Source Code Cross Referenced for MPN.java in  » Scripting » Kawa » gnu » math » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Scripting » Kawa » gnu.math 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        // Copyright (c) 1997  Per M.A. Bothner.
002:        // This is free software;  for terms and warranty disclaimer see ./COPYING.
003:
004:        package gnu.math;
005:
006:        /** This contains various low-level routines for unsigned bigints.
007:         * The interfaces match the mpn interfaces in gmp,
008:         * so it should be easy to replace them with fast native functions
009:         * that are trivial wrappers around the mpn_ functions in gmp
010:         * (at least on platforms that use 32-bit "limbs").
011:         */
012:
013:        class MPN {
014:            /** Add x[0:size-1] and y, and write the size least
015:             * significant words of the result to dest.
016:             * Return carry, either 0 or 1.
017:             * All values are unsigned.
018:             * This is basically the same as gmp's mpn_add_1. */
019:            public static int add_1(int[] dest, int[] x, int size, int y) {
020:                long carry = (long) y & 0xffffffffL;
021:                for (int i = 0; i < size; i++) {
022:                    carry += ((long) x[i] & 0xffffffffL);
023:                    dest[i] = (int) carry;
024:                    carry >>= 32;
025:                }
026:                return (int) carry;
027:            }
028:
029:            /** Add x[0:len-1] and y[0:len-1] and write the len least
030:             * significant words of the result to dest[0:len-1].
031:             * All words are treated as unsigned.
032:             * @return the carry, either 0 or 1
033:             * This function is basically the same as gmp's mpn_add_n.
034:             */
035:            public static int add_n(int dest[], int[] x, int[] y, int len) {
036:                long carry = 0;
037:                for (int i = 0; i < len; i++) {
038:                    carry += ((long) x[i] & 0xffffffffL)
039:                            + ((long) y[i] & 0xffffffffL);
040:                    dest[i] = (int) carry;
041:                    carry >>>= 32;
042:                }
043:                return (int) carry;
044:            }
045:
046:            /** Subtract Y[0:size-1] from X[0:size-1], and write
047:             * the size least significant words of the result to dest[0:size-1].
048:             * Return borrow, either 0 or 1.
049:             * This is basically the same as gmp's mpn_sub_n function.
050:             */
051:
052:            public static int sub_n(int[] dest, int[] X, int[] Y, int size) {
053:                int cy = 0;
054:                for (int i = 0; i < size; i++) {
055:                    int y = Y[i];
056:                    int x = X[i];
057:                    y += cy; /* add previous carry to subtrahend */
058:                    // Invert the high-order bit, because: (unsigned) X > (unsigned) Y
059:                    // iff: (int) (X^0x80000000) > (int) (Y^0x80000000).
060:                    cy = (y ^ 0x80000000) < (cy ^ 0x80000000) ? 1 : 0;
061:                    y = x - y;
062:                    cy += (y ^ 0x80000000) > (x ^ 0x80000000) ? 1 : 0;
063:                    dest[i] = y;
064:                }
065:                return cy;
066:            }
067:
068:            /** Multiply x[0:len-1] by y, and write the len least
069:             * significant words of the product to dest[0:len-1].
070:             * Return the most significant word of the product.
071:             * All values are treated as if they were unsigned
072:             * (i.e. masked with 0xffffffffL).
073:             * OK if dest==x (not sure if this is guaranteed for mpn_mul_1).
074:             * This function is basically the same as gmp's mpn_mul_1.
075:             */
076:
077:            public static int mul_1(int[] dest, int[] x, int len, int y) {
078:                long yword = (long) y & 0xffffffffL;
079:                long carry = 0;
080:                for (int j = 0; j < len; j++) {
081:                    carry += ((long) x[j] & 0xffffffffL) * yword;
082:                    dest[j] = (int) carry;
083:                    carry >>>= 32;
084:                }
085:                return (int) carry;
086:            }
087:
088:            /**
089:             * Multiply x[0:xlen-1] and y[0:ylen-1], and
090:             * write the result to dest[0:xlen+ylen-1].
091:             * The destination has to have space for xlen+ylen words,
092:             * even if the result might be one limb smaller.
093:             * This function requires that xlen >= ylen.
094:             * The destination must be distinct from either input operands.
095:             * All operands are unsigned.
096:             * This function is basically the same gmp's mpn_mul. */
097:
098:            public static void mul(int[] dest, int[] x, int xlen, int[] y,
099:                    int ylen) {
100:                dest[xlen] = MPN.mul_1(dest, x, xlen, y[0]);
101:
102:                for (int i = 1; i < ylen; i++) {
103:                    long yword = (long) y[i] & 0xffffffffL;
104:                    long carry = 0;
105:                    for (int j = 0; j < xlen; j++) {
106:                        carry += ((long) x[j] & 0xffffffffL) * yword
107:                                + ((long) dest[i + j] & 0xffffffffL);
108:                        dest[i + j] = (int) carry;
109:                        carry >>>= 32;
110:                    }
111:                    dest[i + xlen] = (int) carry;
112:                }
113:            }
114:
115:            /* Divide (unsigned long) N by (unsigned int) D.
116:             * Returns (remainder << 32)+(unsigned int)(quotient).
117:             * Assumes (unsigned int)(N>>32) < (unsigned int)D.
118:             * Code transcribed from gmp-2.0's mpn_udiv_w_sdiv function.
119:             */
120:            public static long udiv_qrnnd(long N, int D) {
121:                long q, r;
122:                long a1 = N >>> 32;
123:                long a0 = N & 0xffffffffL;
124:                if (D >= 0) {
125:                    if (a1 < ((D - a1 - (a0 >>> 31)) & 0xffffffffL)) {
126:                        /* dividend, divisor, and quotient are nonnegative */
127:                        q = N / D;
128:                        r = N % D;
129:                    } else {
130:                        /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */
131:                        long c = N - ((long) D << 31);
132:                        /* Divide (c1*2^32 + c0) by d */
133:                        q = c / D;
134:                        r = c % D;
135:                        /* Add 2^31 to quotient */
136:                        q += 1 << 31;
137:                    }
138:                } else {
139:                    long b1 = D >>> 1; /* d/2, between 2^30 and 2^31 - 1 */
140:                    //long c1 = (a1 >> 1); /* A/2 */
141:                    //int c0 = (a1 << 31) + (a0 >> 1);
142:                    long c = N >>> 1;
143:                    if (a1 < b1 || (a1 >> 1) < b1) {
144:                        if (a1 < b1) {
145:                            q = c / b1;
146:                            r = c % b1;
147:                        } else /* c1 < b1, so 2^31 <= (A/2)/b1 < 2^32 */
148:                        {
149:                            c = ~(c - (b1 << 32));
150:                            q = c / b1; /* (A/2) / (d/2) */
151:                            r = c % b1;
152:                            q = (~q) & 0xffffffffL; /* (A/2)/b1 */
153:                            r = (b1 - 1) - r; /* r < b1 => new r >= 0 */
154:                        }
155:                        r = 2 * r + (a0 & 1);
156:                        if ((D & 1) != 0) {
157:                            if (r >= q) {
158:                                r = r - q;
159:                            } else if (q - r <= ((long) D & 0xffffffffL)) {
160:                                r = r - q + D;
161:                                q -= 1;
162:                            } else {
163:                                r = r - q + D + D;
164:                                q -= 2;
165:                            }
166:                        }
167:                    } else /* Implies c1 = b1 */
168:                    { /* Hence a1 = d - 1 = 2*b1 - 1 */
169:                        if (a0 >= ((long) (-D) & 0xffffffffL)) {
170:                            q = -1;
171:                            r = a0 + D;
172:                        } else {
173:                            q = -2;
174:                            r = a0 + D + D;
175:                        }
176:                    }
177:                }
178:
179:                return (r << 32) | (q & 0xFFFFFFFFl);
180:            }
181:
182:            /** Divide divident[0:len-1] by (unsigned int)divisor.
183:             * Write result into quotient[0:len-1].
184:             * Return the one-word (unsigned) remainder.
185:             * OK for quotient==dividend.
186:             */
187:
188:            public static int divmod_1(int[] quotient, int[] dividend, int len,
189:                    int divisor) {
190:                int i = len - 1;
191:                long r = dividend[i];
192:                if ((r & 0xffffffffL) >= ((long) divisor & 0xffffffffL))
193:                    r = 0;
194:                else {
195:                    quotient[i--] = 0;
196:                    r <<= 32;
197:                }
198:
199:                for (; i >= 0; i--) {
200:                    int n0 = dividend[i];
201:                    r = (r & ~0xffffffffL) | (n0 & 0xffffffffL);
202:                    r = udiv_qrnnd(r, divisor);
203:                    quotient[i] = (int) r;
204:                }
205:                return (int) (r >> 32);
206:            }
207:
208:            /* Subtract x[0:len-1]*y from dest[offset:offset+len-1].
209:             * All values are treated as if unsigned.
210:             * @return the most significant word of
211:             * the product, minus borrow-out from the subtraction.
212:             */
213:            public static int submul_1(int[] dest, int offset, int[] x,
214:                    int len, int y) {
215:                long yl = (long) y & 0xffffffffL;
216:                int carry = 0;
217:                int j = 0;
218:                do {
219:                    long prod = ((long) x[j] & 0xffffffffL) * yl;
220:                    int prod_low = (int) prod;
221:                    int prod_high = (int) (prod >> 32);
222:                    prod_low += carry;
223:                    // Invert the high-order bit, because: (unsigned) X > (unsigned) Y
224:                    // iff: (int) (X^0x80000000) > (int) (Y^0x80000000).
225:                    carry = ((prod_low ^ 0x80000000) < (carry ^ 0x80000000) ? 1
226:                            : 0)
227:                            + prod_high;
228:                    int x_j = dest[offset + j];
229:                    prod_low = x_j - prod_low;
230:                    if ((prod_low ^ 0x80000000) > (x_j ^ 0x80000000))
231:                        carry++;
232:                    dest[offset + j] = prod_low;
233:                } while (++j < len);
234:                return carry;
235:            }
236:
237:            /** Divide zds[0:nx] by y[0:ny-1].
238:             * The remainder ends up in zds[0:ny-1].
239:             * The quotient ends up in zds[ny:nx].
240:             * Assumes:  nx>ny.
241:             * (int)y[ny-1] < 0  (i.e. most significant bit set)
242:             */
243:
244:            public static void divide(int[] zds, int nx, int[] y, int ny) {
245:                // This is basically Knuth's formulation of the classical algorithm,
246:                // but translated from in scm_divbigbig in Jaffar's SCM implementation.
247:
248:                // Correspondance with Knuth's notation:
249:                // Knuth's u[0:m+n] == zds[nx:0].
250:                // Knuth's v[1:n] == y[ny-1:0]
251:                // Knuth's n == ny.
252:                // Knuth's m == nx-ny.
253:                // Our nx == Knuth's m+n.
254:
255:                // Could be re-implemented using gmp's mpn_divrem:
256:                // zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
257:
258:                int j = nx;
259:                do { // loop over digits of quotient
260:                    // Knuth's j == our nx-j.
261:                    // Knuth's u[j:j+n] == our zds[j:j-ny].
262:                    int qhat; // treated as unsigned
263:                    if (zds[j] == y[ny - 1])
264:                        qhat = -1; // 0xffffffff
265:                    else {
266:                        long w = (((long) (zds[j])) << 32)
267:                                + ((long) zds[j - 1] & 0xffffffffL);
268:                        qhat = (int) udiv_qrnnd(w, y[ny - 1]);
269:                    }
270:                    if (qhat != 0) {
271:                        int borrow = submul_1(zds, j - ny, y, ny, qhat);
272:                        int save = zds[j];
273:                        long num = ((long) save & 0xffffffffL)
274:                                - ((long) borrow & 0xffffffffL);
275:                        while (num != 0) {
276:                            qhat--;
277:                            long carry = 0;
278:                            for (int i = 0; i < ny; i++) {
279:                                carry += ((long) zds[j - ny + i] & 0xffffffffL)
280:                                        + ((long) y[i] & 0xffffffffL);
281:                                zds[j - ny + i] = (int) carry;
282:                                carry >>>= 32;
283:                            }
284:                            zds[j] += carry;
285:                            num = carry - 1;
286:                        }
287:                    }
288:                    zds[j] = qhat;
289:                } while (--j >= ny);
290:            }
291:
292:            /** Number of digits in the conversion base that always fits in a word.
293:             * For example, for base 10 this is 9, since 10**9 is the
294:             * largest number that fits into a words (assuming 32-bit words).
295:             * This is the same as gmp's __mp_bases[radix].chars_per_limb.
296:             * @param radix the base
297:             * @return number of digits */
298:            public static int chars_per_word(int radix) {
299:                if (radix < 10) {
300:                    if (radix < 8) {
301:                        if (radix <= 2)
302:                            return 32;
303:                        else if (radix == 3)
304:                            return 20;
305:                        else if (radix == 4)
306:                            return 16;
307:                        else
308:                            return 18 - radix;
309:                    } else
310:                        return 10;
311:                } else if (radix < 12)
312:                    return 9;
313:                else if (radix <= 16)
314:                    return 8;
315:                else if (radix <= 23)
316:                    return 7;
317:                else if (radix <= 40)
318:                    return 6;
319:                // The following are conservative, but we don't care.
320:                else if (radix <= 256)
321:                    return 4;
322:                else
323:                    return 1;
324:            }
325:
326:            /** Count the number of leading zero bits in an int. */
327:            public static int count_leading_zeros(int i) {
328:                if (i == 0)
329:                    return 32;
330:                int count = 0;
331:                for (int k = 16; k > 0; k = k >> 1) {
332:                    int j = i >>> k;
333:                    if (j == 0)
334:                        count += k;
335:                    else
336:                        i = j;
337:                }
338:                return count;
339:            }
340:
341:            public static int set_str(int dest[], byte[] str, int str_len,
342:                    int base) {
343:                int size = 0;
344:                if ((base & (base - 1)) == 0) {
345:                    // The base is a power of 2.  Read the input string from
346:                    // least to most significant character/digit.  */
347:
348:                    int next_bitpos = 0;
349:                    int bits_per_indigit = 0;
350:                    for (int i = base; (i >>= 1) != 0;)
351:                        bits_per_indigit++;
352:                    int res_digit = 0;
353:
354:                    for (int i = str_len; --i >= 0;) {
355:                        int inp_digit = str[i];
356:                        res_digit |= inp_digit << next_bitpos;
357:                        next_bitpos += bits_per_indigit;
358:                        if (next_bitpos >= 32) {
359:                            dest[size++] = res_digit;
360:                            next_bitpos -= 32;
361:                            res_digit = inp_digit >> (bits_per_indigit - next_bitpos);
362:                        }
363:                    }
364:
365:                    if (res_digit != 0)
366:                        dest[size++] = res_digit;
367:                } else {
368:                    // General case.  The base is not a power of 2.
369:                    int indigits_per_limb = MPN.chars_per_word(base);
370:                    int str_pos = 0;
371:
372:                    while (str_pos < str_len) {
373:                        int chunk = str_len - str_pos;
374:                        if (chunk > indigits_per_limb)
375:                            chunk = indigits_per_limb;
376:                        int res_digit = str[str_pos++];
377:                        int big_base = base;
378:
379:                        while (--chunk > 0) {
380:                            res_digit = res_digit * base + str[str_pos++];
381:                            big_base *= base;
382:                        }
383:
384:                        int cy_limb;
385:                        if (size == 0)
386:                            cy_limb = res_digit;
387:                        else {
388:                            cy_limb = MPN.mul_1(dest, dest, size, big_base);
389:                            cy_limb += MPN.add_1(dest, dest, size, res_digit);
390:                        }
391:                        if (cy_limb != 0)
392:                            dest[size++] = cy_limb;
393:                    }
394:                }
395:                return size;
396:            }
397:
398:            /** Compare {@code x[0:size-1]} with {@code y[0:size-1]}, treating them as unsigned integers.
399:             * @return -1, 0, or 1 depending on if {@code x<y}, {@code x==y}, or {@code x>y}.
400:             * This is basically the same as gmp's {@code mpn_cmp} function.
401:             */
402:            public static int cmp(int[] x, int[] y, int size) {
403:                while (--size >= 0) {
404:                    int x_word = x[size];
405:                    int y_word = y[size];
406:                    if (x_word != y_word) {
407:                        // Invert the high-order bit, because:
408:                        // (unsigned) X > (unsigned) Y iff
409:                        // (int) (X^0x80000000) > (int) (Y^0x80000000).
410:                        return (x_word ^ 0x80000000) > (y_word ^ 0x80000000) ? 1
411:                                : -1;
412:                    }
413:                }
414:                return 0;
415:            }
416:
417:            /** Compare {@code x[0:xlen-1]} with {@code y[0:ylen-1]}, treating them as unsigned integers.
418:             * @return -1, 0, or 1 depending on
419:             * whether {@code x<y}, {@code x==y}, or {@code x>y}.
420:             */
421:            public static int cmp(int[] x, int xlen, int[] y, int ylen) {
422:                return xlen > ylen ? 1 : xlen < ylen ? -1 : cmp(x, y, xlen);
423:            }
424:
425:            /* Shift x[x_start:x_start+len-1] count bits to the "right"
426:             * (i.e. divide by 2**count).
427:             * Store the len least significant words of the result at dest.
428:             * The bits shifted out to the right are returned.
429:             * OK if dest==x.
430:             * Assumes: 0 < count < 32
431:             */
432:
433:            public static int rshift(int[] dest, int[] x, int x_start, int len,
434:                    int count) {
435:                int count_2 = 32 - count;
436:                int low_word = x[x_start];
437:                int retval = low_word << count_2;
438:                int i = 1;
439:                for (; i < len; i++) {
440:                    int high_word = x[x_start + i];
441:                    dest[i - 1] = (low_word >>> count) | (high_word << count_2);
442:                    low_word = high_word;
443:                }
444:                dest[i - 1] = low_word >>> count;
445:                return retval;
446:            }
447:
448:            /* Shift x[x_start:x_start+len-1] count bits to the "right"
449:             * (i.e. divide by 2**count).
450:             * Store the len least significant words of the result at dest.
451:             * OK if dest==x.
452:             * Assumes: 0 <= count < 32
453:             * Same as rshift, but handles count==0 (and has no return value).
454:             */
455:            public static void rshift0(int[] dest, int[] x, int x_start,
456:                    int len, int count) {
457:                if (count > 0)
458:                    rshift(dest, x, x_start, len, count);
459:                else
460:                    for (int i = 0; i < len; i++)
461:                        dest[i] = x[i + x_start];
462:            }
463:
464:            /** Return the long-truncated value of right shifting.
465:             * @param x a two's-complement "bignum"
466:             * @param len the number of significant words in x
467:             * @param count the shift count
468:             * @return (long)(x[0..len-1] >> count).
469:             */
470:            public static long rshift_long(int[] x, int len, int count) {
471:                int wordno = count >> 5;
472:                count &= 31;
473:                int sign = x[len - 1] < 0 ? -1 : 0;
474:                int w0 = wordno >= len ? sign : x[wordno];
475:                wordno++;
476:                int w1 = wordno >= len ? sign : x[wordno];
477:                if (count != 0) {
478:                    wordno++;
479:                    int w2 = wordno >= len ? sign : x[wordno];
480:                    w0 = (w0 >>> count) | (w1 << (32 - count));
481:                    w1 = (w1 >>> count) | (w2 << (32 - count));
482:                }
483:                return ((long) w1 << 32) | ((long) w0 & 0xffffffffL);
484:            }
485:
486:            /* Shift x[0:len-1] left by count bits, and store the len least
487:             * significant words of the result in dest[d_offset:d_offset+len-1].
488:             * Return the bits shifted out from the most significant digit.
489:             * Assumes 0 < count < 32.
490:             * OK if dest==x.
491:             */
492:
493:            public static int lshift(int[] dest, int d_offset, int[] x,
494:                    int len, int count) {
495:                int count_2 = 32 - count;
496:                int i = len - 1;
497:                int high_word = x[i];
498:                int retval = high_word >>> count_2;
499:                d_offset++;
500:                while (--i >= 0) {
501:                    int low_word = x[i];
502:                    dest[d_offset + i] = (high_word << count)
503:                            | (low_word >>> count_2);
504:                    high_word = low_word;
505:                }
506:                dest[d_offset + i] = high_word << count;
507:                return retval;
508:            }
509:
510:            /** Return least i such that word&(1<<i). Assumes word!=0. */
511:
512:            static int findLowestBit(int word) {
513:                int i = 0;
514:                while ((word & 0xF) == 0) {
515:                    word >>= 4;
516:                    i += 4;
517:                }
518:                if ((word & 3) == 0) {
519:                    word >>= 2;
520:                    i += 2;
521:                }
522:                if ((word & 1) == 0)
523:                    i += 1;
524:                return i;
525:            }
526:
527:            /** Return least i such that words & (1<<i). Assumes there is such an i. */
528:
529:            static int findLowestBit(int[] words) {
530:                for (int i = 0;; i++) {
531:                    if (words[i] != 0)
532:                        return 32 * i + findLowestBit(words[i]);
533:                }
534:            }
535:
536:            /** Calculate Greatest Common Divisior of x[0:len-1] and y[0:len-1].
537:             * Assumes both arguments are non-zero.
538:             * Leaves result in x, and returns len of result.
539:             * Also destroys y (actually sets it to a copy of the result). */
540:
541:            public static int gcd(int[] x, int[] y, int len) {
542:                int i, word;
543:                // Find sh such that both x and y are divisible by 2**sh.
544:                for (i = 0;; i++) {
545:                    word = x[i] | y[i];
546:                    if (word != 0) {
547:                        // Must terminate, since x and y are non-zero.
548:                        break;
549:                    }
550:                }
551:                int initShiftWords = i;
552:                int initShiftBits = findLowestBit(word);
553:                // Logically: sh = initShiftWords * 32 + initShiftBits
554:
555:                // Temporarily devide both x and y by 2**sh.
556:                len -= initShiftWords;
557:                MPN.rshift0(x, x, initShiftWords, len, initShiftBits);
558:                MPN.rshift0(y, y, initShiftWords, len, initShiftBits);
559:
560:                int[] odd_arg; /* One of x or y which is odd. */
561:                int[] other_arg; /* The other one can be even or odd. */
562:                if ((x[0] & 1) != 0) {
563:                    odd_arg = x;
564:                    other_arg = y;
565:                } else {
566:                    odd_arg = y;
567:                    other_arg = x;
568:                }
569:
570:                for (;;) {
571:                    // Shift other_arg until it is odd; this doesn't
572:                    // affect the gcd, since we divide by 2**k, which does not
573:                    // divide odd_arg.
574:                    for (i = 0; other_arg[i] == 0;)
575:                        i++;
576:                    if (i > 0) {
577:                        int j;
578:                        for (j = 0; j < len - i; j++)
579:                            other_arg[j] = other_arg[j + i];
580:                        for (; j < len; j++)
581:                            other_arg[j] = 0;
582:                    }
583:                    i = findLowestBit(other_arg[0]);
584:                    if (i > 0)
585:                        MPN.rshift(other_arg, other_arg, 0, len, i);
586:
587:                    // Now both odd_arg and other_arg are odd.
588:
589:                    // Subtract the smaller from the larger.
590:                    // This does not change the result, since gcd(a-b,b)==gcd(a,b).
591:                    i = MPN.cmp(odd_arg, other_arg, len);
592:                    if (i == 0)
593:                        break;
594:                    if (i > 0) { // odd_arg > other_arg
595:                        MPN.sub_n(odd_arg, odd_arg, other_arg, len);
596:                        // Now odd_arg is even, so swap with other_arg;
597:                        int[] tmp = odd_arg;
598:                        odd_arg = other_arg;
599:                        other_arg = tmp;
600:                    } else { // other_arg > odd_arg
601:                        MPN.sub_n(other_arg, other_arg, odd_arg, len);
602:                    }
603:                    while (odd_arg[len - 1] == 0 && other_arg[len - 1] == 0)
604:                        len--;
605:                }
606:                if (initShiftWords + initShiftBits > 0) {
607:                    if (initShiftBits > 0) {
608:                        int sh_out = MPN.lshift(x, initShiftWords, x, len,
609:                                initShiftBits);
610:                        if (sh_out != 0)
611:                            x[(len++) + initShiftWords] = sh_out;
612:                    } else {
613:                        for (i = len; --i >= 0;)
614:                            x[i + initShiftWords] = x[i];
615:                    }
616:                    for (i = initShiftWords; --i >= 0;)
617:                        x[i] = 0;
618:                    len += initShiftWords;
619:                }
620:                return len;
621:            }
622:
623:            public static int intLength(int i) {
624:                return 32 - count_leading_zeros(i < 0 ? ~i : i);
625:            }
626:
627:            /** Calcaulte the Common Lisp "integer-length" function.
628:             * Assumes input is canonicalized:  len==IntNum.wordsNeeded(words,len) */
629:            public static int intLength(int[] words, int len) {
630:                len--;
631:                return intLength(words[len]) + 32 * len;
632:            }
633:
634:            /* DEBUGGING:
635:            public static void dprint (IntNum x)
636:            {
637:              if (x.words == null)
638:                System.err.print(Long.toString((long) x.ival & 0xffffffffL, 16));
639:              else
640:                dprint (System.err, x.words, x.ival);
641:            }
642:            public static void dprint (int[] x) { dprint (System.err, x, x.length); }
643:            public static void dprint (int[] x, int len) { dprint (System.err, x, len); }
644:            public static void dprint (java.io.PrintStream ps, int[] x, int len)
645:            {
646:              ps.print('(');
647:              for (int i = 0;  i < len; i++)
648:                {
649:            if (i > 0)
650:              ps.print (' ');
651:            ps.print ("#x" + Long.toString ((long) x[i] & 0xffffffffL, 16));
652:                }
653:              ps.print(')');
654:            }
655:             */
656:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.