Source Code Cross Referenced for Spheroid.java in  » GIS » openjump » com » vividsolutions » jump » coordsys » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » GIS » openjump » com.vividsolutions.jump.coordsys 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * The Unified Mapping Platform (JUMP) is an extensible, interactive GUI
003:         * for visualizing and manipulating spatial features with geometry and attributes.
004:         *
005:         * Copyright (C) 2003 Vivid Solutions
006:         *
007:         * This program is free software; you can redistribute it and/or
008:         * modify it under the terms of the GNU General Public License
009:         * as published by the Free Software Foundation; either version 2
010:         * of the License, or (at your option) any later version.
011:         *
012:         * This program is distributed in the hope that it will be useful,
013:         * but WITHOUT ANY WARRANTY; without even the implied warranty of
014:         * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
015:         * GNU General Public License for more details.
016:         *
017:         * You should have received a copy of the GNU General Public License
018:         * along with this program; if not, write to the Free Software
019:         * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
020:         *
021:         * For more information, contact:
022:         *
023:         * Vivid Solutions
024:         * Suite #1A
025:         * 2328 Government Street
026:         * Victoria BC  V8T 5G5
027:         * Canada
028:         *
029:         * (250)385-6040
030:         * www.vividsolutions.com
031:         */
032:
033:        package com.vividsolutions.jump.coordsys;
034:
035:        /**
036:
037:         * @author $Author: javamap $
038:         * @version $Revision: 4 $
039:
040:         *  <pre>
041:         *  $Id: Spheroid.java 4 2005-06-16 15:27:48Z javamap $
042:         *  $Date: 2005-06-16 08:27:48 -0700 (Thu, 16 Jun 2005) $
043:         *  $Log$
044:         *  Revision 1.1  2005/06/16 15:24:52  javamap
045:         *  *** empty log message ***
046:         *
047:         *  Revision 1.2  2005/05/03 15:13:29  javamap
048:         *  *** empty log message ***
049:         *
050:         *  Revision 1.2  2003/11/05 05:26:52  dkim
051:         *  Added global header; cleaned up Javadoc.
052:         *
053:         *  Revision 1.1  2003/09/15 20:26:11  jaquino
054:         *  Reprojection
055:         *
056:         *  Revision 1.2  2003/07/25 17:01:03  gkostadinov
057:         *  Moved classses reponsible for performing the basic projection to a new
058:         *  package -- base.
059:         *
060:         *  Revision 1.1  2003/07/24 23:14:43  gkostadinov
061:         *  adding base projection classes
062:         *
063:         *  Revision 1.1  2003/06/20 18:34:30  gkostadinov
064:         *  Entering the source code into the CVS.
065:         * </pre>
066:         *
067:         */
068:
069:        /**
070:         * GRS80 spheroid.
071:         */
072:        public class Spheroid {
073:
074:            public double a;// semimajor axis
075:            public double b;// semiminor axis
076:            public double f;// flattening
077:            public double e;// eccentricity (first)
078:
079:            double es;// first eccentricity squared
080:            double t1, t2, t3;// t1,...,t6 used for
081:            double t4, t5, t6;//   area computation (local Math.sinusoidal)
082:
083:            public Spheroid(Radius rad) {
084:                // constructor base on a and b
085:                a = rad.a;
086:                if (rad.b > 1.0) {
087:                    b = rad.b;
088:                    f = 1.0 - b / a;
089:                } else {
090:                    f = 1.0 / rad.rf;
091:                    b = a - a * f;
092:                }
093:                es = f + f - f * f;
094:                e = Math.sqrt(es);
095:                // constaints for local Math.sinusoidal equal-area projection
096:                // used for area computations.
097:                double e4;
098:                // constaints for local Math.sinusoidal equal-area projection
099:                // used for area computations.
100:                double e6;
101:                // constaints for local Math.sinusoidal equal-area projection
102:                // used for area computations.
103:                double e8;
104:                // constaints for local Math.sinusoidal equal-area projection
105:                // used for area computations.
106:                double e10;
107:                double t0;
108:                t0 = a * (1.0 - es);
109:                e4 = es * es;
110:                e6 = e4 * es;
111:                e8 = e6 * es;
112:                e10 = e8 * es;
113:                t1 = t0
114:                        * (1.0 + 3.0 * es / 4.0 + 45.0 * e4 / 64.0 + 175.0 * e6
115:                                / 256.0 + 11025.0 * e8 / 16384.0 + 43659.0 * e10 / 65536.0);
116:                t2 = t0
117:                        * (3.0 * es / 4.0 + 15.0 * e4 / 16.0 + 525.0 * e6
118:                                / 512.0 + 2205.0 * e8 / 2048.0 + 72765.0 * e10 / 65536.0)
119:                        / 2.0;
120:                t3 = t0
121:                        * (15.0 * e4 / 64.0 + 105.0 * e6 / 256.0 + 2205.0 * e8
122:                                / 4096.0 + 10395.0 * e10 / 16384.0) / 4.0;
123:                t4 = t0
124:                        * (35.0 * e6 / 512.0 + 315.0 * e8 / 2048.0 + 31185.0 * e10 / 131072.0)
125:                        / 6.0;
126:                t5 = t0 * (315.0 * e8 / 16384.0 + 3465.0 * e10 / 65536.0) / 8.0;
127:                t6 = t0 * (693.0 * e10 / 131072.0) / 10.0;
128:            }
129:
130:            public double getA() {
131:                return a;
132:            }
133:
134:            public double getB() {
135:                return b;
136:            }
137:
138:            public double getF() {
139:                return f;
140:            }
141:
142:            public double getE() {
143:                return e;
144:            }
145:
146:            public double distance(Geographic r, Geographic s) {
147:                // compute Math.sin and cos of latitudes and reduced latitudes
148:                double L1;
149:                // compute Math.sin and cos of latitudes and reduced latitudes
150:                double L2;
151:                // compute Math.sin and cos of latitudes and reduced latitudes
152:                double sinU1;
153:                // compute Math.sin and cos of latitudes and reduced latitudes
154:                double sinU2;
155:                // compute Math.sin and cos of latitudes and reduced latitudes
156:                double cosU1;
157:                // compute Math.sin and cos of latitudes and reduced latitudes
158:                double cosU2;
159:                L1 = Math.atan((1.0 - f) * Math.tan(r.lat));
160:                L2 = Math.atan((1.0 - f) * Math.tan(s.lat));
161:                sinU1 = Math.sin(L1);
162:                sinU2 = Math.sin(L2);
163:                cosU1 = Math.cos(L1);
164:                cosU2 = Math.cos(L2);
165:
166:                // compute delta longitude on the sphere
167:                double dl;
168:
169:                // compute delta longitude on the sphere
170:                double dl1;
171:
172:                // compute delta longitude on the sphere
173:                double dl2;
174:
175:                // compute delta longitude on the sphere
176:                double dl3;
177:
178:                // compute delta longitude on the sphere
179:                double cosdl1;
180:
181:                // compute delta longitude on the sphere
182:                double sindl1;
183:                double cosSigma;
184:                double sigma;
185:                double azimuthEQ;
186:                double tsm;
187:                dl = s.lon - r.lon;
188:                dl1 = dl;
189:                cosdl1 = Math.cos(dl);
190:                sindl1 = Math.sin(dl);
191:                do {
192:                    cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosdl1;
193:                    sigma = Math.acos(cosSigma);
194:                    azimuthEQ = Math.asin((cosU1 * cosU2 * sindl1)
195:                            / Math.sin(sigma));
196:                    tsm = Math.acos(cosSigma - (2.0 * sinU1 * sinU2)
197:                            / (Math.cos(azimuthEQ) * Math.cos(azimuthEQ)));
198:                    dl2 = deltaLongitude(azimuthEQ, sigma, tsm);
199:                    dl3 = dl1 - (dl + dl2);
200:                    dl1 = dl + dl2;
201:                    cosdl1 = Math.cos(dl1);
202:                    sindl1 = Math.sin(dl1);
203:                } while (Math.abs(dl3) > 1.0e-032);
204:
205:                // compute expansions A and B
206:                double u2;
207:
208:                // compute expansions A and B
209:                double A;
210:
211:                // compute expansions A and B
212:                double B;
213:                u2 = mu2(azimuthEQ);
214:                A = bigA(u2);
215:                B = bigB(u2);
216:
217:                // compute length of geodesic
218:                double dsigma;
219:                dsigma = B
220:                        * Math.sin(sigma)
221:                        * (Math.cos(tsm) + (B * cosSigma * (-1.0 + 2.0 * (Math
222:                                .cos(tsm) * Math.cos(tsm)))) / 4.0);
223:                return b * (A * (sigma - dsigma));
224:            }// END - spheroid::distance
225:
226:            public double direction(Geographic r, Geographic s) {
227:                // compute Math.sin and cos of latitudes and reduced latitudes
228:                double L1;
229:                // compute Math.sin and cos of latitudes and reduced latitudes
230:                double L2;
231:                // compute Math.sin and cos of latitudes and reduced latitudes
232:                double sinU1;
233:                // compute Math.sin and cos of latitudes and reduced latitudes
234:                double sinU2;
235:                // compute Math.sin and cos of latitudes and reduced latitudes
236:                double cosU1;
237:                // compute Math.sin and cos of latitudes and reduced latitudes
238:                double cosU2;
239:                L1 = Math.atan((1.0 - f) * Math.tan(r.lat));
240:                L2 = Math.atan((1.0 - f) * Math.tan(s.lat));
241:                sinU1 = Math.sin(L1);
242:                sinU2 = Math.sin(L2);
243:                cosU1 = Math.cos(L1);
244:                cosU2 = Math.cos(L2);
245:
246:                // compute delta longitude on the sphere
247:                double dl;
248:
249:                // compute delta longitude on the sphere
250:                double dl1;
251:
252:                // compute delta longitude on the sphere
253:                double dl2;
254:
255:                // compute delta longitude on the sphere
256:                double dl3;
257:
258:                // compute delta longitude on the sphere
259:                double cosdl1;
260:
261:                // compute delta longitude on the sphere
262:                double sindl1;
263:                double cosSigma;
264:                double sigma;
265:                double azimuthEQ;
266:                double tsm;
267:                dl = s.lon - r.lon;
268:                dl1 = dl;
269:                cosdl1 = Math.cos(dl);
270:                sindl1 = Math.sin(dl);
271:                do {
272:                    cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosdl1;
273:                    sigma = Math.acos(cosSigma);
274:                    azimuthEQ = Math.asin((cosU1 * cosU2 * sindl1)
275:                            / Math.sin(sigma));
276:                    tsm = Math.acos(cosSigma - (2.0 * sinU1 * sinU2)
277:                            / (Math.cos(azimuthEQ) * Math.cos(azimuthEQ)));
278:                    dl2 = deltaLongitude(azimuthEQ, sigma, tsm);
279:                    dl3 = dl1 - (dl + dl2);
280:                    dl1 = dl + dl2;
281:                    cosdl1 = Math.cos(dl1);
282:                    sindl1 = Math.sin(dl1);
283:                } while (Math.abs(dl3) > 1.0e-032);
284:
285:                // compute expansions A and B
286:                double u2;
287:
288:                // compute expansions A and B
289:                double A;
290:
291:                // compute expansions A and B
292:                double B;
293:                u2 = mu2(azimuthEQ);
294:                A = bigA(u2);
295:                B = bigB(u2);
296:
297:                // compute length of geodesic
298:                double dsigma;
299:
300:                // compute length of geodesic
301:                double d_tmp;
302:                dsigma = B
303:                        * Math.sin(sigma)
304:                        * (Math.cos(tsm) + (B * cosSigma * (-1.0 + 2.0 * (Math
305:                                .cos(tsm) * Math.cos(tsm)))) / 4.0);
306:                d_tmp = b * (A * (sigma - dsigma));
307:
308:                // compute forward azimuth
309:                double azimuthFD;
310:                azimuthFD = Math.atan2((cosU2 * sindl1), (cosU1 * sinU2 - sinU1
311:                        * cosU2 * cosdl1));
312:                if (azimuthFD < 0.0) {
313:                    azimuthFD = azimuthFD + 2.0 * Math.PI;
314:                }
315:                return azimuthFD;
316:            }// END - spheroid::direction
317:
318:            public Geographic project(Geographic r, double length, double angle) {
319:                double e2;
320:                double e2s;
321:                double L1;
322:                double cosU1;
323:                double sinU1;
324:                double cosa1;
325:                double sina1;
326:                double sig1;
327:                double sinae;
328:                double azimuthEQ;
329:                double u2;
330:                double A;
331:                double B;
332:                double s1;
333:                double sigma;
334:                double tsm;
335:                double del;
336:                double cis;
337:                e2 = Math.sqrt(a * a - b * b) / b;// second excentricity
338:                e2s = e2 * e2;
339:                L1 = Math.atan((1.0 - f) * Math.tan(r.lat));
340:                cosU1 = Math.cos(L1);
341:                sinU1 = Math.sin(L1);
342:                cosa1 = Math.cos(angle);
343:                sina1 = Math.sin(angle);
344:                sig1 = Math.atan(Math.tan(L1) / cosa1);
345:                sinae = cosU1 * sina1;
346:                azimuthEQ = Math.asin(sinae);
347:                u2 = mu2(azimuthEQ);
348:                A = bigA(u2);
349:                B = bigB(u2);
350:                s1 = length / (b * A);
351:                sigma = s1;
352:                do {
353:                    tsm = 2.0 * sig1 + sigma;
354:                    del = B
355:                            * Math.sin(sigma)
356:                            * (Math.cos(tsm) + 0.25
357:                                    * B
358:                                    * Math.cos(sigma)
359:                                    * (-1.0 + 2.0 * (Math.cos(tsm) * Math
360:                                            .cos(tsm))));
361:                    cis = sigma - (s1 + del);
362:                    sigma = s1 + del;
363:                } while (Math.abs(cis) > 1.0e-032);
364:                double cossigma;
365:                double sinsigma;
366:                cossigma = Math.cos(sigma);
367:                sinsigma = Math.sin(sigma);
368:
369:                Geographic s = new Geographic();
370:                double dm;
371:                double dl1;
372:                s.lat = sinU1 * cossigma + cosU1 * sinsigma * cosa1;
373:                dm = Math.sqrt(sinae * sinae
374:                        + (sinU1 * sinsigma - cosU1 * cossigma * cosa1)
375:                        * (sinU1 * sinsigma - cosU1 * cossigma * cosa1));
376:                s.lat = Math.atan2(s.lat, ((1.0 - f) * dm));
377:                dl1 = Math.atan2((sinsigma * sina1), (cosU1 * cossigma - sinU1
378:                        * sinsigma * cosa1));
379:                s.lon = r.lon + dl1 - deltaLongitude(azimuthEQ, sigma, tsm);
380:                return s;
381:            }// END - spheroid::project
382:
383:            public double meridianRadiusOfCurvature(double latitude) {
384:                double er;
385:                double el;
386:                double M0;
387:                er = 1.0 - es * Math.sin(latitude) * Math.sin(latitude);
388:                el = Math.pow(er, 1.5);
389:                M0 = (a * (1.0 - es)) / el;
390:                return M0;
391:            }// END - spheroid::meridianRadiusOfCurvature
392:
393:            public double primeVerticalRadiusOfCurvature(double latitude) {
394:                double T1;
395:                double T2;
396:                double T3;
397:                double N0;
398:                T1 = a * a;
399:                T2 = T1 * Math.cos(latitude) * Math.cos(latitude);
400:                T3 = b * b * Math.sin(latitude) * Math.sin(latitude);
401:                N0 = T1 / Math.sqrt(T2 + T3);
402:                return N0;
403:            }// END - spheroid::primeVerticalRadiusOfCurvature
404:
405:            public double deltaLongitude(double azimuth, double sigma,
406:                    double tsm) {
407:                // compute the expansion C
408:                double das;
409:                // compute the expansion C
410:                double C;
411:                das = Math.cos(azimuth) * Math.cos(azimuth);
412:                C = f / 16.0 * das * (4.0 + f * (4.0 - 3.0 * das));
413:                // compute the difference in longitude
414:                double ctsm;
415:                // compute the difference in longitude
416:                double DL;
417:                ctsm = Math.cos(tsm);
418:                DL = ctsm + C * Math.cos(sigma) * (-1.0 + 2.0 * ctsm * ctsm);
419:                DL = sigma + C * Math.sin(sigma) * DL;
420:                return (1.0 - C) * f * Math.sin(azimuth) * DL;
421:            }// END - spheroid::deltaLongitude
422:
423:            public double mu2(double azimuth) {
424:                double e2;
425:
426:                e2 = Math.sqrt(a * a - b * b) / b;
427:                return Math.cos(azimuth) * Math.cos(azimuth) * e2 * e2;
428:            }// END - spheroid::mu2
429:
430:            public double bigA(double u2) {
431:                return 1.0 + u2 / 256.0 * (64.0 + u2 * (-12.0 + 5.0 * u2));
432:            }// END - spheroid::bigA
433:
434:            public double bigB(double u2) {
435:                return u2 / 512.0 * (128.0 + u2 * (-64.0 + 37.0 * u2));
436:            }// END - spheroid::bigB
437:
438:            public double M(double latitude) {
439:                // returns the length of a meridian arc from the equator
440:                // to the given latitude (from Richard Rapp).
441:                return t1 * latitude - t2 * Math.sin(2.0 * latitude) + t3
442:                        * Math.sin(4.0 * latitude) - t4
443:                        * Math.sin(6.0 * latitude) + t5
444:                        * Math.sin(8.0 * latitude) - t5
445:                        * Math.sin(10.0 * latitude);
446:            }// END - spheroid::M
447:
448:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.