Source Code Cross Referenced for LinearMath.java in  » Science » JSci » JSci » maths » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » JSci » JSci.maths 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        package JSci.maths;
002:
003:        import JSci.maths.matrices.*;
004:        import JSci.maths.vectors.*;
005:        import JSci.maths.polynomials.RealPolynomial;
006:
007:        /**
008:         * The linear math library.
009:         * This class cannot be subclassed or instantiated because all methods are static.
010:         * @version 2.2
011:         * @author Mark Hale
012:         */
013:        public final class LinearMath extends AbstractMath {
014:            private LinearMath() {
015:            }
016:
017:            // LINEAR SYSTEM
018:
019:            /**
020:             * Solves the linear system Mx=v.
021:             * @param M a double square matrix.
022:             * @param v a double vector.
023:             * @return the double vector x.
024:             */
025:            public static AbstractDoubleVector solve(
026:                    final AbstractDoubleSquareMatrix M,
027:                    final AbstractDoubleVector v) {
028:                final int n = v.dimension();
029:                final double array[] = new double[n];
030:                final int pivot[] = new int[n + 1];
031:                final AbstractDoubleSquareMatrix lu[] = M.luDecompose(pivot);
032:                int i, j;
033:                double sum;
034:                // forward substitution
035:                for (i = 0; i < n; i++) {
036:                    sum = v.getComponent(pivot[i]);
037:                    for (j = 0; j < i; j++)
038:                        sum -= lu[0].getElement(i, j) * array[j];
039:                    array[i] = sum / lu[0].getElement(i, i);
040:                }
041:                // back substitution
042:                for (i = n - 1; i >= 0; i--) {
043:                    sum = array[i];
044:                    for (j = i + 1; j < n; j++)
045:                        sum -= lu[1].getElement(i, j) * array[j];
046:                    array[i] = sum / lu[1].getElement(i, i);
047:                }
048:                return new DoubleVector(array);
049:            }
050:
051:            /**
052:             * Solves a linear system using cholesky decomposition.
053:             */
054:            private static double[] solveCholesky(final double m[][],
055:                    final double v[]) {
056:                final int n = v.length;
057:                final double array[] = new double[n];
058:                final AbstractDoubleSquareMatrix lu[] = new DoubleSquareMatrix(
059:                        m).choleskyDecompose();
060:                int i, j;
061:                double sum;
062:                // forward substitution
063:                for (i = 0; i < n; i++) {
064:                    sum = v[i];
065:                    for (j = 0; j < i; j++)
066:                        sum -= lu[0].getElement(i, j) * array[j];
067:                    array[i] = sum / lu[0].getElement(i, i);
068:                }
069:                // back substitution
070:                for (i = n - 1; i >= 0; i--) {
071:                    sum = array[i];
072:                    for (j = i + 1; j < n; j++)
073:                        sum -= lu[1].getElement(i, j) * array[j];
074:                    array[i] = sum / lu[1].getElement(i, i);
075:                }
076:                return array;
077:            }
078:
079:            /**
080:             * Solves a linear system using QR decomposition.
081:             */
082:            private static double[] solveQR(final double m[][],
083:                    final double v[]) {
084:                final int n = v.length;
085:                final double array[] = new double[n];
086:                final AbstractDoubleSquareMatrix lu[] = new DoubleSquareMatrix(
087:                        m).qrDecompose();
088:                int i, j;
089:                double sum;
090:                // Q.transpose().multiply(v)
091:                for (i = 0; i < n; i++) {
092:                    sum = 0.0;
093:                    for (j = 0; j < n; j++)
094:                        sum += lu[0].getElement(j, i) * v[j];
095:                    array[i] = sum;
096:                }
097:                // back substitution
098:                for (i = n - 1; i >= 0; i--) {
099:                    sum = array[i];
100:                    for (j = i + 1; j < n; j++)
101:                        sum -= lu[1].getElement(i, j) * array[j];
102:                    array[i] = sum / lu[1].getElement(i, i);
103:                }
104:                return array;
105:            }
106:
107:            /**
108:             * Solves the unsymmetric linear system Ax=b using the
109:             * Generalized Minimum Residual method (doesn't require A
110:             * to be nonsingular).
111:             * While slower than LU decomposition, it is more
112:             * robust and should be used with large matrices.
113:             * It is guaranted to converge exactly in N iterations for an
114:             * N by N matrix (minus some numerical errors).
115:             * @author Alain Beliveau
116:             * @author Daniel Lemire
117:             * @param max_iter maximum number of iterations.
118:             * @param tol tolerance.
119:             * @exception IllegalArgumentException If either the tolerance
120:             * or the number of iterations is not positive.
121:             * Also, if an unexpected error occurs.
122:             * @exception MaximumIterationsExceededException If it cannot
123:             * converge according to the given parameters.
124:             */
125:            public static AbstractDoubleVector solveGMRes(
126:                    final AbstractDoubleMatrix A, final AbstractDoubleVector b,
127:                    int max_iter, double tol)
128:                    throws MaximumIterationsExceededException {
129:                if (max_iter <= 0)
130:                    throw new IllegalArgumentException(
131:                            "Number of allowed iterations must be a positive integer: "
132:                                    + max_iter + " <= 0.");
133:                if (tol < 0)
134:                    throw new IllegalArgumentException(
135:                            "Tolerance must be positive or zero: " + tol
136:                                    + " < 0.");
137:                final int m = A.rows();
138:                double resid;
139:                int i, j = 1, k;
140:                double[] s = new double[m + 1];
141:                double[][] cs = new double[m + 1][2];
142:                double[] rotmp = new double[2];
143:                AbstractDoubleVector w;
144:                AbstractDoubleVector x = new DoubleVector(A.rows());
145:                double normb = b.norm();
146:                AbstractDoubleVector r = b.subtract(A.multiply(x));
147:                double beta = r.norm();
148:                if (normb == 0.0)
149:                    normb = 1.0;
150:                if ((resid = r.norm() / normb) <= tol) {
151:                    tol = resid;
152:                    max_iter = 0;
153:                    throw new IllegalArgumentException("There is a bug.");
154:                }
155:                AbstractDoubleVector[] v = new DoubleVector[m + 1];
156:                double[][] H = new double[m + 1][m];
157:                while (j <= max_iter) {
158:                    v[0] = r.scalarMultiply(1.0 / beta);
159:                    for (i = 0; i < m + 1; i++)
160:                        s[i] = 0.0;
161:                    s[0] = beta;
162:                    for (i = 0; i < m && j <= max_iter; i++, j++) {
163:                        w = A.multiply(v[i]);
164:                        for (k = 0; k <= i; k++) {
165:                            H[k][i] = w.scalarProduct(v[k]);
166:                            w = w.subtract(v[k].scalarMultiply(H[k][i]));
167:                        }
168:                        H[i + 1][i] = w.norm();
169:                        v[i + 1] = w.scalarMultiply(1.0 / H[i + 1][i]);
170:                        for (k = 0; k < i; k++) {
171:                            rotmp = applyPlaneRotation(H[k][i], H[k + 1][i],
172:                                    cs[k][0], cs[k][1]);
173:                            H[k][i] = rotmp[0];
174:                            H[k + 1][i] = rotmp[1];
175:                        }
176:                        cs[i] = generatePlaneRotation(H[i][i], H[i + 1][i]);
177:                        rotmp = applyPlaneRotation(H[i][i], H[i + 1][i],
178:                                cs[i][0], cs[i][1]);
179:                        H[i][i] = rotmp[0];
180:                        H[i + 1][i] = rotmp[1];
181:                        rotmp = applyPlaneRotation(s[i], s[i + 1], cs[i][0],
182:                                cs[i][1]);
183:                        s[i] = rotmp[0];
184:                        s[i + 1] = rotmp[1];
185:                        if ((resid = Math.abs(s[i + 1]) / normb) < tol) {
186:                            x = update(x, i, H, s, v);
187:                            tol = resid;
188:                            max_iter = j;
189:                            return (x);
190:                        }
191:                    }
192:                    x = update(x, m - 1, H, s, v);
193:                    r = b.subtract(A.multiply(x));
194:                    beta = r.norm();
195:                    if ((resid = beta / normb) < tol) {
196:                        tol = resid;
197:                        max_iter = j;
198:                        return (x);
199:                    }
200:                }
201:                tol = resid;
202:                throw new MaximumIterationsExceededException(
203:                        "(tol) "
204:                                + tol
205:                                + ". It doesn't converge in "
206:                                + max_iter
207:                                + "iterations. Try raising the number of allowed iterations or raising the tolerance.");
208:            }
209:
210:            private static double[] generatePlaneRotation(double dx, double dy) {
211:                double[] cs = new double[2];
212:                double temp;
213:                if (dy == 0.0) {
214:                    cs[0] = 1.0;
215:                    cs[1] = 0.0;
216:                } else if (Math.abs(dy) > Math.abs(dx)) {
217:                    temp = dx / dy;
218:                    cs[1] = 1.0 / Math.sqrt(1.0 + temp * temp);
219:                    cs[0] = temp * cs[1];
220:                } else {
221:                    temp = dy / dx;
222:                    cs[0] = 1.0 / Math.sqrt(1.0 + temp * temp);
223:                    cs[1] = temp * cs[0];
224:                }
225:                return (cs);
226:            }
227:
228:            private static double[] applyPlaneRotation(double dx, double dy,
229:                    double cs, double sn) {
230:                double[] dxy = new double[2];
231:                dxy[0] = cs * dx + sn * dy;
232:                dxy[1] = -sn * dx + cs * dy;
233:                return (dxy);
234:            }
235:
236:            private static AbstractDoubleVector update(AbstractDoubleVector x,
237:                    int k, double[][] H, double[] s, AbstractDoubleVector[] v) {
238:                /************************************************
239:                 * Backsolve of a triangular + sub diagonal matrix:
240:                 ************************************************/
241:                for (int i = k; i >= 0; i--) {
242:                    s[i] = s[i] / H[i][i];
243:                    for (int j = i - 1; j >= 0; j--)
244:                        s[j] = s[j] - H[j][i] * s[i];
245:                }
246:                for (int j = 0; j <= k; j++) {
247:                    x = x.add(v[j].scalarMultiply(s[j]));
248:                }
249:                return (x);
250:            }
251:
252:            // LEAST SQUARES
253:
254:            /**
255:             * Fits an nth degree polynomial to data using the method of least squares.
256:             * @param n the degree of the polynomial (>= 0).
257:             * @param data
258:             * [0][] contains the x-series,
259:             * [1][] contains the y-series.
260:             */
261:            public static RealPolynomial leastSquaresFit(int n,
262:                    final double data[][]) {
263:                int i, j, nm1 = n++;
264:                double xsum, xysum, tmp;
265:                final double mArray[][] = new double[n][n];
266:                final double vArray[] = new double[n];
267:                for (i = 0; i < n; i++) {
268:                    xsum = xysum = 0.0;
269:                    for (j = 0; j < data[0].length; j++) {
270:                        tmp = Math.pow(data[0][j], i);
271:                        xsum += tmp;
272:                        xysum += tmp * data[1][j];
273:                    }
274:                    mArray[0][i] = xsum;
275:                    vArray[i] = xysum;
276:                }
277:                for (i = 1; i < n; i++) {
278:                    System.arraycopy(mArray[i - 1], 1, mArray[i], 0, nm1);
279:                    xsum = 0.0;
280:                    for (j = 0; j < data[0].length; j++)
281:                        xsum += Math.pow(data[0][j], nm1 + i);
282:                    mArray[i][nm1] = xsum;
283:                }
284:                return new RealPolynomial(solveCholesky(mArray, vArray));
285:            }
286:
287:            // LINEAR REGRESSION
288:
289:            /**
290:             * Fits a line to multi-dimensional data using the method of least squares.
291:             * @param data
292:             * [0...n-1][] contains the x-series' (they must be linearly uncorrelated),
293:             * [n][] contains the y-series.
294:             * @return a vector containing the coefficients (zero component is the intercept, the rest are gradient components).
295:             * E.g. y(x1, x2, ...) = coeffs(0) + coeffs(1) * x1 + coeffs(2) * x2 + ...
296:             */
297:            public static AbstractDoubleVector linearRegression(
298:                    final double data[][]) {
299:                final int y = data.length - 1;
300:                int i, j, k;
301:                double xsum, xysum;
302:                final double mArray[][] = new double[data.length][data.length];
303:                final double vArray[] = new double[data.length];
304:                mArray[0][0] = data[0].length;
305:                for (j = 1; j < data.length; j++) {
306:                    xsum = 0.0;
307:                    for (k = 0; k < data[0].length; k++)
308:                        xsum += data[j - 1][k];
309:                    mArray[0][j] = mArray[j][0] = xsum;
310:                }
311:                xysum = 0.0;
312:                for (k = 0; k < data[0].length; k++)
313:                    xysum += data[y][k];
314:                vArray[0] = xysum;
315:                for (i = 1; i < data.length; i++) {
316:                    for (j = i; j < data.length; j++) {
317:                        xsum = 0.0;
318:                        for (k = 0; k < data[0].length; k++)
319:                            xsum += data[i - 1][k] * data[j - 1][k];
320:                        mArray[i][j] = mArray[j][i] = xsum;
321:                    }
322:                    xysum = 0.0;
323:                    for (k = 0; k < data[0].length; k++)
324:                        xysum += data[i - 1][k] * data[y][k];
325:                    vArray[i] = xysum;
326:                }
327:                return new DoubleVector(solveCholesky(mArray, vArray));
328:            }
329:
330:            // GRAM-SCHMIDT
331:
332:            /**
333:             * The Gram-Schmidt orthonormalization method.
334:             * @param vecs a set of linearly independent vectors.
335:             * @return a set of orthonormal vectors.
336:             */
337:            public static AbstractDoubleVector[] orthonormalize(
338:                    AbstractDoubleVector vecs[]) {
339:                final int N = vecs.length;
340:                AbstractDoubleVector orthovecs[] = new DoubleVector[N];
341:                for (int i = 0; i < N; i++) {
342:                    orthovecs[i] = vecs[i];
343:                    for (int j = 0; j < i; j++)
344:                        orthovecs[i] = orthovecs[i].subtract(orthovecs[j]
345:                                .scalarMultiply(orthovecs[j]
346:                                        .scalarProduct(vecs[i])));
347:                    orthovecs[i].normalize();
348:                }
349:                return orthovecs;
350:            }
351:
352:            // EIGENVALUES & EIGENVECTORS
353:
354:            /**
355:             * This method finds the eigenvalues of a Hermitian matrix.
356:             * @param matrix a Hermitian matrix.
357:             * @return an array containing the eigenvalues.
358:             * @exception MaximumIterationsExceededException If it takes too many iterations to determine an eigenvalue.
359:             */
360:            public static double[] eigenvalueSolveHermitian(
361:                    final AbstractComplexSquareMatrix matrix)
362:                    throws MaximumIterationsExceededException {
363:                final int n = matrix.rows();
364:                final double matrix2[][] = new double[2 * n][2 * n];
365:                double real, imag;
366:                for (int j, i = 0; i < n; i++) {
367:                    for (j = 0; j < n; j++) {
368:                        real = matrix.getRealElement(i, j);
369:                        imag = matrix.getImagElement(i, j);
370:                        matrix2[i][j] = real;
371:                        matrix2[n + i][n + j] = real;
372:                        matrix2[n + i][j] = imag;
373:                        matrix2[i][n + j] = -imag;
374:                    }
375:                }
376:                final double eigenvalue2[] = new double[2 * n];
377:                final double offdiag[] = new double[2 * n];
378:                reduceSymmetric1_SquareToTridiagonal(matrix2, eigenvalue2,
379:                        offdiag);
380:                System.arraycopy(offdiag, 1, offdiag, 0, n - 1);
381:                offdiag[n - 1] = 0.0;
382:                eigenvalueSolveSymmetricTridiagonalMatrix(eigenvalue2, offdiag);
383:                final double eigenvalue[] = new double[n];
384:                System.arraycopy(eigenvalue2, 0, eigenvalue, 0, n);
385:                return eigenvalue;
386:            }
387:
388:            /**
389:             * This method finds the eigenvalues and eigenvectors of a Hermitian matrix.
390:             * @param matrix a Hermitian matrix.
391:             * @param eigenvector an empty array of complex vectors to hold the eigenvectors.
392:             * All eigenvectors will be orthogonal.
393:             * @return an array containing the eigenvalues.
394:             * @exception MaximumIterationsExceededException If it takes too many iterations to determine an eigenvalue.
395:             */
396:            public static double[] eigenSolveHermitian(
397:                    final AbstractComplexSquareMatrix matrix,
398:                    final AbstractComplexVector eigenvector[])
399:                    throws MaximumIterationsExceededException {
400:                final int n = matrix.rows();
401:                final double matrix2[][] = new double[2 * n][2 * n];
402:                int i, j;
403:                double real, imag;
404:                for (i = 0; i < n; i++) {
405:                    for (j = 0; j < n; j++) {
406:                        real = matrix.getRealElement(i, j);
407:                        imag = matrix.getImagElement(i, j);
408:                        matrix2[i][j] = real;
409:                        matrix2[n + i][n + j] = real;
410:                        matrix2[n + i][j] = imag;
411:                        matrix2[i][n + j] = -imag;
412:                    }
413:                }
414:                final double eigenvalue2[] = new double[2 * n];
415:                final double offdiag[] = new double[2 * n];
416:                reduceSymmetric2_SquareToTridiagonal(matrix2, eigenvalue2,
417:                        offdiag);
418:                System.arraycopy(offdiag, 1, offdiag, 0, n - 1);
419:                offdiag[n - 1] = 0.0;
420:                eigenSolveSymmetricTridiagonalMatrix(eigenvalue2, offdiag,
421:                        matrix2);
422:                final double eigenvalue[] = new double[n];
423:                double arrayRe[], arrayIm[];
424:                for (i = 0; i < n; i++) {
425:                    eigenvalue[i] = eigenvalue2[i];
426:                    arrayRe = new double[n];
427:                    arrayIm = new double[n];
428:                    for (j = 0; j < n; j++) {
429:                        arrayRe[j] = matrix2[j][i];
430:                        arrayIm[j] = matrix2[j + n][i];
431:                    }
432:                    eigenvector[i] = new ComplexVector(arrayRe, arrayIm);
433:                }
434:                return eigenvalue;
435:            }
436:
437:            /**
438:             * This method finds the eigenvalues of a symmetric tridiagonal matrix by the QL method.
439:             * It is based on the NETLIB algol/fortran procedure tql1 by Bowdler, Martin, Reinsch and Wilkinson.
440:             * @param matrix a double symmetric tridiagonal matrix.
441:             * @return an array containing the eigenvalues.
442:             * @exception MaximumIterationsExceededException If it takes too many iterations to determine an eigenvalue.
443:             */
444:            public static double[] eigenvalueSolveSymmetric(
445:                    final DoubleTridiagonalMatrix matrix)
446:                    throws MaximumIterationsExceededException {
447:                final int n = matrix.rows();
448:                final int nm1 = n - 1;
449:                final double eigenvalue[] = new double[n];
450:                final double offdiag[] = new double[n];
451:                for (int i = 0; i < nm1; i++) {
452:                    eigenvalue[i] = matrix.getElement(i, i);
453:                    offdiag[i] = matrix.getElement(i, i + 1);
454:                }
455:                eigenvalue[nm1] = matrix.getElement(nm1, nm1);
456:                offdiag[nm1] = 0.0;
457:                eigenvalueSolveSymmetricTridiagonalMatrix(eigenvalue, offdiag);
458:                return eigenvalue;
459:            }
460:
461:            /**
462:             * This method finds the eigenvalues and eigenvectors of a symmetric tridiagonal matrix by the QL method.
463:             * It is based on the NETLIB algol/fortran procedure tql2 by Bowdler, Martin, Reinsch and Wilkinson.
464:             * @param matrix a double symmetric tridiagonal matrix.
465:             * @param eigenvector an empty array of double vectors to hold the eigenvectors.
466:             * All eigenvectors will be orthogonal.
467:             * @return an array containing the eigenvalues.
468:             * @exception MaximumIterationsExceededException If it takes too many iterations to determine an eigenvalue.
469:             */
470:            public static double[] eigenSolveSymmetric(
471:                    final DoubleTridiagonalMatrix matrix,
472:                    final AbstractDoubleVector eigenvector[])
473:                    throws MaximumIterationsExceededException {
474:                final int n = matrix.rows();
475:                final int nm1 = n - 1;
476:                final double eigenvalue[] = new double[n];
477:                final double offdiag[] = new double[n];
478:                final double id[][] = new double[n][n];
479:                int i, j;
480:                for (i = 0; i < nm1; i++) {
481:                    id[i][i] = 1.0;
482:                    eigenvalue[i] = matrix.getElement(i, i);
483:                    offdiag[i] = matrix.getElement(i, i + 1);
484:                }
485:                id[nm1][nm1] = 1.0;
486:                eigenvalue[nm1] = matrix.getElement(nm1, nm1);
487:                offdiag[nm1] = 0.0;
488:                eigenSolveSymmetricTridiagonalMatrix(eigenvalue, offdiag, id);
489:                for (i = 0; i < n; i++) {
490:                    DoubleVector evec = new DoubleVector(n);
491:                    for (j = 0; j < n; j++)
492:                        evec.setComponent(j, id[j][i]);
493:                    eigenvector[i] = evec;
494:                }
495:                return eigenvalue;
496:            }
497:
498:            /**
499:             * This method finds the eigenvalues of a symmetric square matrix.
500:             * The matrix is reduced to tridiagonal form and then the QL method is applied.
501:             * It is based on the NETLIB algol/fortran procedure tred1/tql1 by Bowdler, Martin, Reinsch and Wilkinson.
502:             * @param matrix a double symmetric square matrix.
503:             * @return an array containing the eigenvalues.
504:             * @exception MaximumIterationsExceededException If it takes too many iterations to determine an eigenvalue.
505:             */
506:            public static double[] eigenvalueSolveSymmetric(
507:                    final AbstractDoubleSquareMatrix matrix)
508:                    throws MaximumIterationsExceededException {
509:                final int n = matrix.rows();
510:                final double eigenvalue[] = new double[n];
511:                final double offdiag[] = new double[n];
512:                final double array[][] = new double[n][n];
513:                int i, j;
514:                for (i = 0; i < n; i++) {
515:                    for (j = 0; j < n; j++)
516:                        array[i][j] = matrix.getElement(i, j);
517:                }
518:                reduceSymmetric1_SquareToTridiagonal(array, eigenvalue, offdiag);
519:                System.arraycopy(offdiag, 1, offdiag, 0, n - 1);
520:                offdiag[n - 1] = 0.0;
521:                eigenvalueSolveSymmetricTridiagonalMatrix(eigenvalue, offdiag);
522:                return eigenvalue;
523:            }
524:
525:            /**
526:             * This method finds the eigenvalues and eigenvectors of a symmetric square matrix.
527:             * The matrix is reduced to tridiagonal form and then the QL method is applied.
528:             * It is based on the NETLIB algol/fortran procedure tred2/tql2 by Bowdler, Martin, Reinsch and Wilkinson.
529:             * @param matrix a double symmetric square matrix.
530:             * @param eigenvector an empty array of double vectors to hold the eigenvectors.
531:             * All eigenvectors will be orthogonal.
532:             * @return an array containing the eigenvalues.
533:             * @exception MaximumIterationsExceededException If it takes too many iterations to determine an eigenvalue.
534:             */
535:            public static double[] eigenSolveSymmetric(
536:                    final AbstractDoubleSquareMatrix matrix,
537:                    final AbstractDoubleVector eigenvector[])
538:                    throws MaximumIterationsExceededException {
539:                final int n = matrix.rows();
540:                final double eigenvalue[] = new double[n];
541:                final double offdiag[] = new double[n];
542:                final double transf[][] = new double[n][n];
543:                int i, j;
544:                for (i = 0; i < n; i++) {
545:                    for (j = 0; j < n; j++)
546:                        transf[i][j] = matrix.getElement(i, j);
547:                }
548:                reduceSymmetric2_SquareToTridiagonal(transf, eigenvalue,
549:                        offdiag);
550:                System.arraycopy(offdiag, 1, offdiag, 0, n - 1);
551:                offdiag[n - 1] = 0.0;
552:                eigenSolveSymmetricTridiagonalMatrix(eigenvalue, offdiag,
553:                        transf);
554:                for (i = 0; i < n; i++) {
555:                    DoubleVector evec = new DoubleVector(n);
556:                    for (j = 0; j < n; j++)
557:                        evec.setComponent(j, transf[j][i]);
558:                    eigenvector[i] = evec;
559:                }
560:                return eigenvalue;
561:            }
562:
563:            private final static int EIGEN_MAX_ITERATIONS = 250;
564:
565:            /**
566:             * Internal NETLIB tql1 routine.
567:             * @param diag output eigenvalues.
568:             * @author Richard Cannings
569:             */
570:            private static void eigenvalueSolveSymmetricTridiagonalMatrix(
571:                    final double diag[], final double offdiag[])
572:                    throws MaximumIterationsExceededException {
573:                final int n = diag.length;
574:                final int nm1 = n - 1;
575:                int m, l, iteration, i, k;
576:                double s, r, p, g, f, dd, c, b;
577:                for (l = 0; l < n; l++) {
578:                    iteration = 0;
579:                    do {
580:                        for (m = l; m < nm1; m++) {
581:                            dd = Math.abs(diag[m]) + Math.abs(diag[m + 1]);
582:                            if (Math.abs(offdiag[m]) + dd == dd)
583:                                break;
584:                        }
585:                        if (m != l) {
586:                            if (iteration++ == EIGEN_MAX_ITERATIONS)
587:                                throw new MaximumIterationsExceededException(
588:                                        "No convergence after "
589:                                                + EIGEN_MAX_ITERATIONS
590:                                                + " iterations.");
591:                            g = (diag[l + 1] - diag[l]) / (2.0 * offdiag[l]);
592:                            r = Math.sqrt(g * g + 1.0);
593:                            g = diag[m]
594:                                    - diag[l]
595:                                    + offdiag[l]
596:                                    / (g + (g < 0.0 ? -Math.abs(r) : Math
597:                                            .abs(r)));
598:                            s = c = 1.0;
599:                            p = 0.0;
600:                            for (i = m - 1; i >= l; i--) {
601:                                f = s * offdiag[i];
602:                                b = c * offdiag[i];
603:                                if (Math.abs(f) >= Math.abs(g)) {
604:                                    c = g / f;
605:                                    r = Math.sqrt(c * c + 1.0);
606:                                    offdiag[i + 1] = f * r;
607:                                    s = 1 / r;
608:                                    c *= s;
609:                                } else {
610:                                    s = f / g;
611:                                    r = Math.sqrt(s * s + 1.0);
612:                                    offdiag[i + 1] = g * r;
613:                                    c = 1 / r;
614:                                    s *= c;
615:                                }
616:                                g = diag[i + 1] - p;
617:                                r = (diag[i] - g) * s + 2.0 * c * b;
618:                                p = s * r;
619:                                diag[i + 1] = g + p;
620:                                g = c * r - b;
621:                            }
622:                            diag[l] = diag[l] - p;
623:                            offdiag[l] = g;
624:                            offdiag[m] = 0.0;
625:                        }
626:                    } while (m != l);
627:                }
628:            }
629:
630:            /**
631:             * Internal NETLIB tred1 routine.
632:             * @author Richard Cannings
633:             */
634:            private static void reduceSymmetric1_SquareToTridiagonal(
635:                    final double matrix[][], final double diag[],
636:                    final double offdiag[]) {
637:                final int n = diag.length;
638:                int i, j, k, l;
639:                double f, g, h, hh, scale;
640:                for (i = n - 1; i > 0; i--) {
641:                    l = i - 1;
642:                    h = scale = 0.0;
643:                    if (l > 0) {
644:                        for (k = 0; k <= l; k++)
645:                            scale += Math.abs(matrix[i][k]);
646:                        if (scale == 0.0)
647:                            offdiag[i] = matrix[i][l];
648:                        else {
649:                            for (k = 0; k <= l; k++) {
650:                                matrix[i][k] /= scale;
651:                                h += matrix[i][k] * matrix[i][k];
652:                            }
653:                            f = matrix[i][l];
654:                            g = (f >= 0.0 ? -Math.sqrt(h) : Math.sqrt(h));
655:                            offdiag[i] = scale * g;
656:                            h -= f * g;
657:                            matrix[i][l] = f - g;
658:                            f = 0.0;
659:                            for (j = 0; j <= l; j++) {
660:                                g = 0.0;
661:                                for (k = 0; k <= j; k++)
662:                                    g += matrix[j][k] * matrix[i][k];
663:                                for (k = j + 1; k <= l; k++)
664:                                    g += matrix[k][j] * matrix[i][k];
665:                                offdiag[j] = g / h;
666:                                f += offdiag[j] * matrix[i][j];
667:                            }
668:                            hh = f / (h + h);
669:                            for (j = 0; j <= l; j++) {
670:                                f = matrix[i][j];
671:                                offdiag[j] = g = offdiag[j] - hh * f;
672:                                for (k = 0; k <= j; k++)
673:                                    matrix[j][k] -= f * offdiag[k] + g
674:                                            * matrix[i][k];
675:                            }
676:                        }
677:                    } else
678:                        offdiag[i] = matrix[i][l];
679:                    diag[i] = h;
680:                }
681:                offdiag[0] = 0.0;
682:                for (i = 0; i < n; i++)
683:                    diag[i] = matrix[i][i];
684:            }
685:
686:            /**
687:             * Internal NETLIB tql2 routine.
688:             * @param diag output eigenvalues.
689:             * @param transf output eigenvectors.
690:             * @author Richard Cannings
691:             */
692:            private static void eigenSolveSymmetricTridiagonalMatrix(
693:                    final double diag[], final double offdiag[],
694:                    final double transf[][])
695:                    throws MaximumIterationsExceededException {
696:                final int n = diag.length;
697:                final int nm1 = n - 1;
698:                int m, l, iteration, i, k;
699:                double s, r, p, g, f, dd, c, b;
700:                for (l = 0; l < n; l++) {
701:                    iteration = 0;
702:                    do {
703:                        for (m = l; m < nm1; m++) {
704:                            dd = Math.abs(diag[m]) + Math.abs(diag[m + 1]);
705:                            if (Math.abs(offdiag[m]) + dd == dd)
706:                                break;
707:                        }
708:                        if (m != l) {
709:                            if (iteration++ == EIGEN_MAX_ITERATIONS)
710:                                throw new MaximumIterationsExceededException(
711:                                        "No convergence after "
712:                                                + EIGEN_MAX_ITERATIONS
713:                                                + " iterations.");
714:                            g = (diag[l + 1] - diag[l]) / (2.0 * offdiag[l]);
715:                            r = Math.sqrt(g * g + 1.0);
716:                            g = diag[m]
717:                                    - diag[l]
718:                                    + offdiag[l]
719:                                    / (g + (g < 0.0 ? -Math.abs(r) : Math
720:                                            .abs(r)));
721:                            s = c = 1.0;
722:                            p = 0.0;
723:                            for (i = m - 1; i >= l; i--) {
724:                                f = s * offdiag[i];
725:                                b = c * offdiag[i];
726:                                if (Math.abs(f) >= Math.abs(g)) {
727:                                    c = g / f;
728:                                    r = Math.sqrt(c * c + 1.0);
729:                                    offdiag[i + 1] = f * r;
730:                                    s = 1 / r;
731:                                    c *= s;
732:                                } else {
733:                                    s = f / g;
734:                                    r = Math.sqrt(s * s + 1.0);
735:                                    offdiag[i + 1] = g * r;
736:                                    c = 1 / r;
737:                                    s *= c;
738:                                }
739:                                g = diag[i + 1] - p;
740:                                r = (diag[i] - g) * s + 2.0 * c * b;
741:                                p = s * r;
742:                                diag[i + 1] = g + p;
743:                                g = c * r - b;
744:                                for (k = 0; k < n; k++) {
745:                                    f = transf[k][i + 1];
746:                                    transf[k][i + 1] = s * transf[k][i] + c * f;
747:                                    transf[k][i] = c * transf[k][i] - s * f;
748:                                }
749:                            }
750:                            diag[l] = diag[l] - p;
751:                            offdiag[l] = g;
752:                            offdiag[m] = 0.0;
753:                        }
754:                    } while (m != l);
755:                }
756:            }
757:
758:            /**
759:             * Internal NETLIB tred2 routine.
760:             * @param matrix output orthogonal transformations.
761:             * @author Richard Cannings
762:             */
763:            private static void reduceSymmetric2_SquareToTridiagonal(
764:                    final double matrix[][], final double diag[],
765:                    final double offdiag[]) {
766:                final int n = diag.length;
767:                int i, j, k, l;
768:                double f, g, h, hh, scale;
769:                for (i = n - 1; i > 0; i--) {
770:                    l = i - 1;
771:                    h = scale = 0.0;
772:                    if (l > 0) {
773:                        for (k = 0; k <= l; k++)
774:                            scale += Math.abs(matrix[i][k]);
775:                        if (scale == 0.0)
776:                            offdiag[i] = matrix[i][l];
777:                        else {
778:                            for (k = 0; k <= l; k++) {
779:                                matrix[i][k] /= scale;
780:                                h += matrix[i][k] * matrix[i][k];
781:                            }
782:                            f = matrix[i][l];
783:                            g = (f >= 0.0 ? -Math.sqrt(h) : Math.sqrt(h));
784:                            offdiag[i] = scale * g;
785:                            h -= f * g;
786:                            matrix[i][l] = f - g;
787:                            f = 0.0;
788:                            for (j = 0; j <= l; j++) {
789:                                matrix[j][i] = matrix[i][j] / h;
790:                                g = 0.0;
791:                                for (k = 0; k <= j; k++)
792:                                    g += matrix[j][k] * matrix[i][k];
793:                                for (k = j + 1; k <= l; k++)
794:                                    g += matrix[k][j] * matrix[i][k];
795:                                offdiag[j] = g / h;
796:                                f += offdiag[j] * matrix[i][j];
797:                            }
798:                            hh = f / (h + h);
799:                            for (j = 0; j <= l; j++) {
800:                                f = matrix[i][j];
801:                                offdiag[j] = g = offdiag[j] - hh * f;
802:                                for (k = 0; k <= j; k++)
803:                                    matrix[j][k] -= f * offdiag[k] + g
804:                                            * matrix[i][k];
805:                            }
806:                        }
807:                    } else
808:                        offdiag[i] = matrix[i][l];
809:                    diag[i] = h;
810:                }
811:                diag[0] = offdiag[0] = 0.0;
812:                for (i = 0; i < n; i++) {
813:                    l = i - 1;
814:                    if (diag[i] != 0.0) {
815:                        for (j = 0; j <= l; j++) {
816:                            g = 0.0;
817:                            for (k = 0; k <= l; k++)
818:                                g += matrix[i][k] * matrix[k][j];
819:                            for (k = 0; k <= l; k++)
820:                                matrix[k][j] -= g * matrix[k][i];
821:                        }
822:                    }
823:                    diag[i] = matrix[i][i];
824:                    matrix[i][i] = 1.0;
825:                    for (j = 0; j <= l; j++)
826:                        matrix[j][i] = matrix[i][j] = 0.0;
827:                }
828:            }
829:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.