Source Code Cross Referenced for FlatteningPathIterator.java in  » Apache-Harmony-Java-SE » java-package » java » awt » geom » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Apache Harmony Java SE » java package » java.awt.geom 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *  Licensed to the Apache Software Foundation (ASF) under one or more
003:         *  contributor license agreements.  See the NOTICE file distributed with
004:         *  this work for additional information regarding copyright ownership.
005:         *  The ASF licenses this file to You under the Apache License, Version 2.0
006:         *  (the "License"); you may not use this file except in compliance with
007:         *  the License.  You may obtain a copy of the License at
008:         *
009:         *     http://www.apache.org/licenses/LICENSE-2.0
010:         *
011:         *  Unless required by applicable law or agreed to in writing, software
012:         *  distributed under the License is distributed on an "AS IS" BASIS,
013:         *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014:         *  See the License for the specific language governing permissions and
015:         *  limitations under the License.
016:         */
017:        /**
018:         * @author Denis M. Kishenko
019:         * @version $Revision$
020:         */package java.awt.geom;
021:
022:        import java.util.NoSuchElementException;
023:
024:        import org.apache.harmony.awt.internal.nls.Messages;
025:
026:        public class FlatteningPathIterator implements  PathIterator {
027:
028:            /**
029:             * The default points buffer size
030:             */
031:            private static final int BUFFER_SIZE = 16;
032:
033:            /**
034:             * The default curve subdivision limit
035:             */
036:            private static final int BUFFER_LIMIT = 16;
037:
038:            /**
039:             * The points buffer capacity
040:             */
041:            private static final int BUFFER_CAPACITY = 16;
042:
043:            /**
044:             * The type of current segment to be flat
045:             */
046:            int bufType;
047:
048:            /**
049:             * The curve subdivision limit
050:             */
051:            int bufLimit;
052:
053:            /**
054:             * The current points buffer size
055:             */
056:            int bufSize;
057:
058:            /**
059:             * The inner cursor position in points buffer 
060:             */
061:            int bufIndex;
062:
063:            /**
064:             * The current subdivision count
065:             */
066:            int bufSubdiv;
067:
068:            /**
069:             * The points buffer 
070:             */
071:            double buf[];
072:
073:            /**
074:             * The indicator of empty points buffer
075:             */
076:            boolean bufEmpty = true;
077:
078:            /**
079:             * The source PathIterator
080:             */
081:            PathIterator p;
082:
083:            /**
084:             * The flatness of new path 
085:             */
086:            double flatness;
087:
088:            /**
089:             * The square of flatness
090:             */
091:            double flatness2;
092:
093:            /**
094:             * The x coordinate of previous path segment
095:             */
096:            double px;
097:
098:            /**
099:             * The y coordinate of previous path segment
100:             */
101:            double py;
102:
103:            /**
104:             * The tamporary buffer for getting points from PathIterator
105:             */
106:            double coords[] = new double[6];
107:
108:            public FlatteningPathIterator(PathIterator path, double flatness) {
109:                this (path, flatness, BUFFER_LIMIT);
110:            }
111:
112:            public FlatteningPathIterator(PathIterator path, double flatness,
113:                    int limit) {
114:                if (flatness < 0.0) {
115:                    // awt.206=Flatness is less then zero
116:                    throw new IllegalArgumentException(Messages
117:                            .getString("awt.206")); //$NON-NLS-1$
118:                }
119:                if (limit < 0) {
120:                    // awt.207=Limit is less then zero
121:                    throw new IllegalArgumentException(Messages
122:                            .getString("awt.207")); //$NON-NLS-1$
123:                }
124:                if (path == null) {
125:                    // awt.208=Path is null
126:                    throw new NullPointerException(Messages
127:                            .getString("awt.208")); //$NON-NLS-1$
128:                }
129:                this .p = path;
130:                this .flatness = flatness;
131:                this .flatness2 = flatness * flatness;
132:                this .bufLimit = limit;
133:                this .bufSize = Math.min(bufLimit, BUFFER_SIZE);
134:                this .buf = new double[bufSize];
135:                this .bufIndex = bufSize;
136:            }
137:
138:            public double getFlatness() {
139:                return flatness;
140:            }
141:
142:            public int getRecursionLimit() {
143:                return bufLimit;
144:            }
145:
146:            public int getWindingRule() {
147:                return p.getWindingRule();
148:            }
149:
150:            public boolean isDone() {
151:                return bufEmpty && p.isDone();
152:            }
153:
154:            /**
155:             * Calculates flat path points for current segment of the source shape.
156:             * 
157:             * Line segment is flat by itself. Flatness of quad and cubic curves evaluated by getFlatnessSq() method.  
158:             * Curves subdivided until current flatness is bigger than user defined and subdivision limit isn't exhausted.
159:             * Single source segment translated to series of buffer points. The less flatness the bigger serries.
160:             * Every currentSegment() call extract one point from the buffer. When series completed evaluate() takes next source shape segment.        
161:             */
162:            void evaluate() {
163:                if (bufEmpty) {
164:                    bufType = p.currentSegment(coords);
165:                }
166:
167:                switch (bufType) {
168:                case SEG_MOVETO:
169:                case SEG_LINETO:
170:                    px = coords[0];
171:                    py = coords[1];
172:                    break;
173:                case SEG_QUADTO:
174:                    if (bufEmpty) {
175:                        bufIndex -= 6;
176:                        buf[bufIndex + 0] = px;
177:                        buf[bufIndex + 1] = py;
178:                        System.arraycopy(coords, 0, buf, bufIndex + 2, 4);
179:                        bufSubdiv = 0;
180:                    }
181:
182:                    while (bufSubdiv < bufLimit) {
183:                        if (QuadCurve2D.getFlatnessSq(buf, bufIndex) < flatness2) {
184:                            break;
185:                        }
186:
187:                        // Realloc buffer
188:                        if (bufIndex <= 4) {
189:                            double tmp[] = new double[bufSize + BUFFER_CAPACITY];
190:                            System.arraycopy(buf, bufIndex, tmp, bufIndex
191:                                    + BUFFER_CAPACITY, bufSize - bufIndex);
192:                            buf = tmp;
193:                            bufSize += BUFFER_CAPACITY;
194:                            bufIndex += BUFFER_CAPACITY;
195:                        }
196:
197:                        QuadCurve2D.subdivide(buf, bufIndex, buf, bufIndex - 4,
198:                                buf, bufIndex);
199:
200:                        bufIndex -= 4;
201:                        bufSubdiv++;
202:                    }
203:
204:                    bufIndex += 4;
205:                    px = buf[bufIndex];
206:                    py = buf[bufIndex + 1];
207:
208:                    bufEmpty = (bufIndex == bufSize - 2);
209:                    if (bufEmpty) {
210:                        bufIndex = bufSize;
211:                        bufType = SEG_LINETO;
212:                    }
213:                    break;
214:                case SEG_CUBICTO:
215:                    if (bufEmpty) {
216:                        bufIndex -= 8;
217:                        buf[bufIndex + 0] = px;
218:                        buf[bufIndex + 1] = py;
219:                        System.arraycopy(coords, 0, buf, bufIndex + 2, 6);
220:                        bufSubdiv = 0;
221:                    }
222:
223:                    while (bufSubdiv < bufLimit) {
224:                        if (CubicCurve2D.getFlatnessSq(buf, bufIndex) < flatness2) {
225:                            break;
226:                        }
227:
228:                        // Realloc buffer
229:                        if (bufIndex <= 6) {
230:                            double tmp[] = new double[bufSize + BUFFER_CAPACITY];
231:                            System.arraycopy(buf, bufIndex, tmp, bufIndex
232:                                    + BUFFER_CAPACITY, bufSize - bufIndex);
233:                            buf = tmp;
234:                            bufSize += BUFFER_CAPACITY;
235:                            bufIndex += BUFFER_CAPACITY;
236:                        }
237:
238:                        CubicCurve2D.subdivide(buf, bufIndex, buf,
239:                                bufIndex - 6, buf, bufIndex);
240:
241:                        bufIndex -= 6;
242:                        bufSubdiv++;
243:                    }
244:
245:                    bufIndex += 6;
246:                    px = buf[bufIndex];
247:                    py = buf[bufIndex + 1];
248:
249:                    bufEmpty = (bufIndex == bufSize - 2);
250:                    if (bufEmpty) {
251:                        bufIndex = bufSize;
252:                        bufType = SEG_LINETO;
253:                    }
254:                    break;
255:                }
256:
257:            }
258:
259:            public void next() {
260:                if (bufEmpty) {
261:                    p.next();
262:                }
263:            }
264:
265:            public int currentSegment(float[] coords) {
266:                if (isDone()) {
267:                    // awt.4B=Iterator out of bounds
268:                    throw new NoSuchElementException(Messages
269:                            .getString("awt.4Bx")); //$NON-NLS-1$
270:                }
271:                evaluate();
272:                int type = bufType;
273:                if (type != SEG_CLOSE) {
274:                    coords[0] = (float) px;
275:                    coords[1] = (float) py;
276:                    if (type != SEG_MOVETO) {
277:                        type = SEG_LINETO;
278:                    }
279:                }
280:                return type;
281:            }
282:
283:            public int currentSegment(double[] coords) {
284:                if (isDone()) {
285:                    // awt.4B=Iterator out of bounds
286:                    throw new NoSuchElementException(Messages
287:                            .getString("awt.4B")); //$NON-NLS-1$
288:                }
289:                evaluate();
290:                int type = bufType;
291:                if (type != SEG_CLOSE) {
292:                    coords[0] = px;
293:                    coords[1] = py;
294:                    if (type != SEG_MOVETO) {
295:                        type = SEG_LINETO;
296:                    }
297:                }
298:                return type;
299:            }
300:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.