Source Code Cross Referenced for ScaleNearestOpImage.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » com » sun » media » jai » opimage » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » com.sun.media.jai.opimage 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: ScaleNearestOpImage.java,v $
003:         *
004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Use is subject to license terms.
007:         *
008:         * $Revision: 1.1 $
009:         * $Date: 2005/02/11 04:56:43 $
010:         * $State: Exp $
011:         */
012:        package com.sun.media.jai.opimage;
013:
014:        import java.awt.Rectangle;
015:        import java.awt.image.ColorModel;
016:        import java.awt.image.DataBuffer;
017:        import java.awt.image.IndexColorModel;
018:        import java.awt.image.Raster;
019:        import java.awt.image.RenderedImage;
020:        import java.awt.image.WritableRaster;
021:        import java.awt.image.renderable.ParameterBlock;
022:        import javax.media.jai.Interpolation;
023:        import javax.media.jai.InterpolationNearest;
024:        import javax.media.jai.ImageLayout;
025:        import javax.media.jai.OpImage;
026:        import javax.media.jai.PlanarImage;
027:        import javax.media.jai.RasterAccessor;
028:        import javax.media.jai.RasterFormatTag;
029:        import javax.media.jai.ScaleOpImage;
030:        import java.util.Map;
031:        import javax.media.jai.BorderExtender;
032:        import com.sun.media.jai.util.Rational;
033:
034:        // import com.sun.media.jai.test.OpImageTester;
035:
036:        /**
037:         * An OpImage subclass that performs nearest-neighbor scaling.
038:         *
039:         */
040:        final class ScaleNearestOpImage extends ScaleOpImage {
041:
042:            long invScaleXInt, invScaleXFrac;
043:            long invScaleYInt, invScaleYFrac;
044:
045:            /**
046:             * Constructs a ScaleNearestOpImage from a RenderedImage source,
047:             * 
048:             * @param source a RenderedImage.
049:             * @param layout an ImageLayout optionally containing the tile grid layout,
050:             *        SampleModel, and ColorModel, or null.
051:             * @param xScale scale factor along x axis.
052:             * @param yScale scale factor along y axis.
053:             * @param xTrans translation factor along x axis.
054:             * @param yTrans translation factor along y axis.
055:             * @param interp an Interpolation object to use for resampling.
056:             */
057:            public ScaleNearestOpImage(RenderedImage source,
058:                    BorderExtender extender, Map config, ImageLayout layout,
059:                    float xScale, float yScale, float xTrans, float yTrans,
060:                    Interpolation interp) {
061:                super (source, layout, config, true, extender, interp, xScale,
062:                        yScale, xTrans, yTrans);
063:
064:                // If the source has an IndexColorModel, override the default setting
065:                // in OpImage. The dest shall have exactly the same SampleModel and
066:                // ColorModel as the source.
067:                // Note, in this case, the source should have an integral data type.
068:                ColorModel srcColorModel = source.getColorModel();
069:                if (srcColorModel instanceof  IndexColorModel) {
070:                    sampleModel = source.getSampleModel()
071:                            .createCompatibleSampleModel(tileWidth, tileHeight);
072:                    colorModel = srcColorModel;
073:                }
074:
075:                if (invScaleXRational.num > invScaleXRational.denom) {
076:                    invScaleXInt = invScaleXRational.num
077:                            / invScaleXRational.denom;
078:                    invScaleXFrac = invScaleXRational.num
079:                            % invScaleXRational.denom;
080:                } else {
081:                    invScaleXInt = 0;
082:                    invScaleXFrac = invScaleXRational.num;
083:                }
084:
085:                if (invScaleYRational.num > invScaleYRational.denom) {
086:                    invScaleYInt = invScaleYRational.num
087:                            / invScaleYRational.denom;
088:                    invScaleYFrac = invScaleYRational.num
089:                            % invScaleYRational.denom;
090:                } else {
091:                    invScaleYInt = 0;
092:                    invScaleYFrac = invScaleYRational.num;
093:                }
094:            }
095:
096:            /**
097:             * Performs a scale operation on a specified rectangle. The sources are
098:             * cobbled.
099:             *
100:             * @param sources  an array of source Rasters, guaranteed to provide all
101:             *                 necessary source data for computing the output.
102:             * @param dest     a WritableRaster  containing the area to be computed.
103:             * @param destRect the rectangle within dest to be processed.
104:             */
105:            protected void computeRect(Raster[] sources, WritableRaster dest,
106:                    Rectangle destRect) {
107:                // Retrieve format tags.
108:                RasterFormatTag[] formatTags = getFormatTags();
109:
110:                Raster source = sources[0];
111:
112:                // Get the source rectangle
113:                Rectangle srcRect = source.getBounds();
114:
115:                int srcRectX = srcRect.x;
116:                int srcRectY = srcRect.y;
117:
118:                RasterAccessor srcAccessor = new RasterAccessor(source,
119:                        srcRect, formatTags[0], getSource(0).getColorModel());
120:
121:                RasterAccessor dstAccessor = new RasterAccessor(dest, destRect,
122:                        formatTags[1], getColorModel());
123:
124:                int srcScanlineStride = srcAccessor.getScanlineStride();
125:                int srcPixelStride = srcAccessor.getPixelStride();
126:
127:                // Destination rectangle dimensions.
128:                int dx = destRect.x;
129:                int dy = destRect.y;
130:                int dwidth = destRect.width;
131:                int dheight = destRect.height;
132:
133:                // Precalculate the x positions and store them in an array.
134:                int[] xvalues = new int[dwidth];
135:
136:                long sxNum = dx, sxDenom = 1;
137:
138:                // Subtract the X translation factor sx -= transX
139:                sxNum = sxNum * transXRationalDenom - transXRationalNum
140:                        * sxDenom;
141:                sxDenom *= transXRationalDenom;
142:
143:                // Add 0.5
144:                sxNum = 2 * sxNum + sxDenom;
145:                sxDenom *= 2;
146:
147:                // Multply by invScaleX
148:                sxNum *= invScaleXRationalNum;
149:                sxDenom *= invScaleXRationalDenom;
150:
151:                // Separate the x source coordinate into integer and fractional part
152:                // int part is floor(sx), frac part is sx - floor(sx)
153:                int srcXInt = Rational.floor(sxNum, sxDenom);
154:                long srcXFrac = sxNum % sxDenom;
155:                if (srcXInt < 0) {
156:                    srcXFrac = sxDenom + srcXFrac;
157:                }
158:
159:                // Normalize - Get a common denominator for the fracs of 
160:                // src and invScaleX
161:                long commonXDenom = sxDenom * invScaleXRationalDenom;
162:                srcXFrac *= invScaleXRationalDenom;
163:                long newInvScaleXFrac = invScaleXFrac * sxDenom;
164:
165:                for (int i = 0; i < dwidth; i++) {
166:
167:                    // Calculate the position
168:                    xvalues[i] = (srcXInt - srcRectX) * srcPixelStride;
169:
170:                    // Move onto the next source pixel.
171:
172:                    // Add the integral part of invScaleX to the integral part
173:                    // of srcX
174:                    srcXInt += invScaleXInt;
175:
176:                    // Add the fractional part of invScaleX to the fractional part
177:                    // of srcX
178:                    srcXFrac += newInvScaleXFrac;
179:
180:                    // If the fractional part is now greater than equal to the
181:                    // denominator, divide so as to reduce the numerator to be less
182:                    // than the denominator and add the overflow to the integral part.
183:                    if (srcXFrac >= commonXDenom) {
184:                        srcXInt += 1;
185:                        srcXFrac -= commonXDenom;
186:                    }
187:                }
188:
189:                // Precalculate the y positions and store them in an array.       
190:                int[] yvalues = new int[dheight];
191:
192:                long syNum = dy, syDenom = 1;
193:
194:                // Subtract the X translation factor sy -= transY
195:                syNum = syNum * transYRationalDenom - transYRationalNum
196:                        * syDenom;
197:                syDenom *= transYRationalDenom;
198:
199:                // Add 0.5
200:                syNum = 2 * syNum + syDenom;
201:                syDenom *= 2;
202:
203:                // Multply by invScaleX
204:                syNum *= invScaleYRationalNum;
205:                syDenom *= invScaleYRationalDenom;
206:
207:                // Separate the x source coordinate into integer and fractional part
208:                int srcYInt = Rational.floor(syNum, syDenom);
209:                long srcYFrac = syNum % syDenom;
210:                if (srcYInt < 0) {
211:                    srcYFrac = syDenom + srcYFrac;
212:                }
213:
214:                // Normalize - Get a common denominator for the fracs of 
215:                // src and invScaleY
216:                long commonYDenom = syDenom * invScaleYRationalDenom;
217:                srcYFrac *= invScaleYRationalDenom;
218:                long newInvScaleYFrac = invScaleYFrac * syDenom;
219:
220:                for (int i = 0; i < dheight; i++) {
221:
222:                    // Calculate the position
223:                    yvalues[i] = (srcYInt - srcRectY) * srcScanlineStride;
224:
225:                    // Move onto the next source pixel.
226:
227:                    // Add the integral part of invScaleY to the integral part
228:                    // of srcY
229:                    srcYInt += invScaleYInt;
230:
231:                    // Add the fractional part of invScaleY to the fractional part
232:                    // of srcY
233:                    srcYFrac += newInvScaleYFrac;
234:
235:                    // If the fractional part is now greater than equal to the
236:                    // denominator, divide so as to reduce the numerator to be less 
237:                    // than the denominator and add the overflow to the integral part.
238:                    if (srcYFrac >= commonYDenom) {
239:                        srcYInt += 1;
240:                        srcYFrac -= commonYDenom;
241:                    }
242:                }
243:
244:                switch (dstAccessor.getDataType()) {
245:
246:                case DataBuffer.TYPE_BYTE:
247:                    byteLoop(srcAccessor, destRect, dstAccessor, xvalues,
248:                            yvalues);
249:                    break;
250:
251:                case DataBuffer.TYPE_SHORT:
252:                case DataBuffer.TYPE_USHORT:
253:                    shortLoop(srcAccessor, destRect, dstAccessor, xvalues,
254:                            yvalues);
255:                    break;
256:
257:                case DataBuffer.TYPE_INT:
258:                    intLoop(srcAccessor, destRect, dstAccessor, xvalues,
259:                            yvalues);
260:                    break;
261:
262:                case DataBuffer.TYPE_FLOAT:
263:                    floatLoop(srcAccessor, destRect, dstAccessor, xvalues,
264:                            yvalues);
265:                    break;
266:
267:                case DataBuffer.TYPE_DOUBLE:
268:                    doubleLoop(srcAccessor, destRect, dstAccessor, xvalues,
269:                            yvalues);
270:                    break;
271:
272:                default:
273:                    throw new RuntimeException(JaiI18N
274:                            .getString("OrderedDitherOpImage0"));
275:                }
276:
277:                // If the RasterAccessor object set up a temporary buffer for the 
278:                // op to write to, tell the RasterAccessor to write that data
279:                // to the raster no that we're done with it.
280:                if (dstAccessor.isDataCopy()) {
281:                    dstAccessor.clampDataArrays();
282:                    dstAccessor.copyDataToRaster();
283:                }
284:            }
285:
286:            private void byteLoop(RasterAccessor src, Rectangle dstRect,
287:                    RasterAccessor dst, int xvalues[], int yvalues[]) {
288:
289:                int dwidth = dstRect.width;
290:                int dheight = dstRect.height;
291:
292:                // Get destination related variables.
293:                byte dstDataArrays[][] = dst.getByteDataArrays();
294:                int dstBandOffsets[] = dst.getBandOffsets();
295:                int dstPixelStride = dst.getPixelStride();
296:                int dstScanlineStride = dst.getScanlineStride();
297:                int dnumBands = dst.getNumBands();
298:
299:                // Get source related variables.
300:                int bandOffsets[] = src.getBandOffsets();
301:                byte srcDataArrays[][] = src.getByteDataArrays();
302:
303:                int dstPixelOffset;
304:                int dstOffset = 0;
305:                int posy, posx, pos;
306:
307:                int dstScanlineOffset;
308:                // For each band
309:                for (int k = 0; k < dnumBands; k++) {
310:                    byte dstData[] = dstDataArrays[k];
311:                    byte srcData[] = srcDataArrays[k];
312:                    int bandOffset = bandOffsets[k];
313:                    dstScanlineOffset = dstBandOffsets[k];
314:                    for (int j = 0; j < dheight; j++) {
315:                        dstPixelOffset = dstScanlineOffset;
316:                        posy = yvalues[j] + bandOffset;
317:                        for (int i = 0; i < dwidth; i++) {
318:                            posx = xvalues[i];
319:                            pos = posx + posy;
320:                            dstData[dstPixelOffset] = srcData[pos];
321:                            dstPixelOffset += dstPixelStride;
322:                        }
323:                        dstScanlineOffset += dstScanlineStride;
324:                    }
325:                }
326:            }
327:
328:            private void shortLoop(RasterAccessor src, Rectangle dstRect,
329:                    RasterAccessor dst, int xvalues[], int yvalues[]) {
330:
331:                int dwidth = dstRect.width;
332:                int dheight = dstRect.height;
333:
334:                // Get destination related variables.
335:                short dstDataArrays[][] = dst.getShortDataArrays();
336:                int dstBandOffsets[] = dst.getBandOffsets();
337:                int dstPixelStride = dst.getPixelStride();
338:                int dstScanlineStride = dst.getScanlineStride();
339:                int dnumBands = dst.getNumBands();
340:
341:                // Get source related variables.
342:                int bandOffsets[] = src.getBandOffsets();
343:                short srcDataArrays[][] = src.getShortDataArrays();
344:
345:                int dstPixelOffset;
346:                int dstOffset = 0;
347:                int posy, posx, pos;
348:
349:                int dstScanlineOffset;
350:                // For each band
351:                for (int k = 0; k < dnumBands; k++) {
352:                    short dstData[] = dstDataArrays[k];
353:                    short srcData[] = srcDataArrays[k];
354:                    int bandOffset = bandOffsets[k];
355:                    dstScanlineOffset = dstBandOffsets[k];
356:                    for (int j = 0; j < dheight; j++) {
357:                        dstPixelOffset = dstScanlineOffset;
358:                        posy = yvalues[j] + bandOffset;
359:                        for (int i = 0; i < dwidth; i++) {
360:                            posx = xvalues[i];
361:                            pos = posx + posy;
362:                            dstData[dstPixelOffset] = srcData[pos];
363:                            dstPixelOffset += dstPixelStride;
364:                        }
365:                        dstScanlineOffset += dstScanlineStride;
366:                    }
367:                }
368:            }
369:
370:            // identical to byteLoops, except datatypes have changed.  clumsy,
371:            // but there's no other way in Java
372:            private void intLoop(RasterAccessor src, Rectangle dstRect,
373:                    RasterAccessor dst, int xvalues[], int yvalues[]) {
374:
375:                int dwidth = dstRect.width;
376:                int dheight = dstRect.height;
377:
378:                int dnumBands = dst.getNumBands();
379:                int dstDataArrays[][] = dst.getIntDataArrays();
380:                int dstBandOffsets[] = dst.getBandOffsets();
381:                int dstPixelStride = dst.getPixelStride();
382:                int dstScanlineStride = dst.getScanlineStride();
383:
384:                int bandOffsets[] = src.getBandOffsets();
385:                int srcDataArrays[][] = src.getIntDataArrays();
386:
387:                int dstPixelOffset;
388:                int dstOffset = 0;
389:                int posy, posx, pos;
390:
391:                int dstScanlineOffset;
392:                // For each band
393:                for (int k = 0; k < dnumBands; k++) {
394:                    int dstData[] = dstDataArrays[k];
395:                    int srcData[] = srcDataArrays[k];
396:                    int bandOffset = bandOffsets[k];
397:                    dstScanlineOffset = dstBandOffsets[k];
398:                    for (int j = 0; j < dheight; j++) {
399:                        dstPixelOffset = dstScanlineOffset;
400:                        posy = yvalues[j] + bandOffset;
401:                        for (int i = 0; i < dwidth; i++) {
402:                            posx = xvalues[i];
403:                            pos = posx + posy;
404:                            dstData[dstPixelOffset] = srcData[pos];
405:                            dstPixelOffset += dstPixelStride;
406:                        }
407:                        dstScanlineOffset += dstScanlineStride;
408:                    }
409:                }
410:            }
411:
412:            // identical to byteLoop, except datatypes have changed.  clumsy,
413:            // but there's no other way in Java
414:            private void floatLoop(RasterAccessor src, Rectangle dstRect,
415:                    RasterAccessor dst, int xvalues[], int yvalues[]) {
416:
417:                int dwidth = dstRect.width;
418:                int dheight = dstRect.height;
419:
420:                int dnumBands = dst.getNumBands();
421:                float dstDataArrays[][] = dst.getFloatDataArrays();
422:                int dstBandOffsets[] = dst.getBandOffsets();
423:                int dstPixelStride = dst.getPixelStride();
424:                int dstScanlineStride = dst.getScanlineStride();
425:
426:                float srcDataArrays[][] = src.getFloatDataArrays();
427:                int bandOffsets[] = src.getBandOffsets();
428:
429:                int dstPixelOffset;
430:                int dstOffset = 0;
431:                int posy, posx, pos;
432:
433:                int dstScanlineOffset;
434:                // For each band
435:                for (int k = 0; k < dnumBands; k++) {
436:                    float dstData[] = dstDataArrays[k];
437:                    float srcData[] = srcDataArrays[k];
438:                    int bandOffset = bandOffsets[k];
439:                    dstScanlineOffset = dstBandOffsets[k];
440:                    for (int j = 0; j < dheight; j++) {
441:                        dstPixelOffset = dstScanlineOffset;
442:                        posy = yvalues[j] + bandOffset;
443:                        for (int i = 0; i < dwidth; i++) {
444:                            posx = xvalues[i];
445:                            pos = posx + posy;
446:                            dstData[dstPixelOffset] = srcData[pos];
447:                            dstPixelOffset += dstPixelStride;
448:                        }
449:                        dstScanlineOffset += dstScanlineStride;
450:                    }
451:                }
452:            }
453:
454:            // identical to byteLoop, except datatypes have changed.  clumsy,
455:            // but there's no other way in Java
456:            private void doubleLoop(RasterAccessor src, Rectangle dstRect,
457:                    RasterAccessor dst, int xvalues[], int yvalues[]) {
458:
459:                int dwidth = dstRect.width;
460:                int dheight = dstRect.height;
461:
462:                int dnumBands = dst.getNumBands();
463:                double dstDataArrays[][] = dst.getDoubleDataArrays();
464:                int dstBandOffsets[] = dst.getBandOffsets();
465:                int dstPixelStride = dst.getPixelStride();
466:                int dstScanlineStride = dst.getScanlineStride();
467:
468:                int bandOffsets[] = src.getBandOffsets();
469:                double srcDataArrays[][] = src.getDoubleDataArrays();
470:
471:                int dstPixelOffset;
472:                int dstOffset = 0;
473:                int posy, posx, pos;
474:
475:                int dstScanlineOffset;
476:                // For each band
477:                for (int k = 0; k < dnumBands; k++) {
478:                    double dstData[] = dstDataArrays[k];
479:                    double srcData[] = srcDataArrays[k];
480:                    int bandOffset = bandOffsets[k];
481:                    dstScanlineOffset = dstBandOffsets[k];
482:                    for (int j = 0; j < dheight; j++) {
483:                        dstPixelOffset = dstScanlineOffset;
484:                        posy = yvalues[j] + bandOffset;
485:                        for (int i = 0; i < dwidth; i++) {
486:                            posx = xvalues[i];
487:                            pos = posx + posy;
488:                            dstData[dstPixelOffset] = srcData[pos];
489:                            dstPixelOffset += dstPixelStride;
490:                        }
491:                        dstScanlineOffset += dstScanlineStride;
492:                    }
493:                }
494:            }
495:
496:            //     public static OpImage createTestImage(OpImageTester oit) {
497:            // 	Interpolation interp =
498:            //             Interpolation.getInstance(Interpolation.INTERP_NEAREST);
499:            //         return new ScaleNearestOpImage(oit.getSource(), null,
500:            // 				       new ImageLayout(oit.getSource()),
501:            // 				       2.5F, 2.5F, 0.0F, 0.0F,
502:            //                                        interp);
503:            //     }
504:
505:            //     public static void main(String args[]) {
506:
507:            //         String classname = "com.sun.media.jai.opimage.ScaleNearestOpImage";
508:            // 	OpImageTester.performDiagnostics(classname, args);
509:            // 	System.exit(1);
510:
511:            // 	System.out.println("ScaleOpImage Test");
512:            //         ImageLayout layout;
513:            //         OpImage src, dst;
514:            //         Rectangle rect = new Rectangle(0, 0, 5, 5);
515:
516:            // 	InterpolationNearest interp = new InterpolationNearest();
517:
518:            //         System.out.println("1. PixelInterleaved short 3-band");
519:            //         layout = OpImageTester.createImageLayout(
520:            //             0, 0, 200, 200, 0, 0, 64, 64, DataBuffer.TYPE_SHORT, 3, false);
521:            //         src = OpImageTester.createRandomOpImage(layout);
522:            //         dst = new ScaleNearestOpImage(src, null, null,
523:            //                                       2.0F, 2.0F, 0.0F, 0.0F, interp);
524:            //         OpImageTester.testOpImage(dst, rect);
525:            //         OpImageTester.timeOpImage(dst, 10);
526:
527:            //         System.out.println("2. PixelInterleaved ushort 3-band");
528:            //         layout = OpImageTester.createImageLayout(
529:            //             0, 0, 512, 512, 0, 0, 200, 200, DataBuffer.TYPE_USHORT, 3, false);
530:            //         src = OpImageTester.createRandomOpImage(layout);
531:            //         dst = new ScaleNearestOpImage(src, null, null,
532:            //                                       4.0F, 2.0F, 0.0F, 0.0F, interp);
533:            //         OpImageTester.testOpImage(dst, rect);
534:            //         OpImageTester.timeOpImage(dst, 10);
535:            //     }
536:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.