Source Code Cross Referenced for Conversion.java in  » Apache-Harmony-Java-SE » java-package » java » math » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Apache Harmony Java SE » java package » java.math 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *  Licensed to the Apache Software Foundation (ASF) under one or more
003:         *  contributor license agreements.  See the NOTICE file distributed with
004:         *  this work for additional information regarding copyright ownership.
005:         *  The ASF licenses this file to You under the Apache License, Version 2.0
006:         *  (the "License"); you may not use this file except in compliance with
007:         *  the License.  You may obtain a copy of the License at
008:         *
009:         *     http://www.apache.org/licenses/LICENSE-2.0
010:         *
011:         *  Unless required by applicable law or agreed to in writing, software
012:         *  distributed under the License is distributed on an "AS IS" BASIS,
013:         *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014:         *  See the License for the specific language governing permissions and
015:         *  limitations under the License.
016:         */
017:
018:        package java.math;
019:
020:        /**
021:         * Static library that provides {@link BigInteger} base conversion from/to any
022:         * integer represented in an {@link java.lang.String} Object.
023:         * 
024:         * @author Intel Middleware Product Division
025:         * @author Instituto Tecnologico de Cordoba
026:         */
027:        class Conversion {
028:
029:            /** Just to denote that this class can't be instantiated */
030:            private Conversion() {
031:            }
032:
033:            /**
034:             * Holds the maximal exponent for each radix, so that radix<sup>digitFitInInt[radix]</sup>
035:             * fit in an {@code int} (32 bits).
036:             */
037:            static final int[] digitFitInInt = { -1, -1, 31, 19, 15, 13, 11,
038:                    11, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6,
039:                    6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5 };
040:
041:            /**
042:             * bigRadices values are precomputed maximal powers of radices (integer
043:             * numbers from 2 to 36) that fit into unsigned int (32 bits). bigRadices[0] =
044:             * 2 ^ 31, bigRadices[8] = 10 ^ 9, etc.
045:             */
046:
047:            static final int bigRadices[] = { -2147483648, 1162261467,
048:                    1073741824, 1220703125, 362797056, 1977326743, 1073741824,
049:                    387420489, 1000000000, 214358881, 429981696, 815730721,
050:                    1475789056, 170859375, 268435456, 410338673, 612220032,
051:                    893871739, 1280000000, 1801088541, 113379904, 148035889,
052:                    191102976, 244140625, 308915776, 387420489, 481890304,
053:                    594823321, 729000000, 887503681, 1073741824, 1291467969,
054:                    1544804416, 1838265625, 60466176 };
055:
056:            /** @see BigInteger#toString(int) */
057:            static String bigInteger2String(BigInteger val, int radix) {
058:                int sign = val.sign;
059:                int numberLength = val.numberLength;
060:                int digits[] = val.digits;
061:
062:                if (sign == 0) {
063:                    return "0"; //$NON-NLS-1$
064:                }
065:                if (numberLength == 1) {
066:                    int highDigit = digits[numberLength - 1];
067:                    long v = highDigit & 0xFFFFFFFFL;
068:                    if (sign < 0) {
069:                        v = -v;
070:                    }
071:                    return Long.toString(v, radix);
072:                }
073:                if ((radix == 10) || (radix < Character.MIN_RADIX)
074:                        || (radix > Character.MAX_RADIX)) {
075:                    return val.toString();
076:                }
077:                double bitsForRadixDigit;
078:                bitsForRadixDigit = Math.log(radix) / Math.log(2);
079:                int resLengthInChars = (int) (val.abs().bitLength()
080:                        / bitsForRadixDigit + ((sign < 0) ? 1 : 0)) + 1;
081:
082:                char result[] = new char[resLengthInChars];
083:                int currentChar = resLengthInChars;
084:                int resDigit;
085:                if (radix != 16) {
086:                    int temp[] = new int[numberLength];
087:                    System.arraycopy(digits, 0, temp, 0, numberLength);
088:                    int tempLen = numberLength;
089:                    int charsPerInt = digitFitInInt[radix];
090:                    int i;
091:                    // get the maximal power of radix that fits in int
092:                    int bigRadix = bigRadices[radix - 2];
093:                    while (true) {
094:                        // divide the array of digits by bigRadix and convert remainders
095:                        // to characters collecting them in the char array
096:                        resDigit = Division.divideArrayByInt(temp, temp,
097:                                tempLen, bigRadix);
098:                        int previous = currentChar;
099:                        do {
100:                            result[--currentChar] = Character.forDigit(resDigit
101:                                    % radix, radix);
102:                        } while (((resDigit /= radix) != 0)
103:                                && (currentChar != 0));
104:                        int delta = charsPerInt - previous + currentChar;
105:                        for (i = 0; i < delta && currentChar > 0; i++) {
106:                            result[--currentChar] = '0';
107:                        }
108:                        for (i = tempLen - 1; (i > 0) && (temp[i] == 0); i--) {
109:                            ;
110:                        }
111:                        tempLen = i + 1;
112:                        if ((tempLen == 1) && (temp[0] == 0)) { // the quotient is 0
113:                            break;
114:                        }
115:                    }
116:                } else {
117:                    // radix == 16
118:                    for (int i = 0; i < numberLength; i++) {
119:                        for (int j = 0; (j < 8) && (currentChar > 0); j++) {
120:                            resDigit = digits[i] >> (j << 2) & 0xf;
121:                            result[--currentChar] = Character.forDigit(
122:                                    resDigit, 16);
123:                        }
124:                    }
125:                }
126:                while (result[currentChar] == '0') {
127:                    currentChar++;
128:                }
129:                if (sign == -1) {
130:                    result[--currentChar] = '-';
131:                }
132:                return new String(result, currentChar, resLengthInChars
133:                        - currentChar);
134:            }
135:
136:            /**
137:             * Builds the correspondent {@code String} representation of {@code val}
138:             * being scaled by {@code scale}.
139:             * 
140:             * @see BigInteger#toString()
141:             * @see BigDecimal#toString()
142:             */
143:            static String toDecimalScaledString(BigInteger val, int scale) {
144:                int sign = val.sign;
145:                int numberLength = val.numberLength;
146:                int digits[] = val.digits;
147:                int resLengthInChars;
148:                int currentChar;
149:                char result[];
150:
151:                if (sign == 0) {
152:                    switch (scale) {
153:                    case 0:
154:                        return "0"; //$NON-NLS-1$
155:                    case 1:
156:                        return "0.0"; //$NON-NLS-1$
157:                    case 2:
158:                        return "0.00"; //$NON-NLS-1$
159:                    case 3:
160:                        return "0.000"; //$NON-NLS-1$
161:                    case 4:
162:                        return "0.0000"; //$NON-NLS-1$
163:                    case 5:
164:                        return "0.00000"; //$NON-NLS-1$
165:                    case 6:
166:                        return "0.000000"; //$NON-NLS-1$
167:                    default:
168:                        StringBuffer result1 = new StringBuffer();
169:                        if (scale < 0) {
170:                            result1.append("0E+"); //$NON-NLS-1$
171:                        } else {
172:                            result1.append("0E"); //$NON-NLS-1$
173:                        }
174:                        result1.append(-scale);
175:                        return result1.toString();
176:                    }
177:                }
178:                // one 32-bit unsigned value may contains 10 decimal digits
179:                resLengthInChars = numberLength * 10 + 1 + 7;
180:                // Explanation why +1+7:
181:                // +1 - one char for sign if needed.
182:                // +7 - For "special case 2" (see below) we have 7 free chars for
183:                // inserting necessary scaled digits.
184:                result = new char[resLengthInChars + 1];
185:                // allocated [resLengthInChars+1] characters.
186:                // a free latest character may be used for "special case 1" (see
187:                // below)
188:                currentChar = resLengthInChars;
189:                if (numberLength == 1) {
190:                    int highDigit = digits[0];
191:                    if (highDigit < 0) {
192:                        long v = highDigit & 0xFFFFFFFFL;
193:                        do {
194:                            long prev = v;
195:                            v /= 10;
196:                            result[--currentChar] = (char) (0x0030 + ((int) (prev - v * 10)));
197:                        } while (v != 0);
198:                    } else {
199:                        int v = highDigit;
200:                        do {
201:                            int prev = v;
202:                            v /= 10;
203:                            result[--currentChar] = (char) (0x0030 + (prev - v * 10));
204:                        } while (v != 0);
205:                    }
206:                } else {
207:                    int temp[] = new int[numberLength];
208:                    int tempLen = numberLength;
209:                    System.arraycopy(digits, 0, temp, 0, tempLen);
210:                    BIG_LOOP: while (true) {
211:                        // divide the array of digits by bigRadix and convert
212:                        // remainders
213:                        // to characters collecting them in the char array
214:                        long result11 = 0;
215:                        for (int i1 = tempLen - 1; i1 >= 0; i1--) {
216:                            long temp1 = (result11 << 32)
217:                                    + (temp[i1] & 0xFFFFFFFFL);
218:                            long res = divideLongByBillion(temp1);
219:                            temp[i1] = (int) res;
220:                            result11 = (int) (res >> 32);
221:                        }
222:                        int resDigit = (int) result11;
223:                        int previous = currentChar;
224:                        do {
225:                            result[--currentChar] = (char) (0x0030 + (resDigit % 10));
226:                        } while (((resDigit /= 10) != 0) && (currentChar != 0));
227:                        int delta = 9 - previous + currentChar;
228:                        for (int i = 0; (i < delta) && (currentChar > 0); i++) {
229:                            result[--currentChar] = '0';
230:                        }
231:                        int j = tempLen - 1;
232:                        for (; temp[j] == 0; j--) {
233:                            if (j == 0) { // means temp[0] == 0
234:                                break BIG_LOOP;
235:                            }
236:                        }
237:                        tempLen = j + 1;
238:                    }
239:                    while (result[currentChar] == '0') {
240:                        currentChar++;
241:                    }
242:                }
243:                boolean negNumber = (sign < 0);
244:                int exponent = resLengthInChars - currentChar - scale - 1;
245:                if (scale == 0) {
246:                    if (negNumber) {
247:                        result[--currentChar] = '-';
248:                    }
249:                    return new String(result, currentChar, resLengthInChars
250:                            - currentChar);
251:                }
252:                if ((scale > 0) && (exponent >= -6)) {
253:                    if (exponent >= 0) {
254:                        // special case 1
255:                        int insertPoint = currentChar + exponent;
256:                        for (int j = resLengthInChars - 1; j >= insertPoint; j--) {
257:                            result[j + 1] = result[j];
258:                        }
259:                        result[++insertPoint] = '.';
260:                        if (negNumber) {
261:                            result[--currentChar] = '-';
262:                        }
263:                        return new String(result, currentChar, resLengthInChars
264:                                - currentChar + 1);
265:                    }
266:                    // special case 2
267:                    for (int j = 2; j < -exponent + 1; j++) {
268:                        result[--currentChar] = '0';
269:                    }
270:                    result[--currentChar] = '.';
271:                    result[--currentChar] = '0';
272:                    if (negNumber) {
273:                        result[--currentChar] = '-';
274:                    }
275:                    return new String(result, currentChar, resLengthInChars
276:                            - currentChar);
277:                }
278:                int startPoint = currentChar + 1;
279:                int endPoint = resLengthInChars;
280:                StringBuffer result1 = new StringBuffer(16 + endPoint
281:                        - startPoint);
282:                if (negNumber) {
283:                    result1.append('-');
284:                }
285:                if (endPoint - startPoint >= 1) {
286:                    result1.append(result[currentChar]);
287:                    result1.append('.');
288:                    result1.append(result, currentChar + 1, resLengthInChars
289:                            - currentChar - 1);
290:                } else {
291:                    result1.append(result, currentChar, resLengthInChars
292:                            - currentChar);
293:                }
294:                result1.append('E');
295:                if (exponent > 0) {
296:                    result1.append('+');
297:                }
298:                result1.append(Integer.toString(exponent));
299:                return result1.toString();
300:            }
301:
302:            /* can process only 32-bit numbers */
303:            static String toDecimalScaledString(long value, int scale) {
304:                int resLengthInChars;
305:                int currentChar;
306:                char result[];
307:                boolean negNumber = value < 0;
308:                if (negNumber) {
309:                    value = -value;
310:                }
311:                if (value == 0) {
312:                    switch (scale) {
313:                    case 0:
314:                        return "0"; //$NON-NLS-1$
315:                    case 1:
316:                        return "0.0"; //$NON-NLS-1$
317:                    case 2:
318:                        return "0.00"; //$NON-NLS-1$
319:                    case 3:
320:                        return "0.000"; //$NON-NLS-1$
321:                    case 4:
322:                        return "0.0000"; //$NON-NLS-1$
323:                    case 5:
324:                        return "0.00000"; //$NON-NLS-1$
325:                    case 6:
326:                        return "0.000000"; //$NON-NLS-1$
327:                    default:
328:                        StringBuffer result1 = new StringBuffer();
329:                        if (scale < 0) {
330:                            result1.append("0E+"); //$NON-NLS-1$
331:                        } else {
332:                            result1.append("0E"); //$NON-NLS-1$
333:                        }
334:                        result1
335:                                .append((scale == Integer.MIN_VALUE) ? "2147483648" : Integer.toString(-scale)); //$NON-NLS-1$
336:                        return result1.toString();
337:                    }
338:                }
339:                // one 32-bit unsigned value may contains 10 decimal digits
340:                resLengthInChars = 18;
341:                // Explanation why +1+7:
342:                // +1 - one char for sign if needed.
343:                // +7 - For "special case 2" (see below) we have 7 free chars for
344:                //  inserting necessary scaled digits.
345:                result = new char[resLengthInChars + 1];
346:                //  Allocated [resLengthInChars+1] characters.
347:                // a free latest character may be used for "special case 1" (see below)
348:                currentChar = resLengthInChars;
349:                long v = value;
350:                do {
351:                    long prev = v;
352:                    v /= 10;
353:                    result[--currentChar] = (char) (0x0030 + (prev - v * 10));
354:                } while (v != 0);
355:
356:                long exponent = (long) resLengthInChars - (long) currentChar
357:                        - scale - 1L;
358:                if (scale == 0) {
359:                    if (negNumber) {
360:                        result[--currentChar] = '-';
361:                    }
362:                    return new String(result, currentChar, resLengthInChars
363:                            - currentChar);
364:                }
365:                if (scale > 0 && exponent >= -6) {
366:                    if (exponent >= 0) {
367:                        // special case 1
368:                        int insertPoint = currentChar + (int) exponent;
369:                        for (int j = resLengthInChars - 1; j >= insertPoint; j--) {
370:                            result[j + 1] = result[j];
371:                        }
372:                        result[++insertPoint] = '.';
373:                        if (negNumber) {
374:                            result[--currentChar] = '-';
375:                        }
376:                        return new String(result, currentChar, resLengthInChars
377:                                - currentChar + 1);
378:                    }
379:                    // special case 2
380:                    for (int j = 2; j < -exponent + 1; j++) {
381:                        result[--currentChar] = '0';
382:                    }
383:                    result[--currentChar] = '.';
384:                    result[--currentChar] = '0';
385:                    if (negNumber) {
386:                        result[--currentChar] = '-';
387:                    }
388:                    return new String(result, currentChar, resLengthInChars
389:                            - currentChar);
390:                }
391:                int startPoint = currentChar + 1;
392:                int endPoint = resLengthInChars;
393:                StringBuffer result1 = new StringBuffer(16 + endPoint
394:                        - startPoint);
395:                if (negNumber) {
396:                    result1.append('-');
397:                }
398:                if (endPoint - startPoint >= 1) {
399:                    result1.append(result[currentChar]);
400:                    result1.append('.');
401:                    result1.append(result, currentChar + 1, resLengthInChars
402:                            - currentChar - 1);
403:                } else {
404:                    result1.append(result, currentChar, resLengthInChars
405:                            - currentChar);
406:                }
407:                result1.append('E');
408:                if (exponent > 0) {
409:                    result1.append('+');
410:                }
411:                result1.append(Long.toString(exponent));
412:                return result1.toString();
413:            }
414:
415:            static long divideLongByBillion(long a) {
416:                long quot;
417:                long rem;
418:
419:                if (a >= 0) {
420:                    long bLong = 1000000000L;
421:                    quot = (a / bLong);
422:                    rem = (a % bLong);
423:                } else {
424:                    /*
425:                     * Make the dividend positive shifting it right by 1 bit then get
426:                     * the quotient an remainder and correct them properly
427:                     */
428:                    long aPos = a >>> 1;
429:                    long bPos = 1000000000L >>> 1;
430:                    quot = aPos / bPos;
431:                    rem = aPos % bPos;
432:                    // double the remainder and add 1 if 'a' is odd
433:                    rem = (rem << 1) + (a & 1);
434:                }
435:                return ((rem << 32) | (quot & 0xFFFFFFFFL));
436:            }
437:
438:            /** @see BigInteger#doubleValue() */
439:            static double bigInteger2Double(BigInteger val) {
440:                // val.bitLength() < 64
441:                if ((val.numberLength < 2)
442:                        || ((val.numberLength == 2) && (val.digits[1] > 0))) {
443:                    return val.longValue();
444:                }
445:                // val.bitLength() >= 33 * 32 > 1024
446:                if (val.numberLength > 32) {
447:                    return ((val.sign > 0) ? Double.POSITIVE_INFINITY
448:                            : Double.NEGATIVE_INFINITY);
449:                }
450:                int bitLen = val.abs().bitLength();
451:                long exponent = bitLen - 1;
452:                int delta = bitLen - 54;
453:                // We need 54 top bits from this, the 53th bit is always 1 in lVal.
454:                long lVal = val.abs().shiftRight(delta).longValue();
455:                /*
456:                 * Take 53 bits from lVal to mantissa. The least significant bit is
457:                 * needed for rounding.
458:                 */
459:                long mantissa = lVal & 0x1FFFFFFFFFFFFFL;
460:                if (exponent == 1023) {
461:                    if (mantissa == 0X1FFFFFFFFFFFFFL) {
462:                        return ((val.sign > 0) ? Double.POSITIVE_INFINITY
463:                                : Double.NEGATIVE_INFINITY);
464:                    }
465:                    if (mantissa == 0x1FFFFFFFFFFFFEL) {
466:                        return ((val.sign > 0) ? Double.MAX_VALUE
467:                                : -Double.MAX_VALUE);
468:                    }
469:                }
470:                // Round the mantissa
471:                if (((mantissa & 1) == 1)
472:                        && (((mantissa & 2) == 2) || BitLevel
473:                                .nonZeroDroppedBits(delta, val.digits))) {
474:                    mantissa += 2;
475:                }
476:                mantissa >>= 1; // drop the rounding bit
477:                long resSign = (val.sign < 0) ? 0x8000000000000000L : 0;
478:                exponent = ((1023 + exponent) << 52) & 0x7FF0000000000000L;
479:                long result = resSign | exponent | mantissa;
480:                return Double.longBitsToDouble(result);
481:            }
482:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.