Source Code Cross Referenced for WarpNearestOpImage.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » com » sun » media » jai » opimage » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » com.sun.media.jai.opimage 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: WarpNearestOpImage.java,v $
003:         *
004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Use is subject to license terms.
007:         *
008:         * $Revision: 1.1 $
009:         * $Date: 2005/02/11 04:56:47 $
010:         * $State: Exp $
011:         */
012:        package com.sun.media.jai.opimage;
013:
014:        import java.awt.Rectangle;
015:        import java.awt.image.ColorModel;
016:        import java.awt.image.DataBuffer;
017:        import java.awt.image.IndexColorModel;
018:        import java.awt.image.RenderedImage;
019:        import java.awt.image.WritableRaster;
020:        import javax.media.jai.ImageLayout;
021:        import javax.media.jai.Interpolation;
022:        import javax.media.jai.PlanarImage;
023:        import javax.media.jai.RasterAccessor;
024:        import javax.media.jai.RasterFormatTag;
025:        import javax.media.jai.RasterFormatTag;
026:        import java.util.Map;
027:        import javax.media.jai.Warp;
028:        import javax.media.jai.WarpOpImage;
029:        import javax.media.jai.iterator.RandomIter;
030:        import javax.media.jai.iterator.RandomIterFactory;
031:
032:        /**
033:         * An <code>OpImage</code> implementing the general "Warp" operation as
034:         * described in <code>javax.media.jai.operator.WarpDescriptor</code>.
035:         * It supports the nearest-neighbor interpolation.
036:         *
037:         * <p>The layout for the destination image may be specified via the
038:         * <code>ImageLayout</code> parameter. However, only those settings
039:         * suitable for this operation will be used. The unsuitable settings
040:         * will be replaced by default suitable values.
041:         *
042:         * @since EA2
043:         * @see javax.media.jai.Warp
044:         * @see javax.media.jai.WarpOpImage
045:         * @see javax.media.jai.operator.WarpDescriptor
046:         * @see WarpRIF
047:         *
048:         */
049:        final class WarpNearestOpImage extends WarpOpImage {
050:
051:            /**
052:             * Constructs a WarpNearestOpImage.
053:             *
054:             * @param source  The source image.
055:             * @param layout  The destination image layout.
056:             * @param warp    An object defining the warp algorithm.
057:             * @param interp  An object describing the interpolation method.
058:             */
059:            public WarpNearestOpImage(RenderedImage source, Map config,
060:                    ImageLayout layout, Warp warp, Interpolation interp,
061:                    double[] backgroundValues) {
062:                super (source, layout, config, false, null, // extender
063:                        interp, warp, backgroundValues);
064:
065:                /*
066:                 * If the source has IndexColorModel, override the default setting
067:                 * in OpImage. The dest shall have exactly the same SampleModel and
068:                 * ColorModel as the source.
069:                 * Note, in this case, the source should have an integral data type.
070:                 */
071:                ColorModel srcColorModel = source.getColorModel();
072:                if (srcColorModel instanceof  IndexColorModel) {
073:                    sampleModel = source.getSampleModel()
074:                            .createCompatibleSampleModel(tileWidth, tileHeight);
075:                    colorModel = srcColorModel;
076:                }
077:            }
078:
079:            /** Warps a rectangle. */
080:            protected void computeRect(PlanarImage[] sources,
081:                    WritableRaster dest, Rectangle destRect) {
082:                // Retrieve format tags.
083:                RasterFormatTag[] formatTags = getFormatTags();
084:
085:                RasterAccessor d = new RasterAccessor(dest, destRect,
086:                        formatTags[1], getColorModel());
087:
088:                switch (d.getDataType()) {
089:                case DataBuffer.TYPE_BYTE:
090:                    computeRectByte(sources[0], d);
091:                    break;
092:                case DataBuffer.TYPE_USHORT:
093:                    computeRectUShort(sources[0], d);
094:                    break;
095:                case DataBuffer.TYPE_SHORT:
096:                    computeRectShort(sources[0], d);
097:                    break;
098:                case DataBuffer.TYPE_INT:
099:                    computeRectInt(sources[0], d);
100:                    break;
101:                case DataBuffer.TYPE_FLOAT:
102:                    computeRectFloat(sources[0], d);
103:                    break;
104:                case DataBuffer.TYPE_DOUBLE:
105:                    computeRectDouble(sources[0], d);
106:                    break;
107:                }
108:
109:                if (d.isDataCopy()) {
110:                    d.clampDataArrays();
111:                    d.copyDataToRaster();
112:                }
113:            }
114:
115:            private void computeRectByte(PlanarImage src, RasterAccessor dst) {
116:                RandomIter iter = RandomIterFactory
117:                        .create(src, src.getBounds());
118:
119:                int minX = src.getMinX();
120:                int maxX = src.getMaxX();
121:                int minY = src.getMinY();
122:                int maxY = src.getMaxY();
123:
124:                int dstWidth = dst.getWidth();
125:                int dstHeight = dst.getHeight();
126:                int dstBands = dst.getNumBands();
127:
128:                int lineStride = dst.getScanlineStride();
129:                int pixelStride = dst.getPixelStride();
130:                int[] bandOffsets = dst.getBandOffsets();
131:                byte[][] data = dst.getByteDataArrays();
132:
133:                float[] warpData = new float[2 * dstWidth];
134:
135:                int lineOffset = 0;
136:
137:                byte[] backgroundByte = new byte[dstBands];
138:                for (int i = 0; i < dstBands; i++)
139:                    backgroundByte[i] = (byte) backgroundValues[i];
140:
141:                for (int h = 0; h < dstHeight; h++) {
142:                    int pixelOffset = lineOffset;
143:                    lineOffset += lineStride;
144:
145:                    warp.warpRect(dst.getX(), dst.getY() + h, dstWidth, 1,
146:                            warpData);
147:                    int count = 0;
148:                    for (int w = 0; w < dstWidth; w++) {
149:                        /*
150:                         * The warp object subtract 0.5 from backward mapped
151:                         * source coordinate. Need to do a round to get the
152:                         * nearest neighbor. This is different from the standard
153:                         * nearest implementation.
154:                         */
155:                        int sx = round(warpData[count++]);
156:                        int sy = round(warpData[count++]);
157:
158:                        if (sx < minX || sx >= maxX || sy < minY || sy >= maxY) {
159:                            /* Fill with a background color. */
160:                            if (setBackground) {
161:                                for (int b = 0; b < dstBands; b++) {
162:                                    data[b][pixelOffset + bandOffsets[b]] = backgroundByte[b];
163:                                }
164:                            }
165:                        } else {
166:                            for (int b = 0; b < dstBands; b++) {
167:                                data[b][pixelOffset + bandOffsets[b]] = (byte) (iter
168:                                        .getSample(sx, sy, b) & 0xFF);
169:                            }
170:                        }
171:
172:                        pixelOffset += pixelStride;
173:                    }
174:                }
175:            }
176:
177:            private void computeRectUShort(PlanarImage src, RasterAccessor dst) {
178:                RandomIter iter = RandomIterFactory
179:                        .create(src, src.getBounds());
180:
181:                int minX = src.getMinX();
182:                int maxX = src.getMaxX();
183:                int minY = src.getMinY();
184:                int maxY = src.getMaxY();
185:
186:                int dstWidth = dst.getWidth();
187:                int dstHeight = dst.getHeight();
188:                int dstBands = dst.getNumBands();
189:
190:                int lineStride = dst.getScanlineStride();
191:                int pixelStride = dst.getPixelStride();
192:                int[] bandOffsets = dst.getBandOffsets();
193:                short[][] data = dst.getShortDataArrays();
194:
195:                float[] warpData = new float[2 * dstWidth];
196:
197:                int lineOffset = 0;
198:
199:                short[] backgroundUShort = new short[dstBands];
200:                for (int i = 0; i < dstBands; i++)
201:                    backgroundUShort[i] = (short) backgroundValues[i];
202:
203:                for (int h = 0; h < dstHeight; h++) {
204:                    int pixelOffset = lineOffset;
205:                    lineOffset += lineStride;
206:
207:                    warp.warpRect(dst.getX(), dst.getY() + h, dstWidth, 1,
208:                            warpData);
209:                    int count = 0;
210:                    for (int w = 0; w < dstWidth; w++) {
211:                        /*
212:                         * The warp object subtract 0.5 from backward mapped
213:                         * source coordinate. Need to do a round to get the
214:                         * nearest neighbor. This is different from the standard
215:                         * nearest implementation.
216:                         */
217:                        int sx = round(warpData[count++]);
218:                        int sy = round(warpData[count++]);
219:
220:                        if (sx < minX || sx >= maxX || sy < minY || sy >= maxY) {
221:                            /* Fill with a background color. */
222:                            if (setBackground) {
223:                                for (int b = 0; b < dstBands; b++) {
224:                                    data[b][pixelOffset + bandOffsets[b]] = backgroundUShort[b];
225:                                }
226:                            }
227:                        } else {
228:                            for (int b = 0; b < dstBands; b++) {
229:                                data[b][pixelOffset + bandOffsets[b]] = (short) (iter
230:                                        .getSample(sx, sy, b) & 0xFFFF);
231:                            }
232:                        }
233:
234:                        pixelOffset += pixelStride;
235:                    }
236:                }
237:            }
238:
239:            private void computeRectShort(PlanarImage src, RasterAccessor dst) {
240:                RandomIter iter = RandomIterFactory
241:                        .create(src, src.getBounds());
242:
243:                int minX = src.getMinX();
244:                int maxX = src.getMaxX();
245:                int minY = src.getMinY();
246:                int maxY = src.getMaxY();
247:
248:                int dstWidth = dst.getWidth();
249:                int dstHeight = dst.getHeight();
250:                int dstBands = dst.getNumBands();
251:
252:                int lineStride = dst.getScanlineStride();
253:                int pixelStride = dst.getPixelStride();
254:                int[] bandOffsets = dst.getBandOffsets();
255:                short[][] data = dst.getShortDataArrays();
256:
257:                float[] warpData = new float[2 * dstWidth];
258:
259:                int lineOffset = 0;
260:
261:                short[] backgroundShort = new short[dstBands];
262:                for (int i = 0; i < dstBands; i++)
263:                    backgroundShort[i] = (short) backgroundValues[i];
264:
265:                for (int h = 0; h < dstHeight; h++) {
266:                    int pixelOffset = lineOffset;
267:                    lineOffset += lineStride;
268:
269:                    warp.warpRect(dst.getX(), dst.getY() + h, dstWidth, 1,
270:                            warpData);
271:                    int count = 0;
272:                    for (int w = 0; w < dstWidth; w++) {
273:                        /*
274:                         * The warp object subtract 0.5 from backward mapped
275:                         * source coordinate. Need to do a round to get the
276:                         * nearest neighbor. This is different from the standard
277:                         * nearest implementation.
278:                         */
279:                        int sx = round(warpData[count++]);
280:                        int sy = round(warpData[count++]);
281:
282:                        if (sx < minX || sx >= maxX || sy < minY || sy >= maxY) {
283:                            /* Fill with a background color. */
284:                            if (setBackground) {
285:                                for (int b = 0; b < dstBands; b++) {
286:                                    data[b][pixelOffset + bandOffsets[b]] = backgroundShort[b];
287:                                }
288:                            }
289:                        } else {
290:                            for (int b = 0; b < dstBands; b++) {
291:                                data[b][pixelOffset + bandOffsets[b]] = (short) iter
292:                                        .getSample(sx, sy, b);
293:                            }
294:                        }
295:
296:                        pixelOffset += pixelStride;
297:                    }
298:                }
299:            }
300:
301:            private void computeRectInt(PlanarImage src, RasterAccessor dst) {
302:                RandomIter iter = RandomIterFactory
303:                        .create(src, src.getBounds());
304:
305:                int minX = src.getMinX();
306:                int maxX = src.getMaxX();
307:                int minY = src.getMinY();
308:                int maxY = src.getMaxY();
309:
310:                int dstWidth = dst.getWidth();
311:                int dstHeight = dst.getHeight();
312:                int dstBands = dst.getNumBands();
313:
314:                int lineStride = dst.getScanlineStride();
315:                int pixelStride = dst.getPixelStride();
316:                int[] bandOffsets = dst.getBandOffsets();
317:                int[][] data = dst.getIntDataArrays();
318:
319:                float[] warpData = new float[2 * dstWidth];
320:
321:                int lineOffset = 0;
322:
323:                int[] backgroundInt = new int[dstBands];
324:                for (int i = 0; i < dstBands; i++)
325:                    backgroundInt[i] = (int) backgroundValues[i];
326:
327:                for (int h = 0; h < dstHeight; h++) {
328:                    int pixelOffset = lineOffset;
329:                    lineOffset += lineStride;
330:
331:                    warp.warpRect(dst.getX(), dst.getY() + h, dstWidth, 1,
332:                            warpData);
333:                    int count = 0;
334:                    for (int w = 0; w < dstWidth; w++) {
335:                        /*
336:                         * The warp object subtract 0.5 from backward mapped
337:                         * source coordinate. Need to do a round to get the
338:                         * nearest neighbor. This is different from the standard
339:                         * nearest implementation.
340:                         */
341:                        int sx = round(warpData[count++]);
342:                        int sy = round(warpData[count++]);
343:
344:                        if (sx < minX || sx >= maxX || sy < minY || sy >= maxY) {
345:                            /* Fill with a background color. */
346:                            if (setBackground) {
347:                                for (int b = 0; b < dstBands; b++) {
348:                                    data[b][pixelOffset + bandOffsets[b]] = backgroundInt[b];
349:                                }
350:                            }
351:                        } else {
352:                            for (int b = 0; b < dstBands; b++) {
353:                                data[b][pixelOffset + bandOffsets[b]] = iter
354:                                        .getSample(sx, sy, b);
355:                            }
356:                        }
357:
358:                        pixelOffset += pixelStride;
359:                    }
360:                }
361:            }
362:
363:            private void computeRectFloat(PlanarImage src, RasterAccessor dst) {
364:                RandomIter iter = RandomIterFactory
365:                        .create(src, src.getBounds());
366:
367:                int minX = src.getMinX();
368:                int maxX = src.getMaxX();
369:                int minY = src.getMinY();
370:                int maxY = src.getMaxY();
371:
372:                int dstWidth = dst.getWidth();
373:                int dstHeight = dst.getHeight();
374:                int dstBands = dst.getNumBands();
375:
376:                int lineStride = dst.getScanlineStride();
377:                int pixelStride = dst.getPixelStride();
378:                int[] bandOffsets = dst.getBandOffsets();
379:                float[][] data = dst.getFloatDataArrays();
380:
381:                float[] warpData = new float[2 * dstWidth];
382:
383:                int lineOffset = 0;
384:
385:                float[] backgroundFloat = new float[dstBands];
386:                for (int i = 0; i < dstBands; i++)
387:                    backgroundFloat[i] = (float) backgroundValues[i];
388:
389:                for (int h = 0; h < dstHeight; h++) {
390:                    int pixelOffset = lineOffset;
391:                    lineOffset += lineStride;
392:
393:                    warp.warpRect(dst.getX(), dst.getY() + h, dstWidth, 1,
394:                            warpData);
395:                    int count = 0;
396:                    for (int w = 0; w < dstWidth; w++) {
397:                        /*
398:                         * The warp object subtract 0.5 from backward mapped
399:                         * source coordinate. Need to do a round to get the
400:                         * nearest neighbor. This is different from the standard
401:                         * nearest implementation.
402:                         */
403:                        int sx = round(warpData[count++]);
404:                        int sy = round(warpData[count++]);
405:
406:                        if (sx < minX || sx >= maxX || sy < minY || sy >= maxY) {
407:                            /* Fill with a background color. */
408:                            if (setBackground) {
409:                                for (int b = 0; b < dstBands; b++) {
410:                                    data[b][pixelOffset + bandOffsets[b]] = backgroundFloat[b];
411:                                }
412:                            }
413:                        } else {
414:                            for (int b = 0; b < dstBands; b++) {
415:                                data[b][pixelOffset + bandOffsets[b]] = iter
416:                                        .getSampleFloat(sx, sy, b);
417:                            }
418:                        }
419:
420:                        pixelOffset += pixelStride;
421:                    }
422:                }
423:            }
424:
425:            private void computeRectDouble(PlanarImage src, RasterAccessor dst) {
426:                RandomIter iter = RandomIterFactory
427:                        .create(src, src.getBounds());
428:
429:                int minX = src.getMinX();
430:                int maxX = src.getMaxX();
431:                int minY = src.getMinY();
432:                int maxY = src.getMaxY();
433:
434:                int dstWidth = dst.getWidth();
435:                int dstHeight = dst.getHeight();
436:                int dstBands = dst.getNumBands();
437:
438:                int lineStride = dst.getScanlineStride();
439:                int pixelStride = dst.getPixelStride();
440:                int[] bandOffsets = dst.getBandOffsets();
441:                double[][] data = dst.getDoubleDataArrays();
442:
443:                float[] warpData = new float[2 * dstWidth];
444:
445:                int lineOffset = 0;
446:
447:                for (int h = 0; h < dstHeight; h++) {
448:                    int pixelOffset = lineOffset;
449:                    lineOffset += lineStride;
450:
451:                    warp.warpRect(dst.getX(), dst.getY() + h, dstWidth, 1,
452:                            warpData);
453:                    int count = 0;
454:                    for (int w = 0; w < dstWidth; w++) {
455:                        /*
456:                         * The warp object subtract 0.5 from backward mapped
457:                         * source coordinate. Need to do a round to get the
458:                         * nearest neighbor. This is different from the standard
459:                         * nearest implementation.
460:                         */
461:                        int sx = round(warpData[count++]);
462:                        int sy = round(warpData[count++]);
463:
464:                        if (sx < minX || sx >= maxX || sy < minY || sy >= maxY) {
465:                            /* Fill with a background color. */
466:                            if (setBackground) {
467:                                for (int b = 0; b < dstBands; b++) {
468:                                    data[b][pixelOffset + bandOffsets[b]] = backgroundValues[b];
469:                                }
470:                            }
471:                        } else {
472:                            for (int b = 0; b < dstBands; b++) {
473:                                data[b][pixelOffset + bandOffsets[b]] = iter
474:                                        .getSampleDouble(sx, sy, b);
475:                            }
476:                        }
477:
478:                        pixelOffset += pixelStride;
479:                    }
480:                }
481:            }
482:
483:            /** Returns the "round" value of a float. */
484:            private static final int round(float f) {
485:                return f >= 0 ? (int) (f + 0.5F) : (int) (f - 0.5F);
486:            }
487:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.