Source Code Cross Referenced for KBCubicSplineSegment.java in  » 6.0-JDK-Modules » java-3d » com » sun » j3d » utils » behaviors » interpolators » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » java 3d » com.sun.j3d.utils.behaviors.interpolators 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: KBCubicSplineSegment.java,v $
003:         *
004:         * Copyright (c) 2007 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Redistribution and use in source and binary forms, with or without
007:         * modification, are permitted provided that the following conditions
008:         * are met:
009:         *
010:         * - Redistribution of source code must retain the above copyright
011:         *   notice, this list of conditions and the following disclaimer.
012:         *
013:         * - Redistribution in binary form must reproduce the above copyright
014:         *   notice, this list of conditions and the following disclaimer in
015:         *   the documentation and/or other materials provided with the
016:         *   distribution.
017:         *
018:         * Neither the name of Sun Microsystems, Inc. or the names of
019:         * contributors may be used to endorse or promote products derived
020:         * from this software without specific prior written permission.
021:         *
022:         * This software is provided "AS IS," without a warranty of any
023:         * kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
024:         * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
025:         * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
026:         * EXCLUDED. SUN MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL
027:         * NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF
028:         * USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS
029:         * DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
030:         * ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
031:         * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
032:         * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR
033:         * INABILITY TO USE THIS SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
034:         * POSSIBILITY OF SUCH DAMAGES.
035:         *
036:         * You acknowledge that this software is not designed, licensed or
037:         * intended for use in the design, construction, operation or
038:         * maintenance of any nuclear facility.
039:         *
040:         * $Revision: 1.4 $
041:         * $Date: 2007/02/09 17:20:11 $
042:         * $State: Exp $
043:         */
044:
045:        package com.sun.j3d.utils.behaviors.interpolators;
046:
047:        import javax.media.j3d.*;
048:        import java.util.*;
049:        import javax.vecmath.*;
050:
051:        /**
052:         * The KBCubicSplineSegment class creates the representation of a 
053:         * Kochanek-Bartel's (also known as the TCB or Tension-Continuity-Bias
054:         * Spline.  This class takes 4 key frames as its input (using KBKeyFrame). 
055:         * If interpolating between the i<sup>th</sup> and (i+1)<sup>th</sup> key 
056:         * frame then the four key frames that need to be specified are the 
057:         * (i-1)<sup>th</sup>, i<sup>th</sup>, (i+1)<sup>th</sup> 
058:         * and (i+2)<sup>th</sup>  keyframes in order. The KBCubicSegmentClass
059:         * then pre-computes the hermite interpolation basis coefficients if the 
060:         * (i+1)<sup>th</sup> frame has the linear flag set to zero. These are used to 
061:         * calculate the interpolated position, scale and quaternions when they 
062:         * requested by the user using the getInterpolated* methods. If the the 
063:         * (i+1)<sup>th</sup> frame's linear flag is set to 1 then the class uses 
064:         * linear interpolation to calculate the interpolated position, scale, heading 
065:         * pitch and bank it returns through the getInterpolated* methods. 
066:         *
067:         * @since Java3D 1.2
068:         */
069:        public class KBCubicSplineSegment {
070:
071:            // Legendre polynomial information for Gaussian quadrature of speed
072:            // for the domain [0,u], 0 <= u <= 1.
073:
074:            // Legendre roots mapped to (root+1)/2
075:            static final double modRoot[] = { 0.046910077, 0.230765345, 0.5,
076:                    0.769234655, 0.953089922 };
077:
078:            // original coefficients divided by 2
079:            static final double modCoeff[] = { 0.118463442, 0.239314335,
080:                    0.284444444, 0.239314335, 0.118463442 };
081:
082:            // Key Frames
083:            KBKeyFrame[] keyFrame = new KBKeyFrame[4];
084:
085:            // H.C 
086:            Point3f c0, c1, c2, c3; // coefficients for position
087:            Point3f e0, e1, e2, e3; // coefficients for scale 
088:            float h0, h1, h2, h3; // coefficients for heading  
089:            float p0, p1, p2, p3; // coefficients for pitch 
090:            float b0, b1, b2, b3; // coefficients for bank 
091:
092:            // variables for destination derivative
093:            float one_minus_t_in;
094:            float one_minus_c_in;
095:            float one_minus_b_in;
096:            float one_plus_c_in;
097:            float one_plus_b_in;
098:            float ddb;
099:            float dda;
100:
101:            // variables for source derivative
102:            float one_minus_t_out;
103:            float one_minus_c_out;
104:            float one_minus_b_out;
105:            float one_plus_c_out;
106:            float one_plus_b_out;
107:            float dsb;
108:            float dsa;
109:
110:            // Length of the spline segment
111:            float length;
112:
113:            // interpolation type
114:            int linear;
115:
116:            // Default constructor 
117:            KBCubicSplineSegment() {
118:
119:                length = 0;
120:
121:            }
122:
123:            /**
124:             * Creates a cubic spline segment between two key frames using the 
125:             * key frames provided. If creating a spline between the ith frame and 
126:             * the (i+1)<sup>th</sup> frame then send down the (i - 1)<sup>th</sup>, 
127:             * i<sup>th</sup> , (i+1)<sup>th</sup> and the (i+2)<sup>th</sup> key 
128:             * frames.  
129:             * 
130:             * @param kf0 (i - 1)<sup>th</sup> Key Frame
131:             * @param kf1 i<sup>th</sup> Key Frame 
132:             * @param kf2 (i + 1)<sup>th</sup> Key Frame
133:             * @param kf3 (i + 2)<sup>th</sup> Key Frame 
134:             */
135:
136:            KBCubicSplineSegment(KBKeyFrame kf0, KBKeyFrame kf1,
137:                    KBKeyFrame kf2, KBKeyFrame kf3) {
138:
139:                // Copy KeyFrame information
140:                keyFrame[0] = new KBKeyFrame(kf0);
141:                keyFrame[1] = new KBKeyFrame(kf1);
142:                keyFrame[2] = new KBKeyFrame(kf2);
143:                keyFrame[3] = new KBKeyFrame(kf3);
144:
145:                // if linear interpolation is requested then just set linear flag
146:                // if spline interpolation is needed then compute spline coefficients
147:                if (kf2.linear == 1) {
148:                    this .linear = 1;
149:                } else {
150:                    this .linear = 0;
151:                    computeCommonCoefficients(kf0, kf1, kf2, kf3);
152:                    computeHermiteCoefficients(kf0, kf1, kf2, kf3);
153:                }
154:
155:                length = computeLength(1.0f);
156:                // System.out.println ("Segment length = " + length);
157:
158:            }
159:
160:            // compute the common coefficients
161:            private void computeCommonCoefficients(KBKeyFrame kf0,
162:                    KBKeyFrame kf1, KBKeyFrame kf2, KBKeyFrame kf3) {
163:
164:                // variables for destination derivative
165:                float one_minus_t_in = 1.0f - kf1.tension;
166:                float one_minus_c_in = 1.0f - kf1.continuity;
167:                float one_minus_b_in = 1.0f - kf1.bias;
168:                float one_plus_c_in = 1.0f + kf1.continuity;
169:                float one_plus_b_in = 1.0f + kf1.bias;
170:
171:                // coefficients for the incoming Tangent
172:                ddb = one_minus_t_in * one_minus_c_in * one_minus_b_in;
173:                dda = one_minus_t_in * one_plus_c_in * one_plus_b_in;
174:
175:                // variables for source derivative
176:                float one_minus_t_out = 1.0f - kf2.tension;
177:                float one_minus_c_out = 1.0f - kf2.continuity;
178:                float one_minus_b_out = 1.0f - kf2.bias;
179:                float one_plus_c_out = 1.0f + kf2.continuity;
180:                float one_plus_b_out = 1.0f + kf2.bias;
181:
182:                // coefficients for the outgoing Tangent
183:                dsb = one_minus_t_in * one_plus_c_in * one_minus_b_in;
184:                dsa = one_minus_t_in * one_minus_c_in * one_plus_b_in;
185:            }
186:
187:            // compute the hermite interpolation basis coefficients
188:            private void computeHermiteCoefficients(KBKeyFrame kf0,
189:                    KBKeyFrame kf1, KBKeyFrame kf2, KBKeyFrame kf3) {
190:
191:                Point3f deltaP = new Point3f();
192:                Point3f deltaS = new Point3f();
193:                float deltaH;
194:                float deltaT;
195:                float deltaB;
196:
197:                // Find the difference in position and scale 
198:                deltaP.x = kf2.position.x - kf1.position.x;
199:                deltaP.y = kf2.position.y - kf1.position.y;
200:                deltaP.z = kf2.position.z - kf1.position.z;
201:
202:                deltaS.x = kf2.scale.x - kf1.scale.x;
203:                deltaS.y = kf2.scale.y - kf1.scale.y;
204:                deltaS.z = kf2.scale.z - kf1.scale.z;
205:
206:                // Find the difference in heading, pitch, and bank
207:                deltaH = kf2.heading - kf1.heading;
208:                deltaT = kf2.pitch - kf1.pitch;
209:                deltaB = kf2.bank - kf1.bank;
210:
211:                // Incoming Tangent
212:                Point3f dd_pos = new Point3f();
213:                Point3f dd_scale = new Point3f();
214:                float dd_heading, dd_pitch, dd_bank;
215:
216:                // If this is the first keyframe of the animation 
217:                if (kf0.knot == kf1.knot) {
218:
219:                    float ddab = 0.5f * (dda + ddb);
220:
221:                    // Position
222:                    dd_pos.x = ddab * deltaP.x;
223:                    dd_pos.y = ddab * deltaP.y;
224:                    dd_pos.z = ddab * deltaP.z;
225:
226:                    // Scale 
227:                    dd_scale.x = ddab * deltaS.x;
228:                    dd_scale.y = ddab * deltaS.y;
229:                    dd_scale.z = ddab * deltaS.z;
230:
231:                    // Heading, Pitch and Bank
232:                    dd_heading = ddab * deltaH;
233:                    dd_pitch = ddab * deltaT;
234:                    dd_bank = ddab * deltaB;
235:
236:                } else {
237:
238:                    float adj0 = (kf1.knot - kf0.knot) / (kf2.knot - kf0.knot);
239:
240:                    // Position
241:                    dd_pos.x = adj0
242:                            * ((ddb * deltaP.x) + (dda * (kf1.position.x - kf0.position.x)));
243:                    dd_pos.y = adj0
244:                            * ((ddb * deltaP.y) + (dda * (kf1.position.y - kf0.position.y)));
245:                    dd_pos.z = adj0
246:                            * ((ddb * deltaP.z) + (dda * (kf1.position.z - kf0.position.z)));
247:
248:                    // Scale 
249:                    dd_scale.x = adj0
250:                            * ((ddb * deltaS.x) + (dda * (kf1.scale.x - kf0.scale.x)));
251:                    dd_scale.y = adj0
252:                            * ((ddb * deltaS.y) + (dda * (kf1.scale.y - kf0.scale.y)));
253:                    dd_scale.z = adj0
254:                            * ((ddb * deltaS.z) + (dda * (kf1.scale.z - kf0.scale.z)));
255:
256:                    // Heading, Pitch and Bank
257:                    dd_heading = adj0
258:                            * ((ddb * deltaH) + (dda * (kf1.heading - kf0.heading)));
259:                    dd_pitch = adj0
260:                            * ((ddb * deltaT) + (dda * (kf1.pitch - kf0.pitch)));
261:                    dd_bank = adj0
262:                            * ((ddb * deltaB) + (dda * (kf1.bank - kf0.bank)));
263:                }
264:
265:                // Outgoing Tangent
266:                Point3f ds_pos = new Point3f();
267:                Point3f ds_scale = new Point3f();
268:                float ds_heading, ds_pitch, ds_bank;
269:
270:                // If this is the last keyframe of the animation 
271:                if (kf2.knot == kf3.knot) {
272:
273:                    float dsab = 0.5f * (dsa + dsb);
274:
275:                    // Position
276:                    ds_pos.x = dsab * deltaP.x;
277:                    ds_pos.y = dsab * deltaP.y;
278:                    ds_pos.z = dsab * deltaP.z;
279:
280:                    // Scale
281:                    ds_scale.x = dsab * deltaS.x;
282:                    ds_scale.y = dsab * deltaS.y;
283:                    ds_scale.z = dsab * deltaS.z;
284:
285:                    // Heading, Pitch and Bank
286:                    ds_heading = dsab * deltaH;
287:                    ds_pitch = dsab * deltaT;
288:                    ds_bank = dsab * deltaB;
289:
290:                } else {
291:
292:                    float adj1 = (kf2.knot - kf1.knot) / (kf3.knot - kf1.knot);
293:
294:                    // Position
295:                    ds_pos.x = adj1
296:                            * ((dsb * (kf3.position.x - kf2.position.x)) + (dsa * deltaP.x));
297:                    ds_pos.y = adj1
298:                            * ((dsb * (kf3.position.y - kf2.position.y)) + (dsa * deltaP.y));
299:                    ds_pos.z = adj1
300:                            * ((dsb * (kf3.position.z - kf2.position.z)) + (dsa * deltaP.z));
301:
302:                    // Scale
303:                    ds_scale.x = adj1
304:                            * ((dsb * (kf3.scale.x - kf2.scale.x)) + (dsa * deltaS.x));
305:                    ds_scale.y = adj1
306:                            * ((dsb * (kf3.scale.y - kf2.scale.y)) + (dsa * deltaS.y));
307:                    ds_scale.z = adj1
308:                            * ((dsb * (kf3.scale.z - kf2.scale.z)) + (dsa * deltaS.z));
309:
310:                    // Heading, Pitch and Bank 
311:                    ds_heading = adj1
312:                            * ((dsb * (kf3.heading - kf2.heading)) + (dsa * deltaH));
313:                    ds_pitch = adj1
314:                            * ((dsb * (kf3.pitch - kf2.pitch)) + (dsa * deltaT));
315:                    ds_bank = adj1
316:                            * ((dsb * (kf3.bank - kf2.bank)) + (dsa * deltaB));
317:                }
318:
319:                // Calculate the coefficients of the polynomial for position
320:                c0 = new Point3f();
321:                c0.x = kf1.position.x;
322:                c0.y = kf1.position.y;
323:                c0.z = kf1.position.z;
324:
325:                c1 = new Point3f();
326:                c1.x = dd_pos.x;
327:                c1.y = dd_pos.y;
328:                c1.z = dd_pos.z;
329:
330:                c2 = new Point3f();
331:                c2.x = 3 * deltaP.x - 2 * dd_pos.x - ds_pos.x;
332:                c2.y = 3 * deltaP.y - 2 * dd_pos.y - ds_pos.y;
333:                c2.z = 3 * deltaP.z - 2 * dd_pos.z - ds_pos.z;
334:
335:                c3 = new Point3f();
336:                c3.x = -2 * deltaP.x + dd_pos.x + ds_pos.x;
337:                c3.y = -2 * deltaP.y + dd_pos.y + ds_pos.y;
338:                c3.z = -2 * deltaP.z + dd_pos.z + ds_pos.z;
339:
340:                // Calculate the coefficients of the polynomial for scale 
341:                e0 = new Point3f();
342:                e0.x = kf1.scale.x;
343:                e0.y = kf1.scale.y;
344:                e0.z = kf1.scale.z;
345:
346:                e1 = new Point3f();
347:                e1.x = dd_scale.x;
348:                e1.y = dd_scale.y;
349:                e1.z = dd_scale.z;
350:
351:                e2 = new Point3f();
352:                e2.x = 3 * deltaS.x - 2 * dd_scale.x - ds_scale.x;
353:                e2.y = 3 * deltaS.y - 2 * dd_scale.y - ds_scale.y;
354:                e2.z = 3 * deltaS.z - 2 * dd_scale.z - ds_scale.z;
355:
356:                e3 = new Point3f();
357:                e3.x = -2 * deltaS.x + dd_scale.x + ds_scale.x;
358:                e3.y = -2 * deltaS.y + dd_scale.y + ds_scale.y;
359:                e3.z = -2 * deltaS.z + dd_scale.z + ds_scale.z;
360:
361:                // Calculate the coefficients of the polynomial for heading, pitch 
362:                // and bank
363:                h0 = kf1.heading;
364:                p0 = kf1.pitch;
365:                b0 = kf1.bank;
366:
367:                h1 = dd_heading;
368:                p1 = dd_pitch;
369:                b1 = dd_bank;
370:
371:                h2 = 3 * deltaH - 2 * dd_heading - ds_heading;
372:                p2 = 3 * deltaT - 2 * dd_pitch - ds_pitch;
373:                b2 = 3 * deltaB - 2 * dd_bank - ds_bank;
374:
375:                h3 = -2 * deltaH + dd_heading + ds_heading;
376:                p3 = -2 * deltaT + dd_pitch + ds_pitch;
377:                b3 = -2 * deltaB + dd_bank + ds_bank;
378:            }
379:
380:            /**
381:             * Computes the length of the curve at a given point between
382:             * key frames.
383:             * @param u specifies the point between keyframes where 0 <= u <= 1. 
384:             */
385:
386:            public float computeLength(float u) {
387:
388:                float result = 0f;
389:
390:                // if linear interpolation
391:                if (linear == 1) {
392:                    result = u
393:                            * keyFrame[2].position
394:                                    .distance(keyFrame[1].position);
395:                } else {
396:                    // Need to transform domain [0,u] to [-1,1].  If 0 <= x <= u
397:                    // and -1 <= t <= 1, then x = u*(t+1)/2.
398:                    int degree = 5;
399:                    for (int i = 0; i < degree; i++)
400:                        result += (float) modCoeff[i]
401:                                * computeSpeed(u * (float) modRoot[i]);
402:                    result *= u;
403:                }
404:
405:                return result;
406:            }
407:
408:            // Velocity along curve
409:            private float computeSpeed(float u) {
410:                Point3f v = new Point3f();
411:
412:                v.x = c1.x + u * (2 * c2.x + 3 * u * c3.x);
413:                v.y = c1.y + u * (2 * c2.y + 3 * u * c3.y);
414:                v.z = c1.z + u * (2 * c2.z + 3 * u * c3.z);
415:
416:                return (float) (Math.sqrt(v.x * v.x + v.y * v.y + v.z * v.z));
417:            }
418:
419:            /**
420:             * Computes the interpolated scale along the curve at a given point
421:             * between key frames and returns a Point3f with the interpolated 
422:             * x, y, and z scale components. This routine uses linear
423:             * interpolation if the (i+1)<sup>th</sup> key frame's linear 
424:             * value is equal to 1. 
425:             * 
426:             * @param u specifies the point between keyframes where 0 <= u <= 1. 
427:             * @param newScale returns the interpolated x,y,z scale value in a Point3f
428:             */
429:
430:            public void getInterpolatedScale(float u, Point3f newScale) {
431:
432:                // if linear interpolation
433:                if (this .linear == 1) {
434:
435:                    newScale.x = keyFrame[1].scale.x
436:                            + ((keyFrame[2].scale.x - keyFrame[1].scale.x) * u);
437:                    newScale.y = keyFrame[1].scale.y
438:                            + ((keyFrame[2].scale.y - keyFrame[1].scale.y) * u);
439:                    newScale.z = keyFrame[1].scale.z
440:                            + ((keyFrame[2].scale.z - keyFrame[1].scale.z) * u);
441:
442:                } else {
443:
444:                    newScale.x = e0.x + u * (e1.x + u * (e2.x + u * e3.x));
445:                    newScale.y = e0.y + u * (e1.y + u * (e2.y + u * e3.y));
446:                    newScale.z = e0.z + u * (e1.z + u * (e2.z + u * e3.z));
447:
448:                }
449:            }
450:
451:            /**
452:             * Computes the interpolated position along the curve at a given point
453:             * between key frames and returns a Point3f with the interpolated 
454:             * x, y, and z scale components. This routine uses linear
455:             * interpolation if the (i+1)<sup>th</sup> key frame's linear
456:             * value is equal to 1.
457:             *
458:             * @param u specifies the point between keyframes where 0 <= u <= 1.
459:             * @param newPos returns the interpolated x,y,z position in a Point3f
460:             */
461:
462:            public void getInterpolatedPosition(float u, Point3f newPos) {
463:
464:                // if linear interpolation
465:                if (this .linear == 1) {
466:                    newPos.x = keyFrame[1].position.x
467:                            + ((keyFrame[2].position.x - keyFrame[1].position.x) * u);
468:                    newPos.y = keyFrame[1].position.y
469:                            + ((keyFrame[2].position.y - keyFrame[1].position.y) * u);
470:                    newPos.z = keyFrame[1].position.z
471:                            + ((keyFrame[2].position.z - keyFrame[1].position.z) * u);
472:                } else {
473:
474:                    newPos.x = c0.x + u * (c1.x + u * (c2.x + u * c3.x));
475:                    newPos.y = c0.y + u * (c1.y + u * (c2.y + u * c3.y));
476:                    newPos.z = c0.z + u * (c1.z + u * (c2.z + u * c3.z));
477:
478:                }
479:            }
480:
481:            /**
482:             * Computes the interpolated position along the curve at a given point
483:             * between key frames and returns a Vector3f with the interpolated 
484:             * x, y, and z scale components. This routine uses linear
485:             * interpolation if the (i+1)<sup>th</sup> key frame's linear
486:             * value is equal to 1.
487:             *
488:             * @param u specifies the point between keyframes where 0 <= u <= 1.
489:             * @param newPos returns the interpolated x,y,z position in a Vector3f. 
490:             */
491:
492:            public void getInterpolatedPositionVector(float u, Vector3f newPos) {
493:                // if linear interpolation
494:                if (this .linear == 1) {
495:                    newPos.x = keyFrame[1].position.x
496:                            + ((keyFrame[2].position.x - keyFrame[1].position.x) * u);
497:                    newPos.y = keyFrame[1].position.y
498:                            + ((keyFrame[2].position.y - keyFrame[1].position.y) * u);
499:                    newPos.z = keyFrame[1].position.z
500:                            + ((keyFrame[2].position.z - keyFrame[1].position.z) * u);
501:                } else {
502:
503:                    newPos.x = c0.x + u * (c1.x + u * (c2.x + u * c3.x));
504:                    newPos.y = c0.y + u * (c1.y + u * (c2.y + u * c3.y));
505:                    newPos.z = c0.z + u * (c1.z + u * (c2.z + u * c3.z));
506:
507:                }
508:            }
509:
510:            /**
511:             * Computes the interpolated heading along the curve at a given point
512:             * between key frames and returns the interpolated value as a float 
513:             * This routine uses linear interpolation if the (i+1)<sup>th</sup> 
514:             * key frame's linear value is equal to 1.
515:             *
516:             * @param u specifies the point between keyframes where 0 <= u <= 1.
517:             * @return returns the interpolated heading value 
518:             */
519:
520:            public float getInterpolatedHeading(float u) {
521:
522:                float newHeading;
523:
524:                // if linear interpolation
525:                if (this .linear == 1) {
526:
527:                    newHeading = keyFrame[1].heading
528:                            + ((keyFrame[2].heading - keyFrame[1].heading) * u);
529:                } else {
530:
531:                    newHeading = h0 + u * (h1 + u * (h2 + u * h3));
532:
533:                }
534:
535:                return newHeading;
536:            }
537:
538:            /**
539:             * Computes the interpolated pitch along the curve at a given point
540:             * between key frames and returns the interpolated value as a float 
541:             * This routine uses linear interpolation if the (i+1)<sup>th</sup> 
542:             * key frame's linear value is equal to 1.
543:             *
544:             * @param u specifies the point between keyframes where 0 <= u <= 1.
545:             * @return returns the interpolated pitch value 
546:             */
547:
548:            public float getInterpolatedPitch(float u) {
549:
550:                float newPitch;
551:
552:                // if linear interpolation
553:                if (this .linear == 1) {
554:
555:                    newPitch = keyFrame[1].pitch
556:                            + ((keyFrame[2].pitch - keyFrame[1].pitch) * u);
557:                } else {
558:
559:                    newPitch = p0 + u * (p1 + u * (p2 + u * p3));
560:
561:                }
562:
563:                return newPitch;
564:            }
565:
566:            /**
567:             * Computes the interpolated bank along the curve at a given point
568:             * between key frames and returns the interpolated value as a float 
569:             * This routine uses linear interpolation if the (i+1)<sup>th</sup> 
570:             * key frame's linear value is equal to 1.
571:             *
572:             * @param u specifies the point between keyframes where 0 <= u <= 1.
573:             * @return returns the interpolated bank value 
574:             */
575:
576:            public float getInterpolatedBank(float u) {
577:
578:                float newBank;
579:
580:                // if linear interpolation
581:                if (this .linear == 1) {
582:
583:                    newBank = keyFrame[1].bank
584:                            + ((keyFrame[2].bank - keyFrame[1].bank) * u);
585:                } else {
586:
587:                    newBank = b0 + u * (b1 + u * (b2 + u * b3));
588:
589:                }
590:
591:                return newBank;
592:            }
593:
594:            /**
595:             * Computes the ratio of the length of the spline from the i<sup>th</sup>
596:             * key frame to the position specified by u to the length of the entire
597:             * spline segment from the i<sup>th</sup> key frame to the (i+1)
598:             * <sup>th</sup> key frame. When the (i+1)<sup>th</sup> key frame's linear
599:             * value is equal to 1, this is meaninful otherwise it should return u. 
600:             *
601:             * @param u specifies the point between keyframes where 0 <= u <= 1.
602:             * @return the interpolated ratio 
603:             */
604:
605:            public float getInterpolatedValue(float u) {
606:                return (computeLength(u) / this.length);
607:            }
608:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.