Source Code Cross Referenced for BayesianAnalyzer.java in  » Net » james-2.3.1 » org » apache » james » util » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Net » james 2.3.1 » org.apache.james.util 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /****************************************************************
002:         * Licensed to the Apache Software Foundation (ASF) under one   *
003:         * or more contributor license agreements.  See the NOTICE file *
004:         * distributed with this work for additional information        *
005:         * regarding copyright ownership.  The ASF licenses this file   *
006:         * to you under the Apache License, Version 2.0 (the            *
007:         * "License"); you may not use this file except in compliance   *
008:         * with the License.  You may obtain a copy of the License at   *
009:         *                                                              *
010:         *   http://www.apache.org/licenses/LICENSE-2.0                 *
011:         *                                                              *
012:         * Unless required by applicable law or agreed to in writing,   *
013:         * software distributed under the License is distributed on an  *
014:         * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY       *
015:         * KIND, either express or implied.  See the License for the    *
016:         * specific language governing permissions and limitations      *
017:         * under the License.                                           *
018:         ****************************************************************/package org.apache.james.util;
019:
020:        import java.util.Map;
021:        import java.util.Set;
022:        import java.util.SortedSet;
023:        import java.util.TreeSet;
024:        import java.util.HashMap;
025:        import java.util.HashSet;
026:        import java.util.Iterator;
027:        import java.util.Collection;
028:        import java.util.ArrayList;
029:
030:        import java.io.Reader;
031:        import java.io.StreamTokenizer;
032:        import java.io.StringReader;
033:
034:        /**
035:         * <P>Determines probability that text contains Spam.</P>
036:         *
037:         * <P>Based upon Paul Grahams' <a href="http://www.paulgraham.com/spam.html">A Plan for Spam</a>.
038:         * Extended to Paul Grahams' <a href="http://paulgraham.com/better.html">Better Bayesian Filtering</a>.</P>
039:         *
040:         * <P>Sample method usage:</P>
041:         *
042:         * <P>Use:
043:         *   void addHam(Reader)
044:         *   and
045:         *   void addSpam(Reader)
046:         *
047:         *   methods to build up the Maps of ham & spam tokens/occurrences.
048:         *   Both addHam and addSpam assume they're reading one message at a time,
049:         *   if you feed more than one message per call, be sure to adjust the
050:         *   appropriate message counter:  hamMessageCount or spamMessageCount.
051:         *
052:         *   Then...</P>
053:         *
054:         * <P>Use:
055:         *   void buildCorpus()
056:         *
057:         *   to build the final token/probabilities Map.
058:         *
059:         *   Use your own methods for persistent storage of either the individual
060:         *   ham/spam corpus & message counts, and/or the final corpus.
061:         *
062:         *   Then you can...</P>
063:         *
064:         * <P>Use:
065:         *   double computeSpamProbability(Reader)
066:         *
067:         *   to determine the probability that a particular text contains spam.
068:         *   A returned result of 0.9 or above is an indicator that the text was
069:         *   spam.</P>
070:         *
071:         * <P>If you use persistent storage, use:
072:         *   void setCorpus(Map)
073:         *
074:         * before calling computeSpamProbability.</P>
075:         *
076:         * @version CVS $Revision: $ $Date: $
077:         * @since 2.3.0
078:         */
079:
080:        public class BayesianAnalyzer {
081:
082:            /**
083:             * Number of "interesting" tokens to use to compute overall
084:             * spamminess probability.
085:             */
086:            private final static int MAX_INTERESTING_TOKENS = 15;
087:
088:            /**
089:             * Minimum probability distance from 0.5 to consider a token "interesting" to use to compute overall
090:             * spamminess probability.
091:             */
092:            private final static double INTERESTINGNESS_THRESHOLD = 0.46;
093:
094:            /**
095:             * Default token probability to use when a token has not been
096:             * encountered before.
097:             */
098:            private final static double DEFAULT_TOKEN_PROBABILITY = 0.4;
099:
100:            /**
101:             * Map of ham tokens and their occurrences.
102:             *
103:             * String key
104:             * Integer value
105:             */
106:            private Map hamTokenCounts = new HashMap();
107:
108:            /**
109:             * Map of spam tokens and their occurrences.
110:             *
111:             * String key
112:             * Integer value
113:             */
114:            private Map spamTokenCounts = new HashMap();
115:
116:            /**
117:             * Number of ham messages analyzed.
118:             */
119:            private int hamMessageCount = 0;
120:
121:            /**
122:             * Number of spam messages analyzed.
123:             */
124:            private int spamMessageCount = 0;
125:
126:            /**
127:             * Final token/probability corpus.
128:             *
129:             * String key
130:             * Double value
131:             */
132:            private Map corpus = new HashMap();
133:
134:            /**
135:             * Inner class for managing Token Probability Strengths during the
136:             * computeSpamProbability phase.
137:             *
138:             * By probability <i>strength</i> we mean the absolute distance of a
139:             * probability from the middle value 0.5.
140:             *
141:             * It implements Comparable so that it's sorting is automatic.
142:             */
143:            private class TokenProbabilityStrength implements  Comparable {
144:                /**
145:                 * Message token.
146:                 */
147:                String token = null;
148:
149:                /**
150:                 * Token's computed probability strength.
151:                 */
152:                double strength = Math.abs(0.5 - DEFAULT_TOKEN_PROBABILITY);
153:
154:                /**
155:                 * Force the natural sort order for this object to be high-to-low.
156:                 *
157:                 * @param anotherTokenProbabilityStrength A TokenProbabilityStrength instance to compare
158:                 *                                this instance with.
159:                 *
160:                 * @return The result of the comparison (before, equal, after).
161:                 */
162:                public final int compareTo(
163:                        Object anotherTokenProbabilityStrength) {
164:                    int result = (int) ((((TokenProbabilityStrength) anotherTokenProbabilityStrength).strength - strength) * 1000000);
165:                    if (result == 0) {
166:                        return this .token
167:                                .compareTo(((TokenProbabilityStrength) anotherTokenProbabilityStrength).token);
168:                    } else {
169:                        return result;
170:                    }
171:                }
172:
173:                /**
174:                 * Simple toString () implementation mostly for debugging purposes.
175:                 *
176:                 * @return String representation of this object.
177:                 */
178:                public String toString() {
179:                    StringBuffer sb = new StringBuffer(30);
180:
181:                    sb.append(token).append("=").append(strength);
182:
183:                    return sb.toString();
184:                }
185:            }
186:
187:            /**
188:             * Basic class constructor.
189:             */
190:            public BayesianAnalyzer() {
191:            }
192:
193:            /**
194:             * Public setter for the hamTokenCounts Map.
195:             *
196:             * @param hamTokenCounts The new ham Token counts Map.
197:             */
198:            public void setHamTokenCounts(Map hamTokenCounts) {
199:                this .hamTokenCounts = hamTokenCounts;
200:            }
201:
202:            /**
203:             * Public getter for the hamTokenCounts Map.
204:             */
205:            public Map getHamTokenCounts() {
206:                return this .hamTokenCounts;
207:            }
208:
209:            /**
210:             * Public setter for the spamTokenCounts Map.
211:             *
212:             * @param spamTokenCounts The new spam Token counts Map.
213:             */
214:            public void setSpamTokenCounts(Map spamTokenCounts) {
215:                this .spamTokenCounts = spamTokenCounts;
216:            }
217:
218:            /**
219:             * Public getter for the spamTokenCounts Map.
220:             */
221:            public Map getSpamTokenCounts() {
222:                return this .spamTokenCounts;
223:            }
224:
225:            /**
226:             * Public setter for spamMessageCount.
227:             *
228:             * @param spamMessageCount The new spam message count.
229:             */
230:            public void setSpamMessageCount(int spamMessageCount) {
231:                this .spamMessageCount = spamMessageCount;
232:            }
233:
234:            /**
235:             * Public getter for spamMessageCount.
236:             */
237:            public int getSpamMessageCount() {
238:                return this .spamMessageCount;
239:            }
240:
241:            /**
242:             * Public setter for hamMessageCount.
243:             *
244:             * @param hamMessageCount The new ham message count.
245:             */
246:            public void setHamMessageCount(int hamMessageCount) {
247:                this .hamMessageCount = hamMessageCount;
248:            }
249:
250:            /**
251:             * Public getter for hamMessageCount.
252:             */
253:            public int getHamMessageCount() {
254:                return this .hamMessageCount;
255:            }
256:
257:            /**
258:             * Clears all analysis repositories and counters.
259:             */
260:            public void clear() {
261:                corpus.clear();
262:
263:                tokenCountsClear();
264:
265:                hamMessageCount = 0;
266:                spamMessageCount = 0;
267:            }
268:
269:            /**
270:             * Clears token counters.
271:             */
272:            public void tokenCountsClear() {
273:                hamTokenCounts.clear();
274:                spamTokenCounts.clear();
275:            }
276:
277:            /**
278:             * Public setter for corpus.
279:             *
280:             * @param corpus The new corpus.
281:             */
282:            public void setCorpus(Map corpus) {
283:                this .corpus = corpus;
284:            }
285:
286:            /**
287:             * Public getter for corpus.
288:             */
289:            public Map getCorpus() {
290:                return this .corpus;
291:            }
292:
293:            /**
294:             * Builds the corpus from the existing ham & spam counts.
295:             */
296:            public void buildCorpus() {
297:                //Combine the known ham & spam tokens.
298:                Set set = new HashSet(hamTokenCounts.size()
299:                        + spamTokenCounts.size());
300:                set.addAll(hamTokenCounts.keySet());
301:                set.addAll(spamTokenCounts.keySet());
302:                Map tempCorpus = new HashMap(set.size());
303:
304:                //Iterate through all the tokens and compute their new
305:                //individual probabilities.
306:                Iterator i = set.iterator();
307:                while (i.hasNext()) {
308:                    String token = (String) i.next();
309:                    tempCorpus
310:                            .put(token, new Double(computeProbability(token)));
311:                }
312:                setCorpus(tempCorpus);
313:            }
314:
315:            /**
316:             * Adds a message to the ham list.
317:             * @param stream A reader stream on the ham message to analyze
318:             * @throws IOException If any error occurs
319:             */
320:            public void addHam(Reader stream) throws java.io.IOException {
321:                addTokenOccurrences(stream, hamTokenCounts);
322:                hamMessageCount++;
323:            }
324:
325:            /**
326:             * Adds a message to the spam list.
327:             * @param stream A reader stream on the spam message to analyze
328:             * @throws IOException If any error occurs
329:             */
330:            public void addSpam(Reader stream) throws java.io.IOException {
331:                addTokenOccurrences(stream, spamTokenCounts);
332:                spamMessageCount++;
333:            }
334:
335:            /**
336:             * Computes the probability that the stream contains SPAM.
337:             * @param stream The text to be analyzed for Spamminess.
338:             * @return A 0.0 - 1.0 probability
339:             * @throws IOException If any error occurs
340:             */
341:            public double computeSpamProbability(Reader stream)
342:                    throws java.io.IOException {
343:                //Build a set of the tokens in the Stream.
344:                Set tokens = parse(stream);
345:
346:                // Get the corpus to use in this run
347:                // A new corpus may be being built in the meantime
348:                Map workCorpus = getCorpus();
349:
350:                //Assign their probabilities from the Corpus (using an additional
351:                //calculation to determine spamminess).
352:                SortedSet tokenProbabilityStrengths = getTokenProbabilityStrengths(
353:                        tokens, workCorpus);
354:
355:                //Compute and return the overall probability that the
356:                //stream is SPAM.
357:                return computeOverallProbability(tokenProbabilityStrengths,
358:                        workCorpus);
359:            }
360:
361:            /**
362:             * Parses a stream into tokens, and updates the target Map
363:             * with the token/counts.
364:             *
365:             * @param stream
366:             * @param target
367:             */
368:            private void addTokenOccurrences(Reader stream, Map target)
369:                    throws java.io.IOException {
370:                String token;
371:                String header = "";
372:
373:                //Update target with the tokens/count encountered.
374:                while ((token = nextToken(stream)) != null) {
375:                    boolean endingLine = false;
376:                    if (token.length() > 0
377:                            && token.charAt(token.length() - 1) == '\n') {
378:                        endingLine = true;
379:                        token = token.substring(0, token.length() - 1);
380:                    }
381:
382:                    if (token.length() > 0
383:                            && header.length() + token.length() < 90
384:                            && !allDigits(token)) {
385:                        if (token.equals("From:")
386:                                || token.equals("Return-Path:")
387:                                || token.equals("Subject:")
388:                                || token.equals("To:")) {
389:                            header = token;
390:                            if (!endingLine) {
391:                                continue;
392:                            }
393:                        }
394:
395:                        token = header + token;
396:
397:                        Integer value = null;
398:
399:                        if (target.containsKey(token)) {
400:                            value = new Integer(((Integer) target.get(token))
401:                                    .intValue() + 1);
402:                        } else {
403:                            value = new Integer(1);
404:                        }
405:
406:                        target.put(token, value);
407:                    }
408:
409:                    if (endingLine) {
410:                        header = "";
411:                    }
412:                }
413:            }
414:
415:            /**
416:             * Parses a stream into tokens, and returns a Set of
417:             * the unique tokens encountered.
418:             *
419:             * @param stream
420:             * @return Set
421:             */
422:            private Set parse(Reader stream) throws java.io.IOException {
423:                Set tokens = new HashSet();
424:                String token;
425:                String header = "";
426:
427:                //Build a Map of tokens encountered.
428:                while ((token = nextToken(stream)) != null) {
429:                    boolean endingLine = false;
430:                    if (token.length() > 0
431:                            && token.charAt(token.length() - 1) == '\n') {
432:                        endingLine = true;
433:                        token = token.substring(0, token.length() - 1);
434:                    }
435:
436:                    if (token.length() > 0
437:                            && header.length() + token.length() < 90
438:                            && !allDigits(token)) {
439:                        if (token.equals("From:")
440:                                || token.equals("Return-Path:")
441:                                || token.equals("Subject:")
442:                                || token.equals("To:")) {
443:                            header = token;
444:                            if (!endingLine) {
445:                                continue;
446:                            }
447:                        }
448:
449:                        token = header + token;
450:
451:                        tokens.add(token);
452:                    }
453:
454:                    if (endingLine) {
455:                        header = "";
456:                    }
457:                }
458:
459:                //Return the unique set of tokens encountered.
460:                return tokens;
461:            }
462:
463:            private String nextToken(Reader reader) throws java.io.IOException {
464:                StringBuffer token = new StringBuffer();
465:                int i;
466:                char ch, ch2;
467:                boolean previousWasDigit = false;
468:                boolean tokenCharFound = false;
469:
470:                if (!reader.ready()) {
471:                    return null;
472:                }
473:
474:                while ((i = reader.read()) != -1) {
475:
476:                    ch = (char) i;
477:
478:                    if (ch == ':') {
479:                        String tokenString = token.toString() + ':';
480:                        if (tokenString.equals("From:")
481:                                || tokenString.equals("Return-Path:")
482:                                || tokenString.equals("Subject:")
483:                                || tokenString.equals("To:")) {
484:                            return tokenString;
485:                        }
486:                    }
487:
488:                    if (Character.isLetter(ch) || ch == '-' || ch == '$'
489:                            || ch == '\u20AC' // the EURO symbol
490:                            || ch == '!' || ch == '\'') {
491:                        tokenCharFound = true;
492:                        previousWasDigit = false;
493:                        token.append(ch);
494:                    } else if (Character.isDigit(ch)) {
495:                        tokenCharFound = true;
496:                        previousWasDigit = true;
497:                        token.append(ch);
498:                    } else if (previousWasDigit && (ch == '.' || ch == ',')) {
499:                        reader.mark(1);
500:                        previousWasDigit = false;
501:                        i = reader.read();
502:                        if (i == -1) {
503:                            break;
504:                        }
505:                        ch2 = (char) i;
506:                        if (Character.isDigit(ch2)) {
507:                            tokenCharFound = true;
508:                            previousWasDigit = true;
509:                            token.append(ch);
510:                            token.append(ch2);
511:                        } else {
512:                            reader.reset();
513:                            break;
514:                        }
515:                    } else if (ch == '\r') {
516:                        // cr found, ignore
517:                    } else if (ch == '\n') {
518:                        // eol found
519:                        tokenCharFound = true;
520:                        previousWasDigit = false;
521:                        token.append(ch);
522:                        break;
523:                    } else if (tokenCharFound) {
524:                        break;
525:                    }
526:                }
527:
528:                if (tokenCharFound) {
529:                    //          System.out.println("Token read: " + token);
530:                    return token.toString();
531:                } else {
532:                    return null;
533:                }
534:            }
535:
536:            /**
537:             * Compute the probability that "token" is SPAM.
538:             *
539:             * @param token
540:             * @return  The probability that the token occurs within spam.
541:             */
542:            private double computeProbability(String token) {
543:                double hamFactor = 0;
544:                double spamFactor = 0;
545:
546:                boolean foundInHam = false;
547:                boolean foundInSpam = false;
548:
549:                double minThreshold = 0.01;
550:                double maxThreshold = 0.99;
551:
552:                if (hamTokenCounts.containsKey(token)) {
553:                    foundInHam = true;
554:                }
555:
556:                if (spamTokenCounts.containsKey(token)) {
557:                    foundInSpam = true;
558:                }
559:
560:                if (foundInHam) {
561:                    hamFactor = 2 * ((Integer) hamTokenCounts.get(token))
562:                            .doubleValue();
563:                    if (!foundInSpam) {
564:                        minThreshold = (hamFactor > 20) ? 0.0001 : 0.0002;
565:                    }
566:                }
567:
568:                if (foundInSpam) {
569:                    spamFactor = ((Integer) spamTokenCounts.get(token))
570:                            .doubleValue();
571:                    if (!foundInHam) {
572:                        maxThreshold = (spamFactor > 10) ? 0.9999 : 0.9998;
573:                    }
574:                }
575:
576:                if ((hamFactor + spamFactor) < 5) {
577:                    //This token hasn't been seen enough.
578:                    return 0.4;
579:                }
580:
581:                double spamFreq = Math.min(1.0, spamFactor / spamMessageCount);
582:                double hamFreq = Math.min(1.0, hamFactor / hamMessageCount);
583:
584:                return Math.max(minThreshold, Math.min(maxThreshold,
585:                        (spamFreq / (hamFreq + spamFreq))));
586:            }
587:
588:            /**
589:             * Returns a SortedSet of TokenProbabilityStrength built from the
590:             * Corpus and the tokens passed in the "tokens" Set.
591:             * The ordering is from the highest strength to the lowest strength.
592:             *
593:             * @param tokens
594:             * @param workCorpus
595:             * @return  SortedSet of TokenProbabilityStrength objects.
596:             */
597:            private SortedSet getTokenProbabilityStrengths(Set tokens,
598:                    Map workCorpus) {
599:                //Convert to a SortedSet of token probability strengths.
600:                SortedSet tokenProbabilityStrengths = new TreeSet();
601:
602:                Iterator i = tokens.iterator();
603:                while (i.hasNext()) {
604:                    TokenProbabilityStrength tps = new TokenProbabilityStrength();
605:
606:                    tps.token = (String) i.next();
607:
608:                    if (workCorpus.containsKey(tps.token)) {
609:                        tps.strength = Math.abs(0.5 - ((Double) workCorpus
610:                                .get(tps.token)).doubleValue());
611:                    } else {
612:                        //This token has never been seen before,
613:                        //we'll give it initially the default probability.
614:                        Double corpusProbability = new Double(
615:                                DEFAULT_TOKEN_PROBABILITY);
616:                        tps.strength = Math
617:                                .abs(0.5 - DEFAULT_TOKEN_PROBABILITY);
618:                        boolean isTokenDegeneratedFound = false;
619:
620:                        Collection degeneratedTokens = buildDegenerated(tps.token);
621:                        Iterator iDegenerated = degeneratedTokens.iterator();
622:                        String tokenDegenerated = null;
623:                        double strengthDegenerated;
624:                        while (iDegenerated.hasNext()) {
625:                            tokenDegenerated = (String) iDegenerated.next();
626:                            if (workCorpus.containsKey(tokenDegenerated)) {
627:                                Double probabilityTemp = (Double) workCorpus
628:                                        .get(tokenDegenerated);
629:                                strengthDegenerated = Math
630:                                        .abs(0.5 - probabilityTemp
631:                                                .doubleValue());
632:                                if (strengthDegenerated > tps.strength) {
633:                                    isTokenDegeneratedFound = true;
634:                                    tps.strength = strengthDegenerated;
635:                                    corpusProbability = probabilityTemp;
636:                                }
637:                            }
638:                        }
639:                        // to reduce memory usage, put in the corpus only if the probability is different from (stronger than) the default
640:                        if (isTokenDegeneratedFound) {
641:                            synchronized (workCorpus) {
642:                                workCorpus.put(tps.token, corpusProbability);
643:                            }
644:                        }
645:                    }
646:
647:                    tokenProbabilityStrengths.add(tps);
648:                }
649:
650:                return tokenProbabilityStrengths;
651:            }
652:
653:            private Collection buildDegenerated(String fullToken) {
654:                ArrayList tokens = new ArrayList();
655:                String header;
656:                String token;
657:
658:                // look for a header string termination
659:                int headerEnd = fullToken.indexOf(':');
660:                if (headerEnd >= 0) {
661:                    header = fullToken.substring(0, headerEnd);
662:                    token = fullToken.substring(headerEnd);
663:                } else {
664:                    header = "";
665:                    token = fullToken;
666:                }
667:
668:                int end = token.length();
669:                do {
670:                    if (!token.substring(0, end).equals(
671:                            token.substring(0, end).toLowerCase())) {
672:                        tokens.add(header
673:                                + token.substring(0, end).toLowerCase());
674:                        if (header.length() > 0) {
675:                            tokens.add(token.substring(0, end).toLowerCase());
676:                        }
677:                    }
678:                    if (end > 1 && token.charAt(0) >= 'A'
679:                            && token.charAt(0) <= 'Z') {
680:                        tokens.add(header + token.charAt(0)
681:                                + token.substring(1, end).toLowerCase());
682:                        if (header.length() > 0) {
683:                            tokens.add(token.charAt(0)
684:                                    + token.substring(1, end).toLowerCase());
685:                        }
686:                    }
687:
688:                    if (token.charAt(end - 1) != '!') {
689:                        break;
690:                    }
691:
692:                    end--;
693:
694:                    tokens.add(header + token.substring(0, end));
695:                    if (header.length() > 0) {
696:                        tokens.add(token.substring(0, end));
697:                    }
698:                } while (end > 0);
699:
700:                return tokens;
701:            }
702:
703:            /**
704:             * Compute the spamminess probability of the interesting tokens in
705:             * the tokenProbabilities SortedSet.
706:             *
707:             * @param tokenProbabilities
708:             * @param workCorpus
709:             * @return  Computed spamminess.
710:             */
711:            private double computeOverallProbability(
712:                    SortedSet tokenProbabilityStrengths, Map workCorpus) {
713:                double p = 1.0;
714:                double np = 1.0;
715:                double tempStrength = 0.5;
716:                int count = MAX_INTERESTING_TOKENS;
717:                Iterator iterator = tokenProbabilityStrengths.iterator();
718:                while ((iterator.hasNext())
719:                        && (count-- > 0 || tempStrength >= INTERESTINGNESS_THRESHOLD)) {
720:                    TokenProbabilityStrength tps = (TokenProbabilityStrength) iterator
721:                            .next();
722:                    tempStrength = tps.strength;
723:
724:                    //      System.out.println(tps);
725:
726:                    double theDoubleValue = DEFAULT_TOKEN_PROBABILITY; // initialize it to the default
727:                    Double theDoubleObject = (Double) workCorpus.get(tps.token);
728:                    // if either the original token or a degeneration was found use the double value, otherwise use the default
729:                    if (theDoubleObject != null) {
730:                        theDoubleValue = theDoubleObject.doubleValue();
731:                    }
732:                    p *= theDoubleValue;
733:                    np *= (1.0 - theDoubleValue);
734:                    // System.out.println("Token:" + tps.token + ", p=" + theDoubleValue + ", overall p=" + p / (p + np));
735:                }
736:
737:                return (p / (p + np));
738:            }
739:
740:            private boolean allSameChar(String s) {
741:                if (s.length() < 2) {
742:                    return false;
743:                }
744:
745:                char c = s.charAt(0);
746:
747:                for (int i = 1; i < s.length(); i++) {
748:                    if (s.charAt(i) != c) {
749:                        return false;
750:                    }
751:                }
752:                return true;
753:            }
754:
755:            private boolean allDigits(String s) {
756:                for (int i = 0; i < s.length(); i++) {
757:                    if (!Character.isDigit(s.charAt(i))) {
758:                        return false;
759:                    }
760:                }
761:                return true;
762:            }
763:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.