Source Code Cross Referenced for LinkedBlockingQueue.java in  » Apache-Harmony-Java-SE » java-package » java » util » concurrent » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Apache Harmony Java SE » java package » java.util.concurrent 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * Written by Doug Lea with assistance from members of JCP JSR-166
003:         * Expert Group and released to the public domain, as explained at
004:         * http://creativecommons.org/licenses/publicdomain
005:         */
006:
007:        package java.util.concurrent;
008:
009:        import java.util.concurrent.atomic.*;
010:        import java.util.concurrent.locks.*;
011:        import java.util.*;
012:
013:        /**
014:         * An optionally-bounded {@linkplain BlockingQueue blocking queue} based on
015:         * linked nodes.
016:         * This queue orders elements FIFO (first-in-first-out).
017:         * The <em>head</em> of the queue is that element that has been on the
018:         * queue the longest time.
019:         * The <em>tail</em> of the queue is that element that has been on the
020:         * queue the shortest time. New elements
021:         * are inserted at the tail of the queue, and the queue retrieval
022:         * operations obtain elements at the head of the queue.
023:         * Linked queues typically have higher throughput than array-based queues but
024:         * less predictable performance in most concurrent applications.
025:         *
026:         * <p> The optional capacity bound constructor argument serves as a
027:         * way to prevent excessive queue expansion. The capacity, if unspecified,
028:         * is equal to {@link Integer#MAX_VALUE}.  Linked nodes are
029:         * dynamically created upon each insertion unless this would bring the
030:         * queue above capacity.
031:         *
032:         * <p>This class implements all of the <em>optional</em> methods
033:         * of the {@link Collection} and {@link Iterator} interfaces.
034:         *
035:         * <p>This class is a member of the
036:         * <a href="{@docRoot}/../guide/collections/index.html">
037:         * Java Collections Framework</a>.
038:         *
039:         * @since 1.5
040:         * @author Doug Lea
041:         * @param <E> the type of elements held in this collection
042:         *
043:         **/
044:        public class LinkedBlockingQueue<E> extends AbstractQueue<E> implements 
045:                BlockingQueue<E>, java.io.Serializable {
046:            private static final long serialVersionUID = -6903933977591709194L;
047:
048:            /*
049:             * A variant of the "two lock queue" algorithm.  The putLock gates
050:             * entry to put (and offer), and has an associated condition for
051:             * waiting puts.  Similarly for the takeLock.  The "count" field
052:             * that they both rely on is maintained as an atomic to avoid
053:             * needing to get both locks in most cases. Also, to minimize need
054:             * for puts to get takeLock and vice-versa, cascading notifies are
055:             * used. When a put notices that it has enabled at least one take,
056:             * it signals taker. That taker in turn signals others if more
057:             * items have been entered since the signal. And symmetrically for
058:             * takes signalling puts. Operations such as remove(Object) and
059:             * iterators acquire both locks.
060:             */
061:
062:            /**
063:             * Linked list node class
064:             */
065:            static class Node<E> {
066:                /** The item, volatile to ensure barrier separating write and read */
067:                volatile E item;
068:                Node<E> next;
069:
070:                Node(E x) {
071:                    item = x;
072:                }
073:            }
074:
075:            /** The capacity bound, or Integer.MAX_VALUE if none */
076:            private final int capacity;
077:
078:            /** Current number of elements */
079:            private final AtomicInteger count = new AtomicInteger(0);
080:
081:            /** Head of linked list */
082:            private transient Node<E> head;
083:
084:            /** Tail of linked list */
085:            private transient Node<E> last;
086:
087:            /** Lock held by take, poll, etc */
088:            private final ReentrantLock takeLock = new ReentrantLock();
089:
090:            /** Wait queue for waiting takes */
091:            private final Condition notEmpty = takeLock.newCondition();
092:
093:            /** Lock held by put, offer, etc */
094:            private final ReentrantLock putLock = new ReentrantLock();
095:
096:            /** Wait queue for waiting puts */
097:            private final Condition notFull = putLock.newCondition();
098:
099:            /**
100:             * Signal a waiting take. Called only from put/offer (which do not
101:             * otherwise ordinarily lock takeLock.)
102:             */
103:            private void signalNotEmpty() {
104:                final ReentrantLock takeLock = this .takeLock;
105:                takeLock.lock();
106:                try {
107:                    notEmpty.signal();
108:                } finally {
109:                    takeLock.unlock();
110:                }
111:            }
112:
113:            /**
114:             * Signal a waiting put. Called only from take/poll.
115:             */
116:            private void signalNotFull() {
117:                final ReentrantLock putLock = this .putLock;
118:                putLock.lock();
119:                try {
120:                    notFull.signal();
121:                } finally {
122:                    putLock.unlock();
123:                }
124:            }
125:
126:            /**
127:             * Create a node and link it at end of queue
128:             * @param x the item
129:             */
130:            private void insert(E x) {
131:                last = last.next = new Node<E>(x);
132:            }
133:
134:            /**
135:             * Remove a node from head of queue,
136:             * @return the node
137:             */
138:            private E extract() {
139:                Node<E> first = head.next;
140:                head = first;
141:                E x = first.item;
142:                first.item = null;
143:                return x;
144:            }
145:
146:            /**
147:             * Lock to prevent both puts and takes.
148:             */
149:            private void fullyLock() {
150:                putLock.lock();
151:                takeLock.lock();
152:            }
153:
154:            /**
155:             * Unlock to allow both puts and takes.
156:             */
157:            private void fullyUnlock() {
158:                takeLock.unlock();
159:                putLock.unlock();
160:            }
161:
162:            /**
163:             * Creates a <tt>LinkedBlockingQueue</tt> with a capacity of
164:             * {@link Integer#MAX_VALUE}.
165:             */
166:            public LinkedBlockingQueue() {
167:                this (Integer.MAX_VALUE);
168:            }
169:
170:            /**
171:             * Creates a <tt>LinkedBlockingQueue</tt> with the given (fixed) capacity.
172:             *
173:             * @param capacity the capacity of this queue.
174:             * @throws IllegalArgumentException if <tt>capacity</tt> is not greater
175:             *         than zero.
176:             */
177:            public LinkedBlockingQueue(int capacity) {
178:                if (capacity <= 0)
179:                    throw new IllegalArgumentException();
180:                this .capacity = capacity;
181:                last = head = new Node<E>(null);
182:            }
183:
184:            /**
185:             * Creates a <tt>LinkedBlockingQueue</tt> with a capacity of
186:             * {@link Integer#MAX_VALUE}, initially containing the elements of the
187:             * given collection,
188:             * added in traversal order of the collection's iterator.
189:             * @param c the collection of elements to initially contain
190:             * @throws NullPointerException if <tt>c</tt> or any element within it
191:             * is <tt>null</tt>
192:             */
193:            public LinkedBlockingQueue(Collection<? extends E> c) {
194:                this (Integer.MAX_VALUE);
195:                for (Iterator<? extends E> it = c.iterator(); it.hasNext();)
196:                    add(it.next());
197:            }
198:
199:            // this doc comment is overridden to remove the reference to collections
200:            // greater in size than Integer.MAX_VALUE
201:            /**
202:             * Returns the number of elements in this queue.
203:             *
204:             * @return  the number of elements in this queue.
205:             */
206:            public int size() {
207:                return count.get();
208:            }
209:
210:            // this doc comment is a modified copy of the inherited doc comment,
211:            // without the reference to unlimited queues.
212:            /**
213:             * Returns the number of elements that this queue can ideally (in
214:             * the absence of memory or resource constraints) accept without
215:             * blocking. This is always equal to the initial capacity of this queue
216:             * less the current <tt>size</tt> of this queue.
217:             * <p>Note that you <em>cannot</em> always tell if
218:             * an attempt to <tt>add</tt> an element will succeed by
219:             * inspecting <tt>remainingCapacity</tt> because it may be the
220:             * case that a waiting consumer is ready to <tt>take</tt> an
221:             * element out of an otherwise full queue.
222:             */
223:            public int remainingCapacity() {
224:                return capacity - count.get();
225:            }
226:
227:            /**
228:             * Adds the specified element to the tail of this queue, waiting if
229:             * necessary for space to become available.
230:             * @param o the element to add
231:             * @throws InterruptedException if interrupted while waiting.
232:             * @throws NullPointerException if the specified element is <tt>null</tt>.
233:             */
234:            public void put(E o) throws InterruptedException {
235:                if (o == null)
236:                    throw new NullPointerException();
237:                // Note: convention in all put/take/etc is to preset
238:                // local var holding count  negative to indicate failure unless set.
239:                int c = -1;
240:                final ReentrantLock putLock = this .putLock;
241:                final AtomicInteger count = this .count;
242:                putLock.lockInterruptibly();
243:                try {
244:                    /*
245:                     * Note that count is used in wait guard even though it is
246:                     * not protected by lock. This works because count can
247:                     * only decrease at this point (all other puts are shut
248:                     * out by lock), and we (or some other waiting put) are
249:                     * signalled if it ever changes from
250:                     * capacity. Similarly for all other uses of count in
251:                     * other wait guards.
252:                     */
253:                    try {
254:                        while (count.get() == capacity)
255:                            notFull.await();
256:                    } catch (InterruptedException ie) {
257:                        notFull.signal(); // propagate to a non-interrupted thread
258:                        throw ie;
259:                    }
260:                    insert(o);
261:                    c = count.getAndIncrement();
262:                    if (c + 1 < capacity)
263:                        notFull.signal();
264:                } finally {
265:                    putLock.unlock();
266:                }
267:                if (c == 0)
268:                    signalNotEmpty();
269:            }
270:
271:            /**
272:             * Inserts the specified element at the tail of this queue, waiting if
273:             * necessary up to the specified wait time for space to become available.
274:             * @param o the element to add
275:             * @param timeout how long to wait before giving up, in units of
276:             * <tt>unit</tt>
277:             * @param unit a <tt>TimeUnit</tt> determining how to interpret the
278:             * <tt>timeout</tt> parameter
279:             * @return <tt>true</tt> if successful, or <tt>false</tt> if
280:             * the specified waiting time elapses before space is available.
281:             * @throws InterruptedException if interrupted while waiting.
282:             * @throws NullPointerException if the specified element is <tt>null</tt>.
283:             */
284:            public boolean offer(E o, long timeout, TimeUnit unit)
285:                    throws InterruptedException {
286:
287:                if (o == null)
288:                    throw new NullPointerException();
289:                long nanos = unit.toNanos(timeout);
290:                int c = -1;
291:                final ReentrantLock putLock = this .putLock;
292:                final AtomicInteger count = this .count;
293:                putLock.lockInterruptibly();
294:                try {
295:                    for (;;) {
296:                        if (count.get() < capacity) {
297:                            insert(o);
298:                            c = count.getAndIncrement();
299:                            if (c + 1 < capacity)
300:                                notFull.signal();
301:                            break;
302:                        }
303:                        if (nanos <= 0)
304:                            return false;
305:                        try {
306:                            nanos = notFull.awaitNanos(nanos);
307:                        } catch (InterruptedException ie) {
308:                            notFull.signal(); // propagate to a non-interrupted thread
309:                            throw ie;
310:                        }
311:                    }
312:                } finally {
313:                    putLock.unlock();
314:                }
315:                if (c == 0)
316:                    signalNotEmpty();
317:                return true;
318:            }
319:
320:            /**
321:             * Inserts the specified element at the tail of this queue if possible,
322:             * returning immediately if this queue is full.
323:             *
324:             * @param o the element to add.
325:             * @return <tt>true</tt> if it was possible to add the element to
326:             *         this queue, else <tt>false</tt>
327:             * @throws NullPointerException if the specified element is <tt>null</tt>
328:             */
329:            public boolean offer(E o) {
330:                if (o == null)
331:                    throw new NullPointerException();
332:                final AtomicInteger count = this .count;
333:                if (count.get() == capacity)
334:                    return false;
335:                int c = -1;
336:                final ReentrantLock putLock = this .putLock;
337:                putLock.lock();
338:                try {
339:                    if (count.get() < capacity) {
340:                        insert(o);
341:                        c = count.getAndIncrement();
342:                        if (c + 1 < capacity)
343:                            notFull.signal();
344:                    }
345:                } finally {
346:                    putLock.unlock();
347:                }
348:                if (c == 0)
349:                    signalNotEmpty();
350:                return c >= 0;
351:            }
352:
353:            public E take() throws InterruptedException {
354:                E x;
355:                int c = -1;
356:                final AtomicInteger count = this .count;
357:                final ReentrantLock takeLock = this .takeLock;
358:                takeLock.lockInterruptibly();
359:                try {
360:                    try {
361:                        while (count.get() == 0)
362:                            notEmpty.await();
363:                    } catch (InterruptedException ie) {
364:                        notEmpty.signal(); // propagate to a non-interrupted thread
365:                        throw ie;
366:                    }
367:
368:                    x = extract();
369:                    c = count.getAndDecrement();
370:                    if (c > 1)
371:                        notEmpty.signal();
372:                } finally {
373:                    takeLock.unlock();
374:                }
375:                if (c == capacity)
376:                    signalNotFull();
377:                return x;
378:            }
379:
380:            public E poll(long timeout, TimeUnit unit)
381:                    throws InterruptedException {
382:                E x = null;
383:                int c = -1;
384:                long nanos = unit.toNanos(timeout);
385:                final AtomicInteger count = this .count;
386:                final ReentrantLock takeLock = this .takeLock;
387:                takeLock.lockInterruptibly();
388:                try {
389:                    for (;;) {
390:                        if (count.get() > 0) {
391:                            x = extract();
392:                            c = count.getAndDecrement();
393:                            if (c > 1)
394:                                notEmpty.signal();
395:                            break;
396:                        }
397:                        if (nanos <= 0)
398:                            return null;
399:                        try {
400:                            nanos = notEmpty.awaitNanos(nanos);
401:                        } catch (InterruptedException ie) {
402:                            notEmpty.signal(); // propagate to a non-interrupted thread
403:                            throw ie;
404:                        }
405:                    }
406:                } finally {
407:                    takeLock.unlock();
408:                }
409:                if (c == capacity)
410:                    signalNotFull();
411:                return x;
412:            }
413:
414:            public E poll() {
415:                final AtomicInteger count = this .count;
416:                if (count.get() == 0)
417:                    return null;
418:                E x = null;
419:                int c = -1;
420:                final ReentrantLock takeLock = this .takeLock;
421:                takeLock.lock();
422:                try {
423:                    if (count.get() > 0) {
424:                        x = extract();
425:                        c = count.getAndDecrement();
426:                        if (c > 1)
427:                            notEmpty.signal();
428:                    }
429:                } finally {
430:                    takeLock.unlock();
431:                }
432:                if (c == capacity)
433:                    signalNotFull();
434:                return x;
435:            }
436:
437:            public E peek() {
438:                if (count.get() == 0)
439:                    return null;
440:                final ReentrantLock takeLock = this .takeLock;
441:                takeLock.lock();
442:                try {
443:                    Node<E> first = head.next;
444:                    if (first == null)
445:                        return null;
446:                    else
447:                        return first.item;
448:                } finally {
449:                    takeLock.unlock();
450:                }
451:            }
452:
453:            public boolean remove(Object o) {
454:                if (o == null)
455:                    return false;
456:                boolean removed = false;
457:                fullyLock();
458:                try {
459:                    Node<E> trail = head;
460:                    Node<E> p = head.next;
461:                    while (p != null) {
462:                        if (o.equals(p.item)) {
463:                            removed = true;
464:                            break;
465:                        }
466:                        trail = p;
467:                        p = p.next;
468:                    }
469:                    if (removed) {
470:                        p.item = null;
471:                        trail.next = p.next;
472:                        if (count.getAndDecrement() == capacity)
473:                            notFull.signalAll();
474:                    }
475:                } finally {
476:                    fullyUnlock();
477:                }
478:                return removed;
479:            }
480:
481:            public Object[] toArray() {
482:                fullyLock();
483:                try {
484:                    int size = count.get();
485:                    Object[] a = new Object[size];
486:                    int k = 0;
487:                    for (Node<E> p = head.next; p != null; p = p.next)
488:                        a[k++] = p.item;
489:                    return a;
490:                } finally {
491:                    fullyUnlock();
492:                }
493:            }
494:
495:            public <T> T[] toArray(T[] a) {
496:                fullyLock();
497:                try {
498:                    int size = count.get();
499:                    if (a.length < size)
500:                        a = (T[]) java.lang.reflect.Array.newInstance(a
501:                                .getClass().getComponentType(), size);
502:
503:                    int k = 0;
504:                    for (Node p = head.next; p != null; p = p.next)
505:                        a[k++] = (T) p.item;
506:                    return a;
507:                } finally {
508:                    fullyUnlock();
509:                }
510:            }
511:
512:            public String toString() {
513:                fullyLock();
514:                try {
515:                    return super .toString();
516:                } finally {
517:                    fullyUnlock();
518:                }
519:            }
520:
521:            public void clear() {
522:                fullyLock();
523:                try {
524:                    head.next = null;
525:                    if (count.getAndSet(0) == capacity)
526:                        notFull.signalAll();
527:                } finally {
528:                    fullyUnlock();
529:                }
530:            }
531:
532:            public int drainTo(Collection<? super  E> c) {
533:                if (c == null)
534:                    throw new NullPointerException();
535:                if (c == this )
536:                    throw new IllegalArgumentException();
537:                Node first;
538:                fullyLock();
539:                try {
540:                    first = head.next;
541:                    head.next = null;
542:                    if (count.getAndSet(0) == capacity)
543:                        notFull.signalAll();
544:                } finally {
545:                    fullyUnlock();
546:                }
547:                // Transfer the elements outside of locks
548:                int n = 0;
549:                for (Node<E> p = first; p != null; p = p.next) {
550:                    c.add(p.item);
551:                    p.item = null;
552:                    ++n;
553:                }
554:                return n;
555:            }
556:
557:            public int drainTo(Collection<? super  E> c, int maxElements) {
558:                if (c == null)
559:                    throw new NullPointerException();
560:                if (c == this )
561:                    throw new IllegalArgumentException();
562:                if (maxElements <= 0)
563:                    return 0;
564:                fullyLock();
565:                try {
566:                    int n = 0;
567:                    Node<E> p = head.next;
568:                    while (p != null && n < maxElements) {
569:                        c.add(p.item);
570:                        p.item = null;
571:                        p = p.next;
572:                        ++n;
573:                    }
574:                    if (n != 0) {
575:                        head.next = p;
576:                        if (count.getAndAdd(-n) == capacity)
577:                            notFull.signalAll();
578:                    }
579:                    return n;
580:                } finally {
581:                    fullyUnlock();
582:                }
583:            }
584:
585:            /**
586:             * Returns an iterator over the elements in this queue in proper sequence.
587:             * The returned <tt>Iterator</tt> is a "weakly consistent" iterator that
588:             * will never throw {@link java.util.ConcurrentModificationException},
589:             * and guarantees to traverse elements as they existed upon
590:             * construction of the iterator, and may (but is not guaranteed to)
591:             * reflect any modifications subsequent to construction.
592:             *
593:             * @return an iterator over the elements in this queue in proper sequence.
594:             */
595:            public Iterator<E> iterator() {
596:                return new Itr();
597:            }
598:
599:            private class Itr implements  Iterator<E> {
600:                /*
601:                 * Basic weak-consistent iterator.  At all times hold the next
602:                 * item to hand out so that if hasNext() reports true, we will
603:                 * still have it to return even if lost race with a take etc.
604:                 */
605:                private Node<E> current;
606:                private Node<E> lastRet;
607:                private E currentElement;
608:
609:                Itr() {
610:                    final ReentrantLock putLock = LinkedBlockingQueue.this .putLock;
611:                    final ReentrantLock takeLock = LinkedBlockingQueue.this .takeLock;
612:                    putLock.lock();
613:                    takeLock.lock();
614:                    try {
615:                        current = head.next;
616:                        if (current != null)
617:                            currentElement = current.item;
618:                    } finally {
619:                        takeLock.unlock();
620:                        putLock.unlock();
621:                    }
622:                }
623:
624:                public boolean hasNext() {
625:                    return current != null;
626:                }
627:
628:                public E next() {
629:                    final ReentrantLock putLock = LinkedBlockingQueue.this .putLock;
630:                    final ReentrantLock takeLock = LinkedBlockingQueue.this .takeLock;
631:                    putLock.lock();
632:                    takeLock.lock();
633:                    try {
634:                        if (current == null)
635:                            throw new NoSuchElementException();
636:                        E x = currentElement;
637:                        lastRet = current;
638:                        current = current.next;
639:                        if (current != null)
640:                            currentElement = current.item;
641:                        return x;
642:                    } finally {
643:                        takeLock.unlock();
644:                        putLock.unlock();
645:                    }
646:                }
647:
648:                public void remove() {
649:                    if (lastRet == null)
650:                        throw new IllegalStateException();
651:                    final ReentrantLock putLock = LinkedBlockingQueue.this .putLock;
652:                    final ReentrantLock takeLock = LinkedBlockingQueue.this .takeLock;
653:                    putLock.lock();
654:                    takeLock.lock();
655:                    try {
656:                        Node<E> node = lastRet;
657:                        lastRet = null;
658:                        Node<E> trail = head;
659:                        Node<E> p = head.next;
660:                        while (p != null && p != node) {
661:                            trail = p;
662:                            p = p.next;
663:                        }
664:                        if (p == node) {
665:                            p.item = null;
666:                            trail.next = p.next;
667:                            int c = count.getAndDecrement();
668:                            if (c == capacity)
669:                                notFull.signalAll();
670:                        }
671:                    } finally {
672:                        takeLock.unlock();
673:                        putLock.unlock();
674:                    }
675:                }
676:            }
677:
678:            /**
679:             * Save the state to a stream (that is, serialize it).
680:             *
681:             * @serialData The capacity is emitted (int), followed by all of
682:             * its elements (each an <tt>Object</tt>) in the proper order,
683:             * followed by a null
684:             * @param s the stream
685:             */
686:            private void writeObject(java.io.ObjectOutputStream s)
687:                    throws java.io.IOException {
688:
689:                fullyLock();
690:                try {
691:                    // Write out any hidden stuff, plus capacity
692:                    s.defaultWriteObject();
693:
694:                    // Write out all elements in the proper order.
695:                    for (Node<E> p = head.next; p != null; p = p.next)
696:                        s.writeObject(p.item);
697:
698:                    // Use trailing null as sentinel
699:                    s.writeObject(null);
700:                } finally {
701:                    fullyUnlock();
702:                }
703:            }
704:
705:            /**
706:             * Reconstitute this queue instance from a stream (that is,
707:             * deserialize it).
708:             * @param s the stream
709:             */
710:            private void readObject(java.io.ObjectInputStream s)
711:                    throws java.io.IOException, ClassNotFoundException {
712:                // Read in capacity, and any hidden stuff
713:                s.defaultReadObject();
714:
715:                count.set(0);
716:                last = head = new Node<E>(null);
717:
718:                // Read in all elements and place in queue
719:                for (;;) {
720:                    E item = (E) s.readObject();
721:                    if (item == null)
722:                        break;
723:                    add(item);
724:                }
725:            }
726:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.