Source Code Cross Referenced for ScaleBilinearBinaryOpImage.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » com » sun » media » jai » opimage » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » com.sun.media.jai.opimage 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: ScaleBilinearBinaryOpImage.java,v $
003:         *
004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Use is subject to license terms.
007:         *
008:         * $Revision: 1.1 $
009:         * $Date: 2005/02/11 04:56:42 $
010:         * $State: Exp $
011:         */
012:        package com.sun.media.jai.opimage;
013:
014:        import java.awt.Rectangle;
015:        import java.awt.image.DataBuffer;
016:        import java.awt.image.DataBufferByte;
017:        import java.awt.image.DataBufferInt;
018:        import java.awt.image.DataBufferUShort;
019:        import java.awt.image.IndexColorModel;
020:        import java.awt.image.MultiPixelPackedSampleModel;
021:        import java.awt.image.Raster;
022:        import java.awt.image.RenderedImage;
023:        import java.awt.image.WritableRaster;
024:        import java.awt.image.renderable.ParameterBlock;
025:        import javax.media.jai.Interpolation;
026:        import javax.media.jai.InterpolationNearest;
027:        import javax.media.jai.ImageLayout;
028:        import javax.media.jai.OpImage;
029:        import javax.media.jai.PlanarImage;
030:        import javax.media.jai.RasterAccessor;
031:        import javax.media.jai.RasterFormatTag;
032:        import javax.media.jai.ScaleOpImage;
033:        import javax.media.jai.TileCache;
034:        import javax.media.jai.BorderExtender;
035:        import com.sun.media.jai.util.Rational;
036:        import java.util.Map;
037:
038:        /**
039:         * An OpImage subclass that performs bilinear scaling
040:         * for binary images with a MultiPixelPackedSampleModel
041:         * and byte, short, or int DataBuffers.
042:         *
043:         */
044:
045:        final public class ScaleBilinearBinaryOpImage extends ScaleOpImage {
046:
047:            /* The number of SubsampleBits */
048:            private int subsampleBits;
049:
050:            /* Subsampling related variables */
051:            int one, shift2, round2;
052:
053:            long invScaleXInt, invScaleXFrac;
054:            long invScaleYInt, invScaleYFrac;
055:
056:            /**
057:             * Constructs a ScaleBilinearBinaryOpImage from a RenderedImage source,
058:             * 
059:             * @param source a RenderedImage.
060:             * @param layout an ImageLayout optionally containing the tile grid layout,
061:             *        SampleModel, and ColorModel, or null.
062:             * @param xScale scale factor along x axis.
063:             * @param yScale scale factor along y axis.
064:             * @param xTrans translation factor along x axis.
065:             * @param yTrans translation factor along y axis.
066:             * @param interp an Interpolation object to use for resampling.
067:             */
068:
069:            public ScaleBilinearBinaryOpImage(RenderedImage source,
070:                    BorderExtender extender, Map config, ImageLayout layout,
071:                    float xScale, float yScale, float xTrans, float yTrans,
072:                    Interpolation interp) {
073:                super (source, layout, config, true, extender, interp, xScale,
074:                        yScale, xTrans, yTrans);
075:
076:                subsampleBits = interp.getSubsampleBitsH();
077:
078:                // Numnber of subsampling positions
079:                one = 1 << subsampleBits;
080:
081:                //Subsampling related variables
082:                shift2 = 2 * subsampleBits;
083:                round2 = 1 << (shift2 - 1);
084:
085:                // Propagate source's ColorModel
086:                if (layout != null) {
087:                    colorModel = layout.getColorModel(source);
088:                } else {
089:                    colorModel = source.getColorModel();
090:                }
091:
092:                sampleModel = source.getSampleModel()
093:                        .createCompatibleSampleModel(tileWidth, tileHeight);
094:
095:                if (invScaleXRational.num > invScaleXRational.denom) {
096:                    invScaleXInt = invScaleXRational.num
097:                            / invScaleXRational.denom;
098:                    invScaleXFrac = invScaleXRational.num
099:                            % invScaleXRational.denom;
100:                } else {
101:                    invScaleXInt = 0;
102:                    invScaleXFrac = invScaleXRational.num;
103:                }
104:
105:                if (invScaleYRational.num > invScaleYRational.denom) {
106:                    invScaleYInt = invScaleYRational.num
107:                            / invScaleYRational.denom;
108:                    invScaleYFrac = invScaleYRational.num
109:                            % invScaleYRational.denom;
110:                } else {
111:                    invScaleYInt = 0;
112:                    invScaleYFrac = invScaleYRational.num;
113:                }
114:            }
115:
116:            /**
117:             * Performs a scale operation on a specified rectangle. The sources are
118:             * cobbled.
119:             *
120:             * @param sources  an array of source Rasters, guaranteed to provide all
121:             *                 necessary source data for computing the output.
122:             * @param dest     a WritableRaster  containing the area to be computed.
123:             * @param destRect the rectangle within dest to be processed.
124:             */
125:
126:            protected void computeRect(Raster[] sources, WritableRaster dest,
127:                    Rectangle destRect) {
128:                Raster source = sources[0];
129:
130:                // Get the source rectangle
131:                Rectangle srcRect = source.getBounds();
132:
133:                int srcRectX = srcRect.x;
134:                int srcRectY = srcRect.y;
135:
136:                // Destination rectangle dimensions.
137:                int dx = destRect.x;
138:                int dy = destRect.y;
139:
140:                int dwidth = destRect.width;
141:                int dheight = destRect.height;
142:
143:                // Precalculate the x positions and store them in an array.
144:                int[] xvalues = new int[dwidth];
145:                int[] yvalues = new int[dheight];
146:
147:                int[] xfracvalues = new int[dwidth];
148:                int[] yfracvalues = new int[dheight];
149:
150:                long sxNum = dx, sxDenom = 1;
151:                long syNum = dy, syDenom = 1;
152:
153:                // Subtract the X translation factor sx -= transX
154:                sxNum = sxNum * transXRationalDenom - transXRationalNum
155:                        * sxDenom;
156:                sxDenom *= transXRationalDenom;
157:
158:                syNum = syNum * transYRationalDenom - transYRationalNum
159:                        * syDenom;
160:                syDenom *= transYRationalDenom;
161:
162:                // Add 0.5
163:                sxNum = 2 * sxNum + sxDenom;
164:                sxDenom *= 2;
165:
166:                syNum = 2 * syNum + syDenom;
167:                syDenom *= 2;
168:
169:                // Multply by invScaleX & Y
170:
171:                sxNum *= invScaleXRationalNum;
172:                sxDenom *= invScaleXRationalDenom;
173:
174:                syNum *= invScaleYRationalNum;
175:                syDenom *= invScaleYRationalDenom;
176:
177:                // Subtract 0.5
178:                // jxz
179:                sxNum = 2 * sxNum - sxDenom;
180:                sxDenom *= 2;
181:
182:                syNum = 2 * syNum - syDenom;
183:                syDenom *= 2;
184:
185:                // Separate the x source coordinate into integer and fractional part
186:
187:                int srcXInt = Rational.floor(sxNum, sxDenom);
188:                long srcXFrac = sxNum % sxDenom;
189:                if (srcXInt < 0) {
190:                    srcXFrac = sxDenom + srcXFrac;
191:                }
192:
193:                int srcYInt = Rational.floor(syNum, syDenom);
194:                long srcYFrac = syNum % syDenom;
195:                if (srcYInt < 0) {
196:                    srcYFrac = syDenom + srcYFrac;
197:                }
198:
199:                // Normalize - Get a common denominator for the fracs of 
200:                // src and invScaleX
201:                long commonXDenom = sxDenom * invScaleXRationalDenom;
202:                srcXFrac *= invScaleXRationalDenom;
203:                long newInvScaleXFrac = invScaleXFrac * sxDenom;
204:
205:                long commonYDenom = syDenom * invScaleYRationalDenom;
206:                srcYFrac *= invScaleYRationalDenom;
207:                long newInvScaleYFrac = invScaleYFrac * syDenom;
208:
209:                for (int i = 0; i < dwidth; i++) {
210:                    // Calculate the position
211:                    // xfracvalues is the fractional part of x position in terms
212:                    // of the nuber of subpixel points
213:
214:                    xvalues[i] = srcXInt;
215:
216:                    // added by jxz; for the case frac is less then 1/2,
217:                    // the previous location is used
218:                    // e.g. 24.25 is between the two half points 23.5 and 24.5
219:                    // thus 23rd and 24th are the pixel rows
220:                    // XXX watch for side effects associated with sfracvalues
221:
222:                    //if(2 * srcXFrac < commonXDenom && xvalues[i] > 0){
223:                    //--xvalues[i];
224:                    //}
225:
226:                    xfracvalues[i] = (int) (((float) srcXFrac / (float) commonXDenom) * one);
227:
228:                    // Move onto the next source pixel.
229:
230:                    // Add the integral part of invScaleX to the integral part
231:                    // of srcX
232:                    srcXInt += invScaleXInt;
233:
234:                    // Add the fractional part of invScaleX to the fractional part
235:                    // of srcX
236:                    srcXFrac += newInvScaleXFrac;
237:
238:                    // If the fractional part is now greater than equal to the 
239:                    // denominator, divide so as to reduce the numerator to be less
240:                    // than the denominator and add the overflow to the integral part.
241:                    if (srcXFrac >= commonXDenom) {
242:                        srcXInt += 1;
243:                        srcXFrac -= commonXDenom;
244:                    }
245:                }
246:
247:                // Precalculate the y positions and store them in an array. 
248:
249:                for (int i = 0; i < dheight; i++) {
250:                    // Calculate the position
251:                    yvalues[i] = srcYInt;
252:                    yfracvalues[i] = (int) (((float) srcYFrac / (float) commonYDenom) * one);
253:
254:                    // added by jxz; for the case frac is less then 1/2,
255:                    // the previous location is used
256:                    // e.g. 24.25 is between the two half points 23.5 and 24.5
257:                    // thus 23rd and 24th are the pixel rows
258:                    // XXX watch for side effects associated with yfracvalues
259:
260:                    // if(2 * srcYFrac < commonYDenom && yvalues[i] > 0){
261:                    //      --yvalues[i];
262:                    // }
263:
264:                    // Move onto the next source pixel.
265:
266:                    // Add the integral part of invScaleY to the integral part
267:                    // of srcY
268:                    srcYInt += invScaleYInt;
269:
270:                    // Add the fractional part of invScaleY to the fractional part
271:                    // of srcY
272:                    srcYFrac += newInvScaleYFrac;
273:
274:                    // If the fractional part is now greater than equal to the
275:                    // denominator, divide so as to reduce the numerator to be less
276:                    // than the denominator and add the overflow to the integral part.
277:                    if (srcYFrac >= commonYDenom) {
278:                        srcYInt += 1;
279:                        srcYFrac -= commonYDenom;
280:                    }
281:                }
282:
283:                switch (source.getSampleModel().getDataType()) {
284:                case DataBuffer.TYPE_BYTE:
285:                    byteLoop(source, dest, dx, dy, dwidth, dheight, xvalues,
286:                            yvalues, xfracvalues, yfracvalues);
287:                    break;
288:
289:                case DataBuffer.TYPE_SHORT:
290:                case DataBuffer.TYPE_USHORT:
291:                    shortLoop(source, dest, dx, dy, dwidth, dheight, xvalues,
292:                            yvalues, xfracvalues, yfracvalues);
293:                    break;
294:
295:                case DataBuffer.TYPE_INT:
296:                    intLoop(source, dest, dx, dy, dwidth, dheight, xvalues,
297:                            yvalues, xfracvalues, yfracvalues);
298:                    break;
299:
300:                default:
301:                    throw new RuntimeException(JaiI18N
302:                            .getString("OrderedDitherOpImage0"));
303:                }
304:            }
305:
306:            private void byteLoop(Raster source, WritableRaster dest, int dx,
307:                    int dy, int dwidth, int dheight, int[] xvalues,
308:                    int[] yvalues, int[] xfracvalues, int[] yfracvalues) {
309:                MultiPixelPackedSampleModel sourceSM = (MultiPixelPackedSampleModel) source
310:                        .getSampleModel();
311:                DataBufferByte sourceDB = (DataBufferByte) source
312:                        .getDataBuffer();
313:                int sourceTransX = source.getSampleModelTranslateX();
314:                int sourceTransY = source.getSampleModelTranslateY();
315:                int sourceDataBitOffset = sourceSM.getDataBitOffset();
316:                int sourceScanlineStride = sourceSM.getScanlineStride();
317:
318:                MultiPixelPackedSampleModel destSM = (MultiPixelPackedSampleModel) dest
319:                        .getSampleModel();
320:                DataBufferByte destDB = (DataBufferByte) dest.getDataBuffer();
321:                int destMinX = dest.getMinX();
322:                int destMinY = dest.getMinY();
323:                int destTransX = dest.getSampleModelTranslateX();
324:                int destTransY = dest.getSampleModelTranslateY();
325:                int destDataBitOffset = destSM.getDataBitOffset();
326:                int destScanlineStride = destSM.getScanlineStride();
327:
328:                byte[] sourceData = sourceDB.getData();
329:                int sourceDBOffset = sourceDB.getOffset();
330:
331:                byte[] destData = destDB.getData();
332:                int destDBOffset = destDB.getOffset();
333:
334:                int[] sbytenum = new int[dwidth];
335:                int[] sshift = new int[dwidth];
336:
337:                // Since the source data is MultiPixel packed
338:                // precalculate the byte no and the and the shift
339:                // after masking required to extract a single pixel
340:                // sample from a byte
341:
342:                for (int i = 0; i < dwidth; i++) {
343:                    int x = xvalues[i];
344:                    int sbitnum = sourceDataBitOffset + (x - sourceTransX);
345:                    sbytenum[i] = sbitnum >> 3;
346:                    sshift[i] = 7 - (sbitnum & 7);
347:                }
348:
349:                int sourceYOffset;
350:
351:                int s00, s01, s10, s11, s0, s1, s;
352:                int x = 0, y = 0;
353:                int yfrac, xfrac;
354:
355:                int xNextBitNo;
356:                int xNextByteNo;
357:                int xNextShiftNo;
358:
359:                int destYOffset = (dy - destTransY) * destScanlineStride
360:                        + destDBOffset;
361:                int dbitnum = destDataBitOffset + (dx - destTransX);
362:
363:                int destByteNum;
364:                int destBitShift;
365:
366:                int i = 0, j = 0;
367:
368:                // Loop through height of image
369:                for (j = 0; j < dheight; j++) {
370:
371:                    y = yvalues[j];
372:                    yfrac = yfracvalues[j];
373:
374:                    sourceYOffset = (y - sourceTransY) * sourceScanlineStride
375:                            + sourceDBOffset;
376:                    dbitnum = destDataBitOffset + (dx - destTransX);
377:
378:                    // loop through one scan line
379:                    for (i = 0; i < dwidth; i++) {
380:                        xfrac = xfracvalues[i];
381:                        x = xvalues[i];
382:                        xNextBitNo = sourceDataBitOffset
383:                                + (x + 1 - sourceTransX);
384:                        xNextByteNo = xNextBitNo >> 3;
385:                        xNextShiftNo = 7 - (xNextBitNo & 7);
386:
387:                        /* Four surrounding pixels are needed for Bilinear interpolation.
388:                         * If the dest pixel to be calculated is at (dx, dy) then the
389:                         * actual source pixel (sx, sy) required is (dx/scaleX, dy/scaleY).
390:                         * The four pixels that surround it are at the positions:
391:                         * s00 = src(sxlow, sylow)
392:                         * s01 = src(sxhigh, sylow)
393:                         * s10 = src(sxlow, syhigh)
394:                         * s11 = src(sxhigh, syhigh)
395:                         * where sxlow = Math.floor(sx), sxhigh = Math.ceil(sx)
396:                         * and   sylow = Math.floor(sy), syhigh = Math.ceil(sy)
397:                         *
398:                         * The value of the destination pixel can now be calculated as:
399:                         * s0 = (s01 - s00)*xfrac + s00;
400:                         * s1 = (s11 - s10)*xfrac + s10;
401:                         * dst(x,y) = (s1 - s0)*yfrac + s0;
402:                         */
403:
404:                        //Obtain sample values for 4 adjacent pixels in the source
405:                        s00 = (sourceData[sourceYOffset + sbytenum[i]] >> sshift[i]) & 0x01;
406:                        s01 = (sourceData[sourceYOffset + xNextByteNo] >> xNextShiftNo) & 0x01;
407:                        s10 = (sourceData[sourceYOffset + sourceScanlineStride
408:                                + sbytenum[i]] >> sshift[i]) & 0x01;
409:                        s11 = (sourceData[sourceYOffset + sourceScanlineStride
410:                                + xNextByteNo] >> xNextShiftNo) & 0x01;
411:
412:                        // perform the bilinear interpolation
413:                        s0 = (s01 - s00) * xfrac + (s00 << subsampleBits);
414:                        s1 = (s11 - s10) * xfrac + (s10 << subsampleBits);
415:
416:                        // The bilinear intrerpolated value
417:                        s = ((s1 - s0) * yfrac + ((s0 << subsampleBits) + round2)) >> shift2;
418:
419:                        destByteNum = dbitnum >> 3;
420:                        destBitShift = 7 - (dbitnum & 7);
421:
422:                        if (s == 1) {
423:                            //the destBit must be set
424:                            destData[destYOffset + destByteNum] |= (0x01 << destBitShift);
425:                        } else {
426:                            //the destBit must be cleared
427:                            destData[destYOffset + destByteNum] &= (0xff - (0x01 << destBitShift));
428:                        }
429:                        dbitnum++;
430:                    }
431:                    destYOffset += destScanlineStride;
432:                }
433:            }
434:
435:            private void shortLoop(Raster source, WritableRaster dest, int dx,
436:                    int dy, int dwidth, int dheight, int[] xvalues,
437:                    int[] yvalues, int[] xfracvalues, int[] yfracvalues) {
438:                MultiPixelPackedSampleModel sourceSM = (MultiPixelPackedSampleModel) source
439:                        .getSampleModel();
440:                int sourceTransX = source.getSampleModelTranslateX();
441:                int sourceTransY = source.getSampleModelTranslateY();
442:                int sourceDataBitOffset = sourceSM.getDataBitOffset();
443:                int sourceScanlineStride = sourceSM.getScanlineStride();
444:
445:                MultiPixelPackedSampleModel destSM = (MultiPixelPackedSampleModel) dest
446:                        .getSampleModel();
447:                int destMinX = dest.getMinX();
448:                int destMinY = dest.getMinY();
449:                int destTransX = dest.getSampleModelTranslateX();
450:                int destTransY = dest.getSampleModelTranslateY();
451:                int destDataBitOffset = destSM.getDataBitOffset();
452:                int destScanlineStride = destSM.getScanlineStride();
453:
454:                DataBufferUShort sourceDB = (DataBufferUShort) source
455:                        .getDataBuffer();
456:                short[] sourceData = sourceDB.getData();
457:                int sourceDBOffset = sourceDB.getOffset();
458:
459:                DataBufferUShort destDB = (DataBufferUShort) dest
460:                        .getDataBuffer();
461:                short[] destData = destDB.getData();
462:                int destDBOffset = destDB.getOffset();
463:
464:                int[] sshortnum = new int[dwidth];
465:                int[] sshift = new int[dwidth];
466:
467:                for (int i = 0; i < dwidth; i++) {
468:                    int x = xvalues[i];
469:                    int sbitnum = sourceDataBitOffset + (x - sourceTransX);
470:                    sshortnum[i] = sbitnum >> 4;
471:                    sshift[i] = 15 - (sbitnum & 15);
472:                }
473:
474:                int sourceYOffset;
475:
476:                int s00, s01, s10, s11, s0, s1, s;
477:
478:                int x, y;
479:                int yfrac, xfrac;
480:
481:                int xNextBitNo;
482:                int xNextShortNo;
483:                int xNextShiftNo;
484:
485:                int destYOffset = (dy - destTransY) * destScanlineStride
486:                        + destDBOffset;
487:                int dbitnum = destDataBitOffset + (dx - destTransX);
488:
489:                int destShortNum;
490:                int destBitShift;
491:
492:                for (int j = 0; j < dheight; j++) {
493:                    y = yvalues[j];
494:                    yfrac = yfracvalues[j];
495:
496:                    sourceYOffset = (y - sourceTransY) * sourceScanlineStride
497:                            + sourceDBOffset;
498:                    dbitnum = destDataBitOffset + (dx - destTransX);
499:
500:                    for (int i = 0; i < dwidth; i++) {
501:                        xfrac = xfracvalues[i];
502:                        x = xvalues[i];
503:                        xNextBitNo = sourceDataBitOffset
504:                                + (x + 1 - sourceTransX);
505:                        xNextShortNo = xNextBitNo >> 4;
506:                        xNextShiftNo = 15 - (xNextBitNo & 15);
507:
508:                        s00 = (sourceData[sourceYOffset + sshortnum[i]] >> sshift[i]) & 0x01;
509:                        s01 = (sourceData[sourceYOffset + xNextShortNo] >> xNextShiftNo) & 0x01;
510:                        s10 = (sourceData[sourceYOffset + sourceScanlineStride
511:                                + sshortnum[i]] >> sshift[i]) & 0x01;
512:                        s11 = (sourceData[sourceYOffset + sourceScanlineStride
513:                                + xNextShortNo] >> xNextShiftNo) & 0x01;
514:
515:                        s0 = (s01 - s00) * xfrac + (s00 << subsampleBits);
516:                        s1 = (s11 - s10) * xfrac + (s10 << subsampleBits);
517:                        s = ((s1 - s0) * yfrac + (s0 << subsampleBits) + round2) >> shift2;
518:
519:                        destShortNum = dbitnum >> 4;
520:                        destBitShift = 15 - (dbitnum & 15);
521:
522:                        if (s == 1) {
523:                            destData[destYOffset + destShortNum] |= (0x01 << destBitShift);
524:                        } else {
525:                            destData[destYOffset + destShortNum] &= (0xffff - (0x01 << destBitShift));
526:                        }
527:                        dbitnum++;
528:                    }
529:                    destYOffset += destScanlineStride;
530:                }
531:            }
532:
533:            private void intLoop(Raster source, WritableRaster dest, int dx,
534:                    int dy, int dwidth, int dheight, int[] xvalues,
535:                    int[] yvalues, int[] xfracvalues, int[] yfracvalues) {
536:                MultiPixelPackedSampleModel sourceSM = (MultiPixelPackedSampleModel) source
537:                        .getSampleModel();
538:                DataBufferInt sourceDB = (DataBufferInt) source.getDataBuffer();
539:                int sourceTransX = source.getSampleModelTranslateX();
540:                int sourceTransY = source.getSampleModelTranslateY();
541:                int sourceDataBitOffset = sourceSM.getDataBitOffset();
542:                int sourceScanlineStride = sourceSM.getScanlineStride();
543:
544:                MultiPixelPackedSampleModel destSM = (MultiPixelPackedSampleModel) dest
545:                        .getSampleModel();
546:                DataBufferInt destDB = (DataBufferInt) dest.getDataBuffer();
547:                int destMinX = dest.getMinX();
548:                int destMinY = dest.getMinY();
549:                int destTransX = dest.getSampleModelTranslateX();
550:                int destTransY = dest.getSampleModelTranslateY();
551:                int destDataBitOffset = destSM.getDataBitOffset();
552:                int destScanlineStride = destSM.getScanlineStride();
553:
554:                int[] sourceData = sourceDB.getData();
555:                int sourceDBOffset = sourceDB.getOffset();
556:
557:                int[] destData = destDB.getData();
558:                int destDBOffset = destDB.getOffset();
559:
560:                int[] sintnum = new int[dwidth];
561:                int[] sshift = new int[dwidth];
562:
563:                for (int i = 0; i < dwidth; i++) {
564:                    int x = xvalues[i];
565:                    int sbitnum = sourceDataBitOffset + (x - sourceTransX);
566:                    sintnum[i] = sbitnum >> 5;
567:                    sshift[i] = 31 - (sbitnum & 31);
568:                }
569:
570:                int sourceYOffset;
571:
572:                int s00, s01, s10, s11, s0, s1, s;
573:                int x, y;
574:                int yfrac, xfrac;
575:
576:                int xNextBitNo;
577:                int xNextIntNo;
578:                int xNextShiftNo;
579:
580:                int destYOffset = (dy - destTransY) * destScanlineStride
581:                        + destDBOffset;
582:                int dbitnum = destDataBitOffset + (dx - destTransX);
583:
584:                int destIntNum;
585:                int destBitShift;
586:
587:                for (int j = 0; j < dheight; j++) {
588:                    y = yvalues[j];
589:                    yfrac = yfracvalues[j];
590:
591:                    sourceYOffset = (y - sourceTransY) * sourceScanlineStride
592:                            + sourceDBOffset;
593:                    dbitnum = destDataBitOffset + (dx - destTransX);
594:
595:                    for (int i = 0; i < dwidth; i++) {
596:                        xfrac = xfracvalues[i];
597:                        x = xvalues[i];
598:
599:                        xNextBitNo = sourceDataBitOffset
600:                                + (x + 1 - sourceTransX);
601:                        xNextIntNo = xNextBitNo >> 5;
602:                        xNextShiftNo = 31 - (xNextBitNo & 31);
603:
604:                        s00 = (sourceData[sourceYOffset + sintnum[i]] >> sshift[i]) & 0x01;
605:                        s01 = (sourceData[sourceYOffset + xNextIntNo] >> xNextShiftNo) & 0x01;
606:                        s10 = (sourceData[sourceYOffset + sourceScanlineStride
607:                                + sintnum[i]] >> sshift[i]) & 0x01;
608:                        s11 = (sourceData[sourceYOffset + sourceScanlineStride
609:                                + xNextIntNo] >> xNextShiftNo) & 0x01;
610:
611:                        s0 = (s01 - s00) * xfrac + (s00 << subsampleBits);
612:                        s1 = (s11 - s10) * xfrac + (s10 << subsampleBits);
613:                        s = ((s1 - s0) * yfrac + (s0 << subsampleBits) + round2) >> shift2;
614:
615:                        destIntNum = dbitnum >> 5;
616:                        destBitShift = 31 - (dbitnum & 31);
617:
618:                        if (s == 1) {
619:                            //Is above the threshold, the destBit must be set
620:                            destData[destYOffset + destIntNum] |= (0x01 << destBitShift);
621:                        } else {
622:                            destData[destYOffset + destIntNum] &= (0xff - (0x01 << destBitShift));
623:                        }
624:                        dbitnum++;
625:                    }
626:                    destYOffset += destScanlineStride;
627:                }
628:
629:            }
630:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.