xPeriod,
140:                        yPeriod);
141:
142:                colorMap = null;
143:                this .ncycles = upperBound;
144:            }
145:
146:            protected synchronized void train() {
147:
148:                // intialize the network
149:                network = new int[maxColorNum][];
150:                for (int i = 0; i < maxColorNum; i++) {
151:                    network[i] = new int[4];
152:                    int[] p = network[i];
153:                    p[0] = p[1] = p[2] = (i << (netbiasshift + 8))
154:                            / maxColorNum;
155:                    freq[i] = intbias / maxColorNum; /* 1/maxColorNum */
156:                    bias[i] = 0;
157:                }
158:
159:                PlanarImage source = getSourceImage(0);
160:                Rectangle rect = source.getBounds();
161:
162:                if (roi != null)
163:                    rect = roi.getBounds();
164:
165:                RandomIter iterator = RandomIterFactory.create(source, rect);
166:
167:                int samplefac = xPeriod * yPeriod;
168:                int startX = rect.x / xPeriod;
169:                int startY = rect.y / yPeriod;
170:                int offsetX = rect.x % xPeriod;
171:                int offsetY = rect.y % yPeriod;
172:                int pixelsPerLine = (rect.width - 1) / xPeriod + 1;
173:                int numSamples = pixelsPerLine
174:                        * ((rect.height - 1) / yPeriod + 1);
175:
176:                if (numSamples < minpicturebytes)
177:                    samplefac = 1;
178:
179:                alphadec = 30 + ((samplefac - 1) / 3);
180:                int pix = 0;
181:
182:                int delta = numSamples / ncycles;
183:                int alpha = initalpha;
184:                int radius = initradius;
185:
186:                int rad = radius >> radiusbiasshift;
187:                if (rad <= 1)
188:                    rad = 0;
189:                for (int i = 0; i < rad; i++)
190:                    radpower[i] = alpha
191:                            * (((rad * rad - i * i) * radbias) / (rad * rad));
192:
193:                int step;
194:                if (numSamples < minpicturebytes)
195:                    step = 3;
196:                else if ((numSamples % prime1) != 0)
197:                    step = 3 * prime1;
198:                else {
199:                    if ((numSamples % prime2) != 0)
200:                        step = 3 * prime2;
201:                    else {
202:                        if ((numSamples % prime3) != 0)
203:                            step = 3 * prime3;
204:                        else
205:                            step = 3 * prime4;
206:                    }
207:                }
208:
209:                int[] pixel = new int[3];
210:
211:                for (int i = 0; i < numSamples;) {
212:                    int y = (pix / pixelsPerLine + startY) * yPeriod + offsetY;
213:                    int x = (pix % pixelsPerLine + startX) * xPeriod + offsetX;
214:
215:                    try {
216:                        iterator.getPixel(x, y, pixel);
217:                    } catch (Exception e) {
218:                        continue;
219:                    }
220:
221:                    int b = pixel[2] << netbiasshift;
222:                    int g = pixel[1] << netbiasshift;
223:                    int r = pixel[0] << netbiasshift;
224:
225:                    int j = contest(b, g, r);
226:
227:                    altersingle(alpha, j, b, g, r);
228:                    if (rad != 0)
229:                        alterneigh(rad, j, b, g, r); /* alter neighbours */
230:
231:                    pix += step;
232:                    if (pix >= numSamples)
233:                        pix -= numSamples;
234:
235:                    i++;
236:                    if (i % delta == 0) {
237:                        alpha -= alpha / alphadec;
238:                        radius -= radius / radiusdec;
239:                        rad = radius >> radiusbiasshift;
240:                        if (rad <= 1)
241:                            rad = 0;
242:                        for (j = 0; j < rad; j++)
243:                            radpower[j] = alpha
244:                                    * (((rad * rad - j * j) * radbias) / (rad * rad));
245:                    }
246:                }
247:
248:                unbiasnet();
249:                inxbuild();
250:                createLUT();
251:                setProperty("LUT", colorMap);
252:                setProperty("JAI.LookupTable", colorMap);
253:            }
254:
255:            private void createLUT() {
256:                colorMap = new LookupTableJAI(new byte[3][maxColorNum]);
257:                byte[][] map = colorMap.getByteData();
258:                int[] index = new int[maxColorNum];
259:                for (int i = 0; i < maxColorNum; i++)
260:                    index[network[i][3]] = i;
261:                for (int i = 0; i < maxColorNum; i++) {
262:                    int j = index[i];
263:                    map[2][i] = (byte) (network[j][0]);
264:                    map[1][i] = (byte) (network[j][1]);
265:                    map[0][i] = (byte) (network[j][2]);
266:                }
267:            }
268:
269:            /** Insertion sort of network and building of netindex[0..255]
270:             *  (to do after unbias)
271:             */
272:            private void inxbuild() {
273:                int previouscol = 0;
274:                int startpos = 0;
275:                for (int i = 0; i < maxColorNum; i++) {
276:                    int[] p = network[i];
277:                    int smallpos = i;
278:                    int smallval = p[1]; /* index on g */
279:                    /* find smallest in i..maxColorNum-1 */
280:                    int j;
281:                    for (j = i + 1; j < maxColorNum; j++) {
282:                        int[] q = network[j];
283:                        if (q[1] < smallval) { /* index on g */
284:                            smallpos = j;
285:                            smallval = q[1]; /* index on g */
286:                        }
287:                    }
288:                    int[] q = network[smallpos];
289:                    /* swap p (i) and q (smallpos) entries */
290:                    if (i != smallpos) {
291:                        j = q[0];
292:                        q[0] = p[0];
293:                        p[0] = j;
294:                        j = q[1];
295:                        q[1] = p[1];
296:                        p[1] = j;
297:                        j = q[2];
298:                        q[2] = p[2];
299:                        p[2] = j;
300:                        j = q[3];
301:                        q[3] = p[3];
302:                        p[3] = j;
303:                    }
304:                    /* smallval entry is now in position i */
305:                    if (smallval != previouscol) {
306:                        netindex[previouscol] = (startpos + i) >> 1;
307:                        for (j = previouscol + 1; j < smallval; j++)
308:                            netindex[j] = i;
309:                        previouscol = smallval;
310:                        startpos = i;
311:                    }
312:                }
313:                netindex[previouscol] = (startpos + maxnetpos) >> 1;
314:                for (int j = previouscol + 1; j < 256; j++)
315:                    netindex[j] = maxnetpos; /* really 256 */
316:            }
317:
318:            /** Search for BGR values 0..255 (after net is unbiased) and
319:             *  return colour index
320:             */
321:            protected byte findNearestEntry(int r, int g, int b) {
322:                int bestd = 1000; /* biggest possible dist is 256*3 */
323:                int best = -1;
324:                int i = netindex[g]; /* index on g */
325:                int j = i - 1; /* start at netindex[g] and work outwards */
326:
327:                while (i < maxColorNum || j >= 0) {
328:                    if (i < maxColorNum) {
329:                        int[] p = network[i];
330:                        int dist = p[1] - g; /* inx key */
331:                        if (dist >= bestd)
332:                            i = maxColorNum; /* stop iter */
333:                        else {
334:                            i++;
335:                            if (dist < 0)
336:                                dist = -dist;
337:                            int a = p[0] - b;
338:                            if (a < 0)
339:                                a = -a;
340:                            dist += a;
341:                            if (dist < bestd) {
342:                                a = p[2] - r;
343:                                if (a < 0)
344:                                    a = -a;
345:                                dist += a;
346:                                if (dist < bestd) {
347:                                    bestd = dist;
348:                                    best = p[3];
349:                                }
350:                            }
351:                        }
352:                    }
353:
354:                    if (j >= 0) {
355:                        int[] p = network[j];
356:                        int dist = g - p[1]; /* inx key - reverse dif */
357:                        if (dist >= bestd)
358:                            j = -1; /* stop iter */
359:                        else {
360:                            j--;
361:                            if (dist < 0)
362:                                dist = -dist;
363:                            int a = p[0] - b;
364:                            if (a < 0)
365:                                a = -a;
366:                            dist += a;
367:                            if (dist < bestd) {
368:                                a = p[2] - r;
369:                                if (a < 0)
370:                                    a = -a;
371:                                dist += a;
372:                                if (dist < bestd) {
373:                                    bestd = dist;
374:                                    best = p[3];
375:                                }
376:                            }
377:                        }
378:                    }
379:                }
380:                return (byte) best;
381:            }
382:
383:            /** Unbias network to give byte values 0..255 and record
384:             *  position i to prepare for sort.
385:             */
386:            private void unbiasnet() {
387:                for (int i = 0; i < maxColorNum; i++) {
388:                    network[i][0] >>= netbiasshift;
389:                    network[i][1] >>= netbiasshift;
390:                    network[i][2] >>= netbiasshift;
391:                    network[i][3] = i; /* record colour no */
392:                }
393:            }
394:
395:            /** Move adjacent neurons by precomputed
396:             *  alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
397:             */
398:
399:            private void alterneigh(int rad, int i, int b, int g, int r) {
400:                int lo = i - rad;
401:                if (lo < -1)
402:                    lo = -1;
403:                int hi = i + rad;
404:                if (hi > maxColorNum)
405:                    hi = maxColorNum;
406:
407:                int j = i + 1;
408:                int k = i - 1;
409:                int m = 1;
410:                while ((j < hi) || (k > lo)) {
411:                    int a = radpower[m++];
412:                    if (j < hi) {
413:                        int[] p = network[j++];
414:                        //            try {
415:                        p[0] -= (a * (p[0] - b)) / alpharadbias;
416:                        p[1] -= (a * (p[1] - g)) / alpharadbias;
417:                        p[2] -= (a * (p[2] - r)) / alpharadbias;
418:                        //            } catch (Exception e) {} // prevents 1.3 miscompilation
419:                    }
420:                    if (k > lo) {
421:                        int[] p = network[k--];
422:                        //            try {
423:                        p[0] -= (a * (p[0] - b)) / alpharadbias;
424:                        p[1] -= (a * (p[1] - g)) / alpharadbias;
425:                        p[2] -= (a * (p[2] - r)) / alpharadbias;
426:                        //            } catch (Exception e) {}
427:                    }
428:                }
429:            }
430:
431:            /** Move neuron i towards biased (b,g,r) by factor alpha. */
432:            private void altersingle(int alpha, int i, int b, int g, int r) {
433:                /* alter hit neuron */
434:                int[] n = network[i];
435:                n[0] -= (alpha * (n[0] - b)) / initalpha;
436:                n[1] -= (alpha * (n[1] - g)) / initalpha;
437:                n[2] -= (alpha * (n[2] - r)) / initalpha;
438:            }
439:
440:            /** Search for biased BGR values. */
441:            private int contest(int b, int g, int r) {
442:                /* finds closest neuron (min dist) and updates freq */
443:                /* finds best neuron (min dist-bias) and returns position */
444:                /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
445:                /* bias[i] = gamma*((1/maxColorNum)-freq[i]) */
446:                int bestd = ~(((int) 1) << 31);
447:                int bestbiasd = bestd;
448:                int bestpos = -1;
449:                int bestbiaspos = bestpos;
450:
451:                for (int i = 0; i < maxColorNum; i++) {
452:                    int[] n = network[i];
453:                    int dist = n[0] - b;
454:                    if (dist < 0)
455:                        dist = -dist;
456:                    int a = n[1] - g;
457:                    if (a < 0)
458:                        a = -a;
459:                    dist += a;
460:                    a = n[2] - r;
461:                    if (a < 0)
462:                        a = -a;
463:                    dist += a;
464:                    if (dist < bestd) {
465:                        bestd = dist;
466:                        bestpos = i;
467:                    }
468:                    int biasdist = dist
469:                            - ((bias[i]) >> (intbiasshift - netbiasshift));
470:                    if (biasdist < bestbiasd) {
471:                        bestbiasd = biasdist;
472:                        bestbiaspos = i;
473:                    }
474:                    int betafreq = (freq[i] >> betashift);
475:                    freq[i] -= betafreq;
476:                    bias[i] += (betafreq << gammashift);
477:                }
478:                freq[bestpos] += beta;
479:                bias[bestpos] -= betagamma;
480:                return (bestbiaspos);
481:            }
482:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.