Source Code Cross Referenced for Primality.java in  » Apache-Harmony-Java-SE » java-package » java » math » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Apache Harmony Java SE » java package » java.math 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *  Licensed to the Apache Software Foundation (ASF) under one or more
003:         *  contributor license agreements.  See the NOTICE file distributed with
004:         *  this work for additional information regarding copyright ownership.
005:         *  The ASF licenses this file to You under the Apache License, Version 2.0
006:         *  (the "License"); you may not use this file except in compliance with
007:         *  the License.  You may obtain a copy of the License at
008:         *
009:         *     http://www.apache.org/licenses/LICENSE-2.0
010:         *
011:         *  Unless required by applicable law or agreed to in writing, software
012:         *  distributed under the License is distributed on an "AS IS" BASIS,
013:         *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014:         *  See the License for the specific language governing permissions and
015:         *  limitations under the License.
016:         */
017:
018:        package java.math;
019:
020:        import java.util.Arrays;
021:        import java.util.Random;
022:
023:        /**
024:         * Provides primality probabilistic methods.
025:         * @author Intel Middleware Product Division
026:         * @author Instituto Tecnologico de Cordoba
027:         */
028:        class Primality {
029:
030:            /** Just to denote that this class can't be instantiated. */
031:            private Primality() {
032:            }
033:
034:            /* Private Fields */
035:
036:            /** All prime numbers with bit length lesser than 10 bits. */
037:            private static final int primes[] = { 2, 3, 5, 7, 11, 13, 17, 19,
038:                    23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
039:                    89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
040:                    151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
041:                    223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,
042:                    281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353,
043:                    359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431,
044:                    433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499,
045:                    503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587,
046:                    593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653,
047:                    659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739,
048:                    743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823,
049:                    827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907,
050:                    911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991,
051:                    997, 1009, 1013, 1019, 1021 };
052:
053:            /** All {@code BigInteger} prime numbers with bit length lesser than 8 bits. */
054:            private static final BigInteger BIprimes[] = new BigInteger[primes.length];
055:
056:            /**
057:             * It encodes how many iterations of Miller-Rabin test are need to get an
058:             * error bound not greater than {@code 2<sup>(-100)</sup>}. For example:
059:             * for a {@code 1000}-bit number we need {@code 4} iterations, since
060:             * {@code BITS[3] < 1000 <= BITS[4]}.
061:             */
062:            private static final int[] BITS = { 0, 0, 1854, 1233, 927, 747,
063:                    627, 543, 480, 431, 393, 361, 335, 314, 295, 279, 265, 253,
064:                    242, 232, 223, 216, 181, 169, 158, 150, 145, 140, 136, 132,
065:                    127, 123, 119, 114, 110, 105, 101, 96, 92, 87, 83, 78, 73,
066:                    69, 64, 59, 54, 49, 44, 38, 32, 26, 1 };
067:
068:            /**
069:             * It encodes how many i-bit primes there are in the table for
070:             * {@code i=2,...,10}. For example {@code offsetPrimes[6]} says that from
071:             * index {@code 11} exists {@code 7} consecutive {@code 6}-bit prime
072:             * numbers in the array.
073:             */
074:            private static final int[][] offsetPrimes = { null, null, { 0, 2 },
075:                    { 2, 2 }, { 4, 2 }, { 6, 5 }, { 11, 7 }, { 18, 13 },
076:                    { 31, 23 }, { 54, 43 }, { 97, 75 } };
077:
078:            static {// To initialize the dual table of BigInteger primes
079:                for (int i = 0; i < primes.length; i++) {
080:                    BIprimes[i] = BigInteger.valueOf(primes[i]);
081:                }
082:            }
083:
084:            /* Package Methods */
085:
086:            /**
087:             * It uses the sieve of Eratosthenes to discard several composite numbers in
088:             * some appropriate range (at the moment {@code [this, this + 1024]}). After
089:             * this process it applies the Miller-Rabin test to the numbers that were
090:             * not discarded in the sieve.
091:             * 
092:             * @see BigInteger#nextProbablePrime()
093:             * @see #millerRabin(BigInteger, int)
094:             */
095:            static BigInteger nextProbablePrime(BigInteger n) {
096:                // PRE: n >= 0
097:                int i, j;
098:                int certainty;
099:                int gapSize = 1024; // for searching of the next probable prime number
100:                int modules[] = new int[primes.length];
101:                boolean isDivisible[] = new boolean[gapSize];
102:                BigInteger startPoint;
103:                BigInteger probPrime;
104:                // If n < "last prime of table" searches next prime in the table
105:                if ((n.numberLength == 1) && (n.digits[0] >= 0)
106:                        && (n.digits[0] < primes[primes.length - 1])) {
107:                    for (i = 0; n.digits[0] >= primes[i]; i++) {
108:                        ;
109:                    }
110:                    return BIprimes[i];
111:                }
112:                /*
113:                 * Creates a "N" enough big to hold the next probable prime Note that: N <
114:                 * "next prime" < 2*N
115:                 */
116:                startPoint = new BigInteger(1, n.numberLength,
117:                        new int[n.numberLength + 1]);
118:                System.arraycopy(n.digits, 0, startPoint.digits, 0,
119:                        n.numberLength);
120:                // To fix N to the "next odd number"
121:                if (n.testBit(0)) {
122:                    Elementary.inplaceAdd(startPoint, 2);
123:                } else {
124:                    startPoint.digits[0] |= 1;
125:                }
126:                // To set the improved certainly of Miller-Rabin
127:                j = startPoint.bitLength();
128:                for (certainty = 2; j < BITS[certainty]; certainty++) {
129:                    ;
130:                }
131:                // To calculate modules: N mod p1, N mod p2, ... for first primes.
132:                for (i = 0; i < primes.length; i++) {
133:                    modules[i] = Division.remainder(startPoint, primes[i])
134:                            - gapSize;
135:                }
136:                while (true) {
137:                    // At this point, all numbers in the gap are initialized as
138:                    // probably primes
139:                    Arrays.fill(isDivisible, false);
140:                    // To discard multiples of first primes
141:                    for (i = 0; i < primes.length; i++) {
142:                        modules[i] = (modules[i] + gapSize) % primes[i];
143:                        j = (modules[i] == 0) ? 0 : (primes[i] - modules[i]);
144:                        for (; j < gapSize; j += primes[i]) {
145:                            isDivisible[j] = true;
146:                        }
147:                    }
148:                    // To execute Miller-Rabin for non-divisible numbers by all first
149:                    // primes
150:                    for (j = 0; j < gapSize; j++) {
151:                        if (!isDivisible[j]) {
152:                            probPrime = startPoint.copy();
153:                            Elementary.inplaceAdd(probPrime, j);
154:
155:                            if (millerRabin(probPrime, certainty)) {
156:                                return probPrime;
157:                            }
158:                        }
159:                    }
160:                    Elementary.inplaceAdd(startPoint, gapSize);
161:                }
162:            }
163:
164:            /**
165:             * A random number is generated until a probable prime number is found.
166:             * 
167:             * @see BigInteger#BigInteger(int,int,Random)
168:             * @see BigInteger#probablePrime(int,Random)
169:             * @see #isProbablePrime(BigInteger, int)
170:             */
171:            static BigInteger consBigInteger(int bitLength, int certainty,
172:                    Random rnd) {
173:                // PRE: bitLength >= 2;
174:                // For small numbers get a random prime from the prime table
175:                if (bitLength <= 10) {
176:                    int rp[] = offsetPrimes[bitLength];
177:                    return BIprimes[rp[0] + rnd.nextInt(rp[1])];
178:                }
179:                int shiftCount = (-bitLength) & 31;
180:                int last = (bitLength + 31) >> 5;
181:                BigInteger n = new BigInteger(1, last, new int[last]);
182:
183:                last--;
184:                do {// To fill the array with random integers
185:                    for (int i = 0; i < n.numberLength; i++) {
186:                        n.digits[i] = rnd.nextInt();
187:                    }
188:                    // To fix to the correct bitLength
189:                    n.digits[last] |= 0x80000000;
190:                    n.digits[last] >>>= shiftCount;
191:                    // To create an odd number
192:                    n.digits[0] |= 1;
193:                } while (!isProbablePrime(n, certainty));
194:                return n;
195:            }
196:
197:            /**
198:             * @see BigInteger#isProbablePrime(int)
199:             * @see #millerRabin(BigInteger, int)
200:             * @ar.org.fitc.ref Optimizations: "A. Menezes - Handbook of applied
201:             *                  Cryptography, Chapter 4".
202:             */
203:            static boolean isProbablePrime(BigInteger n, int certainty) {
204:                // PRE: n >= 0;
205:                if ((certainty <= 0)
206:                        || ((n.numberLength == 1) && (n.digits[0] == 2))) {
207:                    return true;
208:                }
209:                // To discard all even numbers
210:                if (!n.testBit(0)) {
211:                    return false;
212:                }
213:                // To check if 'n' exists in the table (it fit in 10 bits)
214:                if ((n.numberLength == 1) && ((n.digits[0] & 0XFFFFFC00) == 0)) {
215:                    return (Arrays.binarySearch(primes, n.digits[0]) >= 0);
216:                }
217:                // To check if 'n' is divisible by some prime of the table
218:                for (int i = 1; i < primes.length; i++) {
219:                    if (Division.remainderArrayByInt(n.digits, n.numberLength,
220:                            primes[i]) == 0) {
221:                        return false;
222:                    }
223:                }
224:                // To set the number of iterations necessary for Miller-Rabin test
225:                int i;
226:                int bitLength = n.bitLength();
227:
228:                for (i = 2; bitLength < BITS[i]; i++) {
229:                    ;
230:                }
231:                certainty = Math.min(i, 1 + ((certainty - 1) >> 1));
232:
233:                return millerRabin(n, certainty);
234:            }
235:
236:            /* Private Methods */
237:
238:            /**
239:             * The Miller-Rabin primality test.
240:             * 
241:             * @param n the input number to be tested.
242:             * @param t the number of trials.
243:             * @return {@code false} if the number is definitely compose, otherwise
244:             *         {@code true} with probability {@code 1 - 4<sup>(-t)</sup>}.
245:             * @ar.org.fitc.ref "D. Knuth, The Art of Computer Programming Vo.2, Section
246:             *                  4.5.4., Algorithm P"
247:             */
248:            private static boolean millerRabin(BigInteger n, int t) {
249:                // PRE: n >= 0, t >= 0
250:                BigInteger x; // x := UNIFORM{2...n-1}
251:                BigInteger y; // y := x^(q * 2^j) mod n
252:                BigInteger n_minus_1 = n.subtract(BigInteger.ONE); // n-1
253:                int bitLength = n_minus_1.bitLength(); // ~ log2(n-1)
254:                // (q,k) such that: n-1 = q * 2^k and q is odd
255:                int k = n_minus_1.getLowestSetBit();
256:                BigInteger q = n_minus_1.shiftRight(k);
257:                Random rnd = new Random();
258:
259:                for (int i = 0; i < t; i++) {
260:                    // To generate a witness 'x', first it use the primes of table
261:                    if (i < primes.length) {
262:                        x = BIprimes[i];
263:                    } else {/*
264:                     * It generates random witness only if it's necesssary. Note
265:                     * that all methods would call Miller-Rabin with t <= 50 so
266:                     * this part is only to do more robust the algorithm
267:                     */
268:                        do {
269:                            x = new BigInteger(bitLength, rnd);
270:                        } while ((x.compareTo(n) >= BigInteger.EQUALS)
271:                                || (x.sign == 0) || x.isOne());
272:                    }
273:                    y = x.modPow(q, n);
274:                    if (y.isOne() || y.equals(n_minus_1)) {
275:                        continue;
276:                    }
277:                    for (int j = 1; j < k; j++) {
278:                        if (y.equals(n_minus_1)) {
279:                            continue;
280:                        }
281:                        y = y.multiply(y).mod(n);
282:                        if (y.isOne()) {
283:                            return false;
284:                        }
285:                    }
286:                    if (!y.equals(n_minus_1)) {
287:                        return false;
288:                    }
289:                }
290:                return true;
291:            }
292:
293:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.