Source Code Cross Referenced for DefaultProjectedCRS.java in  » GIS » GeoTools-2.4.1 » org » geotools » referencing » crs » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » GIS » GeoTools 2.4.1 » org.geotools.referencing.crs 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *    GeoTools - OpenSource mapping toolkit
003:         *    http://geotools.org
004:         *    (C) 2003-2006, GeoTools Project Managment Committee (PMC)
005:         *    (C) 2001, Institut de Recherche pour le D�veloppement
006:         *   
007:         *    This library is free software; you can redistribute it and/or
008:         *    modify it under the terms of the GNU Lesser General Public
009:         *    License as published by the Free Software Foundation;
010:         *    version 2.1 of the License.
011:         *
012:         *    This library is distributed in the hope that it will be useful,
013:         *    but WITHOUT ANY WARRANTY; without even the implied warranty of
014:         *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
015:         *    Lesser General Public License for more details.
016:         *
017:         *    This package contains documentation from OpenGIS specifications.
018:         *    OpenGIS consortium's work is fully acknowledged here.
019:         */
020:        package org.geotools.referencing.crs;
021:
022:        // J2SE dependencies
023:        import java.util.Collection;
024:        import java.util.Collections;
025:        import java.util.Iterator;
026:        import java.util.Map;
027:        import javax.units.Unit;
028:
029:        // OpenGIS dependencies
030:        import org.opengis.parameter.GeneralParameterDescriptor;
031:        import org.opengis.parameter.GeneralParameterValue;
032:        import org.opengis.parameter.ParameterDescriptor;
033:        import org.opengis.parameter.ParameterValue;
034:        import org.opengis.parameter.ParameterValueGroup;
035:        import org.opengis.referencing.crs.ProjectedCRS;
036:        import org.opengis.referencing.crs.GeographicCRS;
037:        import org.opengis.referencing.crs.CoordinateReferenceSystem;
038:        import org.opengis.referencing.cs.AxisDirection;
039:        import org.opengis.referencing.cs.CartesianCS;
040:        import org.opengis.referencing.cs.CoordinateSystem;
041:        import org.opengis.referencing.datum.Ellipsoid;
042:        import org.opengis.referencing.datum.GeodeticDatum;
043:        import org.opengis.referencing.operation.Matrix;
044:        import org.opengis.referencing.operation.Conversion;
045:        import org.opengis.referencing.operation.MathTransform;
046:        import org.opengis.referencing.operation.OperationMethod;
047:        import org.opengis.geometry.MismatchedDimensionException;
048:
049:        // Geotools dependencies
050:        import org.geotools.referencing.wkt.Formatter;
051:        import org.geotools.referencing.AbstractReferenceSystem;
052:        import org.geotools.referencing.cs.AbstractCS;
053:        import org.geotools.referencing.operation.DefiningConversion; // For javadoc
054:        import org.geotools.resources.Utilities;
055:
056:        /**
057:         * A 2D coordinate reference system used to approximate the shape of the earth on a planar surface.
058:         * It is done in such a way that the distortion that is inherent to the approximation is carefully
059:         * controlled and known. Distortion correction is commonly applied to calculated bearings and
060:         * distances to produce values that are a close match to actual field values.
061:         *
062:         * <TABLE CELLPADDING='6' BORDER='1'>
063:         * <TR BGCOLOR="#EEEEFF"><TH NOWRAP>Used with CS type(s)</TH></TR>
064:         * <TR><TD>
065:         *   {@link CartesianCS Cartesian}
066:         * </TD></TR></TABLE>
067:         *
068:         * @since 2.1
069:         * @source $URL: http://svn.geotools.org/geotools/tags/2.4.1/modules/library/referencing/src/main/java/org/geotools/referencing/crs/DefaultProjectedCRS.java $
070:         * @version $Id: DefaultProjectedCRS.java 29128 2008-02-07 10:56:41Z desruisseaux $
071:         * @author Martin Desruisseaux
072:         */
073:        public class DefaultProjectedCRS extends AbstractDerivedCRS implements 
074:                ProjectedCRS {
075:            /**
076:             * Serial number for interoperability with different versions.
077:             */
078:            private static final long serialVersionUID = -4502680112031773028L;
079:
080:            /**
081:             * Name of the {@value} projection parameter, which is handled specially during WKT formatting.
082:             */
083:            private static final String SEMI_MAJOR = "semi_major",
084:                    SEMI_MINOR = "semi_minor";
085:
086:            /**
087:             * Constructs a new projected CRS with the same values than the specified one.
088:             * This copy constructor provides a way to wrap an arbitrary implementation into a
089:             * Geotools one or a user-defined one (as a subclass), usually in order to leverage
090:             * some implementation-specific API. This constructor performs a shallow copy,
091:             * i.e. the properties are not cloned.
092:             *
093:             * @since 2.2
094:             */
095:            public DefaultProjectedCRS(final ProjectedCRS crs) {
096:                super (crs);
097:            }
098:
099:            /**
100:             * Constructs a projected CRS from a name.
101:             *
102:             * @param  name The name.
103:             * @param  method A description of the {@linkplain Conversion#getMethod method for the
104:             *         conversion}.
105:             * @param  base Coordinate reference system to base the derived CRS on.
106:             * @param  baseToDerived The transform from the base CRS to returned CRS.
107:             * @param  derivedCS The coordinate system for the derived CRS. The number
108:             *         of axes must match the target dimension of the transform
109:             *         {@code baseToDerived}.
110:             * @throws MismatchedDimensionException if the source and target dimension of
111:             *         {@code baseToDeviced} don't match the dimension of {@code base}
112:             *         and {@code derivedCS} respectively.
113:             *
114:             * @deprecated Create explicitly a {@link DefiningConversion} instead.
115:             */
116:            public DefaultProjectedCRS(final String name,
117:                    final OperationMethod method, final GeographicCRS base,
118:                    final MathTransform baseToDerived,
119:                    final CartesianCS derivedCS)
120:                    throws MismatchedDimensionException {
121:                this (Collections.singletonMap(NAME_KEY, name), method, base,
122:                        baseToDerived, derivedCS);
123:            }
124:
125:            /**
126:             * Constructs a projected CRS from a set of properties. The properties are given unchanged
127:             * to the {@linkplain AbstractDerivedCRS#AbstractDerivedCRS(Map, OperationMethod,
128:             * CoordinateReferenceSystem, MathTransform, CoordinateSystem) super-class constructor}.
129:             *
130:             * @param  properties Name and other properties to give to the new derived CRS object and to
131:             *         the underlying {@linkplain org.geotools.referencing.operation.DefaultProjection
132:             *         projection}.
133:             * @param  method A description of the {@linkplain Conversion#getMethod method for the
134:             *         conversion}.
135:             * @param  base Coordinate reference system to base the derived CRS on.
136:             * @param  baseToDerived The transform from the base CRS to returned CRS.
137:             * @param  derivedCS The coordinate system for the derived CRS. The number
138:             *         of axes must match the target dimension of the transform
139:             *         {@code baseToDerived}.
140:             * @throws MismatchedDimensionException if the source and target dimension of
141:             *         {@code baseToDeviced} don't match the dimension of {@code base}
142:             *         and {@code derivedCS} respectively.
143:             *
144:             * @deprecated Create explicitly a {@link DefiningConversion} instead.
145:             */
146:            public DefaultProjectedCRS(final Map properties,
147:                    final OperationMethod method, final GeographicCRS base,
148:                    final MathTransform baseToDerived,
149:                    final CartesianCS derivedCS)
150:                    throws MismatchedDimensionException {
151:                super (properties, method, base, baseToDerived, derivedCS);
152:            }
153:
154:            /**
155:             * Constructs a projected CRS from a {@linkplain DefiningConversion defining conversion}.
156:             * The properties are given unchanged to the
157:             * {@linkplain AbstractReferenceSystem#AbstractReferenceSystem(Map) super-class constructor}.
158:             *
159:             * @param  properties Name and other properties to give to the new projected CRS object.
160:             * @param  conversionFromBase The {@linkplain DefiningConversion defining conversion}.
161:             * @param  base Coordinate reference system to base the projected CRS on.
162:             * @param  baseToDerived The transform from the base CRS to returned CRS.
163:             * @param  derivedCS The coordinate system for the projected CRS. The number
164:             *         of axes must match the target dimension of the transform
165:             *         {@code baseToDerived}.
166:             * @throws MismatchedDimensionException if the source and target dimension of
167:             *         {@code baseToDerived} don't match the dimension of {@code base}
168:             *         and {@code derivedCS} respectively.
169:             */
170:            public DefaultProjectedCRS(final Map properties,
171:                    final Conversion conversionFromBase,
172:                    final GeographicCRS base,
173:                    final MathTransform baseToDerived,
174:                    final CartesianCS derivedCS)
175:                    throws MismatchedDimensionException {
176:                super (properties, conversionFromBase, base, baseToDerived,
177:                        derivedCS);
178:            }
179:
180:            /**
181:             * Returns a conversion from a source to target projected CRS, if this conversion
182:             * is representable as an affine transform. More specifically, if all projection
183:             * parameters are identical except the following ones:
184:             * <P>
185:             * <UL>
186:             *   <LI>{@link org.geotools.referencing.operation.projection.MapProjection.AbstractProvider#SCALE_FACTOR   scale_factor}</LI>
187:             *   <LI>{@link org.geotools.referencing.operation.projection.MapProjection.AbstractProvider#SEMI_MAJOR     semi_major}</LI>
188:             *   <LI>{@link org.geotools.referencing.operation.projection.MapProjection.AbstractProvider#SEMI_MINOR     semi_minor}</LI>
189:             *   <LI>{@link org.geotools.referencing.operation.projection.MapProjection.AbstractProvider#FALSE_EASTING  false_easting}</LI>
190:             *   <LI>{@link org.geotools.referencing.operation.projection.MapProjection.AbstractProvider#FALSE_NORTHING false_northing}</LI>
191:             * </UL>
192:             * <P>
193:             * Then the conversion between two projected CRS can sometime be represented as a linear
194:             * conversion. For example if only false easting/northing differ, then the coordinate conversion
195:             * is simply a translation. If no linear conversion has been found between the two CRS, then
196:             * this method returns {@code null}.
197:             *
198:             * @param  sourceCRS The source coordinate reference system.
199:             * @param  targetCRS The target coordinate reference system.
200:             * @param  errorTolerance Relative error tolerance for considering two parameter values as
201:             *         equal. This is usually a small number like {@code 1E-10}.
202:             * @return The conversion from {@code sourceCRS} to {@code targetCRS} as an
203:             *         affine transform, or {@code null} if no linear transform has been found.
204:             *
205:             * @deprecated This method was for {@code DefaultCoordinateOperationFactory} internal
206:             *             use only, and contains some shortcomming. Avoid direct use.
207:             */
208:            public static Matrix createLinearConversion(
209:                    final ProjectedCRS sourceCRS, final ProjectedCRS targetCRS,
210:                    final double errorTolerance) {
211:                /*
212:                 * Checks if the datum are the same. To be stricter, we could compare the 'baseCRS'
213:                 * instead. But this is not always needed. For example we don't really care if the
214:                 * underlying geographic CRS use different axis order or units. What matter are the
215:                 * axis order and units of the projected CRS.
216:                 *
217:                 * Actually, checking for 'baseCRS' causes an infinite loop (until StackOverflowError)
218:                 * in CoordinateOperationFactory, because it prevents this method to recognize that the
219:                 * transform between two projected CRS is the identity transform even if their underlying
220:                 * geographic CRS use different axis order.
221:                 */
222:                if (!equals(sourceCRS.getDatum(), targetCRS.getDatum(), false)) {
223:                    return null;
224:                }
225:                // TODO: remove the cast once we will be allowed to compile for J2SE 1.5.
226:                final Conversion sourceOp = (Conversion) sourceCRS
227:                        .getConversionFromBase();
228:                final Conversion targetOp = (Conversion) targetCRS
229:                        .getConversionFromBase();
230:                if (!equals(sourceOp.getMethod(), targetOp.getMethod(), false)) {
231:                    return null;
232:                }
233:                final ParameterValueGroup sourceGroup = sourceOp
234:                        .getParameterValues();
235:                final ParameterValueGroup targetGroup = targetOp
236:                        .getParameterValues();
237:                if (sourceGroup == null || targetGroup == null) {
238:                    return null;
239:                }
240:                final Collection sourceParams = sourceGroup.values();
241:                final Collection targetParams = targetGroup.values();
242:                final GeneralParameterValue[] sourceArray = (GeneralParameterValue[]) sourceParams
243:                        .toArray(new GeneralParameterValue[sourceParams.size()]);
244:                double scaleX = 1;
245:                double scaleY = 1;
246:                double oldTX = 0;
247:                double oldTY = 0;
248:                double newTX = 0;
249:                double newTY = 0;
250:                search: for (final Iterator it = targetParams.iterator(); it
251:                        .hasNext();) {
252:                    final GeneralParameterValue targetParam = (GeneralParameterValue) it
253:                            .next();
254:                    final GeneralParameterDescriptor descriptor = targetParam
255:                            .getDescriptor();
256:                    final String name = descriptor.getName().getCode();
257:                    for (int j = 0; j < sourceArray.length; j++) {
258:                        final GeneralParameterValue sourceParam = sourceArray[j];
259:                        if (sourceParam == null) {
260:                            continue;
261:                        }
262:                        if (nameMatches(sourceParam.getDescriptor(), name)) {
263:                            if (sourceParam instanceof  ParameterValue
264:                                    && targetParam instanceof  ParameterValue) {
265:                                /*
266:                                 * A pair of parameter values has been found (i.e. parameter with the
267:                                 * same name in the source and destination arrays).   Now, search for
268:                                 * map projection parameters  that can been factored out in an affine
269:                                 * transform.  All other parameters (including non-numeric ones) must
270:                                 * be identical.
271:                                 */
272:                                final ParameterValue parameter = (ParameterValue) targetParam;
273:                                final ParameterValue candidate = (ParameterValue) sourceParam;
274:                                if (Number.class
275:                                        .isAssignableFrom(((ParameterDescriptor) descriptor)
276:                                                .getValueClass())) {
277:                                    final double targetValue;
278:                                    final double sourceValue;
279:                                    final Unit unit = parameter.getUnit();
280:                                    if (unit != null) {
281:                                        targetValue = parameter
282:                                                .doubleValue(unit);
283:                                        sourceValue = candidate
284:                                                .doubleValue(unit);
285:                                    } else {
286:                                        targetValue = parameter.doubleValue();
287:                                        sourceValue = candidate.doubleValue();
288:                                    }
289:                                    if (nameMatches(descriptor, "scale_factor")) {
290:                                        final double scale = targetValue
291:                                                / sourceValue;
292:                                        scaleX *= scale;
293:                                        scaleY *= scale;
294:                                    } else if (nameMatches(descriptor,
295:                                            "semi_major")) {
296:                                        scaleX *= (targetValue / sourceValue);
297:                                    } else if (nameMatches(descriptor,
298:                                            "semi_minor")) {
299:                                        scaleY *= (targetValue / sourceValue);
300:                                    } else if (nameMatches(descriptor,
301:                                            "false_easting")) {
302:                                        oldTX += sourceValue;
303:                                        newTX += targetValue;
304:                                    } else if (nameMatches(descriptor,
305:                                            "false_northing")) {
306:                                        oldTY += sourceValue;
307:                                        newTY += targetValue;
308:                                    } else {
309:                                        double error = (targetValue - sourceValue);
310:                                        if (targetValue != 0)
311:                                            error /= targetValue;
312:                                        if (!(Math.abs(error) <= errorTolerance)) { // '!' for trapping NaN
313:                                            return null;
314:                                        }
315:                                    }
316:                                } else if (!Utilities.equals(parameter
317:                                        .getValue(), candidate.getValue())) {
318:                                    return null;
319:                                }
320:                            } else if (!Utilities.equals(targetParam,
321:                                    sourceParam)) {
322:                                return null;
323:                            }
324:                            /*
325:                             * End of processing of the pair of matching parameters.
326:                             * Search for a new pair.
327:                             */
328:                            sourceArray[j] = null;
329:                            continue search;
330:                        }
331:                    }
332:                    /*
333:                     * End of search in the array of source parameter.
334:                     * A parameter in the target has no matching parameter in source.
335:                     */
336:                    return null;
337:                }
338:                /*
339:                 * End of parameter comparaison. Check if there is any parameter in
340:                 * the source array without a matching parameter in the destination
341:                 * array.
342:                 */
343:                for (int i = 0; i < sourceArray.length; i++) {
344:                    if (sourceArray[i] != null) {
345:                        return null;
346:                    }
347:                }
348:                /*
349:                 * At this stage, we have found exact matching pairs for all parameters,
350:                 * and the only parameters to differ are the special one representables
351:                 * in an affine transform. 'scaleX' and 'scaleY' must be identical since
352:                 * they are actually about semi-major and semi-minor axis length, which
353:                 * are involved in non-linear calculations.
354:                 */
355:                if (!(Math.abs(scaleX - scaleY) <= errorTolerance)) { // '!' for trapping NaN
356:                    return null;
357:                }
358:                /*
359:                 * Creates the matrix (including axis order changes and unit conversions),
360:                 * and apply the scale and translation inferred from the  "false_easting"
361:                 * parameter and its friends. We perform the conversion in three conceptual
362:                 * steps (in the end, everything is bundle in a single matrix):
363:                 *
364:                 *   1) remove the old false northing/easting
365:                 *   2) apply the scale
366:                 *   3) add the new false northing/easting
367:                 *
368:                 * Note that those operation are performed in units of the target CRS.
369:                 */
370:                final double scale = 0.5 * (scaleX + scaleY);
371:                final boolean applyScale = (Math.abs(scale - 1) > errorTolerance);
372:                final CoordinateSystem sourceCS = sourceCRS
373:                        .getCoordinateSystem();
374:                final CoordinateSystem targetCS = targetCRS
375:                        .getCoordinateSystem();
376:                final Matrix matrix = AbstractCS.swapAndScaleAxis(sourceCS,
377:                        targetCS);
378:                final int sourceDim = sourceCS.getDimension();
379:                final int targetDim = targetCS.getDimension();
380:                for (int j = 0; j < targetDim; j++) {
381:                    final AxisDirection axis = targetCS.getAxis(j)
382:                            .getDirection();
383:                    final double oldT, newT;
384:                    if (AxisDirection.EAST.equals(axis)) {
385:                        oldT = +oldTX;
386:                        newT = +newTX;
387:                    } else if (AxisDirection.WEST.equals(axis)) {
388:                        oldT = -oldTX;
389:                        newT = -newTX;
390:                    } else if (AxisDirection.NORTH.equals(axis)) {
391:                        oldT = +oldTY;
392:                        newT = +newTY;
393:                    } else if (AxisDirection.SOUTH.equals(axis)) {
394:                        oldT = -oldTY;
395:                        newT = -newTY;
396:                    } else {
397:                        continue;
398:                    }
399:                    /*
400:                     * Applies the scale. Usually all elements on the same row are equal to zero,
401:                     * except one element in a column which depends on the source axis position.
402:                     * Note that we must multiply the last column (unit offset) as well.
403:                     */
404:                    if (applyScale) {
405:                        for (int i = 0; i <= sourceDim; i++) {
406:                            matrix.setElement(j, i, matrix.getElement(j, i)
407:                                    * scale);
408:                        }
409:                    }
410:                    /*
411:                     * Applies the translation. The old value in the matrix is usually 0,
412:                     * but could be non-zero for some unit conversion, which we keep.
413:                     */
414:                    final double delta = newT
415:                            - (applyScale ? oldT * scale : oldT);
416:                    if (!(Math.abs(delta) <= errorTolerance)) {
417:                        matrix.setElement(j, sourceDim, matrix.getElement(j,
418:                                sourceDim)
419:                                + delta);
420:                    }
421:                }
422:                return matrix;
423:            }
424:
425:            /**
426:             * Returns a hash value for this projected CRS.
427:             *
428:             * @return The hash code value. This value doesn't need to be the same
429:             *         in past or future versions of this class.
430:             */
431:            public int hashCode() {
432:                return (int) serialVersionUID ^ super .hashCode();
433:            }
434:
435:            /**
436:             * Format the inner part of a
437:             * <A HREF="http://geoapi.sourceforge.net/snapshot/javadoc/org/opengis/referencing/doc-files/WKT.html"><cite>Well
438:             * Known Text</cite> (WKT)</A> element.
439:             *
440:             * @param  formatter The formatter to use.
441:             * @return The name of the WKT element type, which is {@code "PROJCS"}.
442:             */
443:            protected String formatWKT(final Formatter formatter) {
444:                final Ellipsoid ellipsoid = ((GeodeticDatum) datum)
445:                        .getEllipsoid();
446:                final Unit unit = getUnit();
447:                final Unit linearUnit = formatter.getLinearUnit();
448:                final Unit angularUnit = formatter.getAngularUnit();
449:                final Unit axisUnit = ellipsoid.getAxisUnit();
450:                formatter.setLinearUnit(unit);
451:                formatter.setAngularUnit(DefaultGeographicCRS
452:                        .getAngularUnit(baseCRS.getCoordinateSystem()));
453:                formatter.append(baseCRS);
454:                formatter.append(conversionFromBase.getMethod());
455:                final Collection parameters = conversionFromBase
456:                        .getParameterValues().values();
457:                for (final Iterator it = parameters.iterator(); it.hasNext();) {
458:                    final GeneralParameterValue param = (GeneralParameterValue) it
459:                            .next();
460:                    final GeneralParameterDescriptor desc = param
461:                            .getDescriptor();
462:                    String name;
463:                    if (nameMatches(desc, name = SEMI_MAJOR)
464:                            || nameMatches(desc, name = SEMI_MINOR)) {
465:                        /*
466:                         * Do not format semi-major and semi-minor axis length in most cases, since those
467:                         * informations are provided in the ellipsoid. An exception occurs if the lengths
468:                         * are different from the ones declared in the datum.
469:                         */
470:                        if (param instanceof  ParameterValue) {
471:                            final double value = ((ParameterValue) param)
472:                                    .doubleValue(axisUnit);
473:                            final double expected = (name == SEMI_MINOR) ? // using '==' is okay here.
474:                            ellipsoid.getSemiMinorAxis()
475:                                    : ellipsoid.getSemiMajorAxis();
476:                            if (value == expected) {
477:                                continue;
478:                            }
479:                        }
480:                    }
481:                    formatter.append(param);
482:                }
483:                formatter.append(unit);
484:                final int dimension = coordinateSystem.getDimension();
485:                for (int i = 0; i < dimension; i++) {
486:                    formatter.append(coordinateSystem.getAxis(i));
487:                }
488:                if (unit == null) {
489:                    formatter.setInvalidWKT(ProjectedCRS.class);
490:                }
491:                formatter.setAngularUnit(angularUnit);
492:                formatter.setLinearUnit(linearUnit);
493:                return "PROJCS";
494:            }
495:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.