Source Code Cross Referenced for CBZip2OutputStream.java in  » Swing-Library » jEdit » installer » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Swing Library » jEdit » installer 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


0001:        /*
0002:         * Copyright (C) The Apache Software Foundation. All rights reserved.
0003:         *
0004:         * This software is published under the terms of the Apache Software License
0005:         * version 1.1, a copy of which has been included with this distribution in
0006:         * the LICENSE.txt file.
0007:         */
0008:        package installer;
0009:
0010:        import java.io.IOException;
0011:        import java.io.OutputStream;
0012:
0013:        /**
0014:         * An output stream that compresses into the BZip2 format (without the file
0015:         * header chars) into another stream. TODO: Update to BZip2 1.0.1
0016:         *
0017:         * @author <a href="mailto:keiron@aftexsw.com">Keiron Liddle</a>
0018:         */
0019:        public class CBZip2OutputStream extends OutputStream implements 
0020:                BZip2Constants {
0021:            private static final int LOWER_BYTE_MASK = 0x000000ff;
0022:            private static final int UPPER_BYTE_MASK = 0xffffff00;
0023:            private static final int SETMASK = (1 << 21);
0024:            private static final int CLEARMASK = (~SETMASK);
0025:            private static final int GREATER_ICOST = 15;
0026:            private static final int LESSER_ICOST = 0;
0027:            private static final int SMALL_THRESH = 20;
0028:            private static final int DEPTH_THRESH = 10;
0029:
0030:            /*
0031:             * If you are ever unlucky/improbable enough
0032:             * to get a stack overflow whilst sorting,
0033:             * increase the following constant and try
0034:             * again.  In practice I have never seen the
0035:             * stack go above 27 elems, so the following
0036:             * limit seems very generous.
0037:             */
0038:            private static final int QSORT_STACK_SIZE = 1000;
0039:
0040:            private CRC m_crc = new CRC();
0041:
0042:            private boolean[] m_inUse = new boolean[256];
0043:
0044:            private char[] m_seqToUnseq = new char[256];
0045:            private char[] m_unseqToSeq = new char[256];
0046:
0047:            private char[] m_selector = new char[MAX_SELECTORS];
0048:            private char[] m_selectorMtf = new char[MAX_SELECTORS];
0049:
0050:            private int[] m_mtfFreq = new int[MAX_ALPHA_SIZE];
0051:
0052:            private int m_currentChar = -1;
0053:            private int m_runLength;
0054:
0055:            private boolean m_closed;
0056:
0057:            /*
0058:             * Knuth's increments seem to work better
0059:             * than Incerpi-Sedgewick here.  Possibly
0060:             * because the number of elems to sort is
0061:             * usually small, typically <= 20.
0062:             */
0063:            private int[] m_incs = new int[] { 1, 4, 13, 40, 121, 364, 1093,
0064:                    3280, 9841, 29524, 88573, 265720, 797161, 2391484 };
0065:
0066:            private boolean m_blockRandomised;
0067:
0068:            /*
0069:             * always: in the range 0 .. 9.
0070:             * The current block size is 100000 * this number.
0071:             */
0072:            private int m_blockSize100k;
0073:            private int m_bsBuff;
0074:            private int m_bsLive;
0075:
0076:            /*
0077:             * index of the last char in the block, so
0078:             * the block size == last + 1.
0079:             */
0080:            private int m_last;
0081:
0082:            /*
0083:             * index in zptr[] of original string after sorting.
0084:             */
0085:            private int m_origPtr;
0086:
0087:            private int m_allowableBlockSize;
0088:
0089:            private char[] m_block;
0090:
0091:            private int m_blockCRC;
0092:            private int m_combinedCRC;
0093:
0094:            private OutputStream m_bsStream;
0095:            private boolean m_firstAttempt;
0096:            private int[] m_ftab;
0097:            private int m_nInUse;
0098:
0099:            private int m_nMTF;
0100:            private int[] m_quadrant;
0101:            private short[] m_szptr;
0102:            private int m_workDone;
0103:
0104:            /*
0105:             * Used when sorting.  If too many long comparisons
0106:             * happen, we stop sorting, randomise the block
0107:             * slightly, and try again.
0108:             */
0109:            private int m_workFactor;
0110:            private int m_workLimit;
0111:            private int[] m_zptr;
0112:
0113:            public CBZip2OutputStream(final OutputStream output)
0114:                    throws IOException {
0115:                this (output, 9);
0116:            }
0117:
0118:            public CBZip2OutputStream(final OutputStream output,
0119:                    final int blockSize) throws IOException {
0120:                bsSetStream(output);
0121:                m_workFactor = 50;
0122:
0123:                int outBlockSize = blockSize;
0124:                if (outBlockSize > 9) {
0125:                    outBlockSize = 9;
0126:                }
0127:                if (outBlockSize < 1) {
0128:                    outBlockSize = 1;
0129:                }
0130:                m_blockSize100k = outBlockSize;
0131:                allocateCompressStructures();
0132:                initialize();
0133:                initBlock();
0134:            }
0135:
0136:            private static void hbMakeCodeLengths(char[] len, int[] freq,
0137:                    int alphaSize, int maxLen) {
0138:                /*
0139:                 * Nodes and heap entries run from 1.  Entry 0
0140:                 * for both the heap and nodes is a sentinel.
0141:                 */
0142:                int nNodes;
0143:                /*
0144:                 * Nodes and heap entries run from 1.  Entry 0
0145:                 * for both the heap and nodes is a sentinel.
0146:                 */
0147:                int nHeap;
0148:                /*
0149:                 * Nodes and heap entries run from 1.  Entry 0
0150:                 * for both the heap and nodes is a sentinel.
0151:                 */
0152:                int n1;
0153:                /*
0154:                 * Nodes and heap entries run from 1.  Entry 0
0155:                 * for both the heap and nodes is a sentinel.
0156:                 */
0157:                int n2;
0158:                /*
0159:                 * Nodes and heap entries run from 1.  Entry 0
0160:                 * for both the heap and nodes is a sentinel.
0161:                 */
0162:                int i;
0163:                /*
0164:                 * Nodes and heap entries run from 1.  Entry 0
0165:                 * for both the heap and nodes is a sentinel.
0166:                 */
0167:                int j;
0168:                /*
0169:                 * Nodes and heap entries run from 1.  Entry 0
0170:                 * for both the heap and nodes is a sentinel.
0171:                 */
0172:                int k;
0173:                boolean tooLong;
0174:
0175:                int[] heap = new int[MAX_ALPHA_SIZE + 2];
0176:                int[] weights = new int[MAX_ALPHA_SIZE * 2];
0177:                int[] parent = new int[MAX_ALPHA_SIZE * 2];
0178:
0179:                for (i = 0; i < alphaSize; i++) {
0180:                    weights[i + 1] = (freq[i] == 0 ? 1 : freq[i]) << 8;
0181:                }
0182:
0183:                while (true) {
0184:                    nNodes = alphaSize;
0185:                    nHeap = 0;
0186:
0187:                    heap[0] = 0;
0188:                    weights[0] = 0;
0189:                    parent[0] = -2;
0190:
0191:                    for (i = 1; i <= alphaSize; i++) {
0192:                        parent[i] = -1;
0193:                        nHeap++;
0194:                        heap[nHeap] = i;
0195:                        {
0196:                            int zz;
0197:                            int tmp;
0198:                            zz = nHeap;
0199:                            tmp = heap[zz];
0200:                            while (weights[tmp] < weights[heap[zz >> 1]]) {
0201:                                heap[zz] = heap[zz >> 1];
0202:                                zz >>= 1;
0203:                            }
0204:                            heap[zz] = tmp;
0205:                        }
0206:                    }
0207:                    if (!(nHeap < (MAX_ALPHA_SIZE + 2))) {
0208:                        panic();
0209:                    }
0210:
0211:                    while (nHeap > 1) {
0212:                        n1 = heap[1];
0213:                        heap[1] = heap[nHeap];
0214:                        nHeap--;
0215:                        {
0216:                            int zz = 0;
0217:                            int yy = 0;
0218:                            int tmp = 0;
0219:                            zz = 1;
0220:                            tmp = heap[zz];
0221:                            while (true) {
0222:                                yy = zz << 1;
0223:                                if (yy > nHeap) {
0224:                                    break;
0225:                                }
0226:                                if (yy < nHeap
0227:                                        && weights[heap[yy + 1]] < weights[heap[yy]]) {
0228:                                    yy++;
0229:                                }
0230:                                if (weights[tmp] < weights[heap[yy]]) {
0231:                                    break;
0232:                                }
0233:                                heap[zz] = heap[yy];
0234:                                zz = yy;
0235:                            }
0236:                            heap[zz] = tmp;
0237:                        }
0238:                        n2 = heap[1];
0239:                        heap[1] = heap[nHeap];
0240:                        nHeap--;
0241:                        {
0242:                            int zz = 0;
0243:                            int yy = 0;
0244:                            int tmp = 0;
0245:                            zz = 1;
0246:                            tmp = heap[zz];
0247:                            while (true) {
0248:                                yy = zz << 1;
0249:                                if (yy > nHeap) {
0250:                                    break;
0251:                                }
0252:                                if (yy < nHeap
0253:                                        && weights[heap[yy + 1]] < weights[heap[yy]]) {
0254:                                    yy++;
0255:                                }
0256:                                if (weights[tmp] < weights[heap[yy]]) {
0257:                                    break;
0258:                                }
0259:                                heap[zz] = heap[yy];
0260:                                zz = yy;
0261:                            }
0262:                            heap[zz] = tmp;
0263:                        }
0264:                        nNodes++;
0265:                        parent[n1] = nNodes;
0266:                        parent[n2] = nNodes;
0267:
0268:                        final int v1 = weights[n1];
0269:                        final int v2 = weights[n2];
0270:                        final int weight = calculateWeight(v1, v2);
0271:                        weights[nNodes] = weight;
0272:
0273:                        parent[nNodes] = -1;
0274:                        nHeap++;
0275:                        heap[nHeap] = nNodes;
0276:                        {
0277:                            int zz = 0;
0278:                            int tmp = 0;
0279:                            zz = nHeap;
0280:                            tmp = heap[zz];
0281:                            while (weights[tmp] < weights[heap[zz >> 1]]) {
0282:                                heap[zz] = heap[zz >> 1];
0283:                                zz >>= 1;
0284:                            }
0285:                            heap[zz] = tmp;
0286:                        }
0287:                    }
0288:                    if (!(nNodes < (MAX_ALPHA_SIZE * 2))) {
0289:                        panic();
0290:                    }
0291:
0292:                    tooLong = false;
0293:                    for (i = 1; i <= alphaSize; i++) {
0294:                        j = 0;
0295:                        k = i;
0296:                        while (parent[k] >= 0) {
0297:                            k = parent[k];
0298:                            j++;
0299:                        }
0300:                        len[i - 1] = (char) j;
0301:                        if (j > maxLen) {
0302:                            tooLong = true;
0303:                        }
0304:                    }
0305:
0306:                    if (!tooLong) {
0307:                        break;
0308:                    }
0309:
0310:                    for (i = 1; i < alphaSize; i++) {
0311:                        j = weights[i] >> 8;
0312:                        j = 1 + (j / 2);
0313:                        weights[i] = j << 8;
0314:                    }
0315:                }
0316:            }
0317:
0318:            private static int calculateWeight(final int v1, final int v2) {
0319:                final int upper = (v1 & UPPER_BYTE_MASK)
0320:                        + (v2 & UPPER_BYTE_MASK);
0321:                final int v1Lower = (v1 & LOWER_BYTE_MASK);
0322:                final int v2Lower = (v2 & LOWER_BYTE_MASK);
0323:                final int nnnn = (v1Lower > v2Lower) ? v1Lower : v2Lower;
0324:                return upper | (1 + nnnn);
0325:            }
0326:
0327:            private static void panic() {
0328:                System.out.println("panic");
0329:                //throw new CError();
0330:            }
0331:
0332:            public void close() throws IOException {
0333:                if (m_closed) {
0334:                    return;
0335:                }
0336:
0337:                if (m_runLength > 0) {
0338:                    writeRun();
0339:                }
0340:                m_currentChar = -1;
0341:                endBlock();
0342:                endCompression();
0343:                m_closed = true;
0344:                super .close();
0345:                m_bsStream.close();
0346:            }
0347:
0348:            public void finalize() throws Throwable {
0349:                close();
0350:            }
0351:
0352:            public void flush() throws IOException {
0353:                super .flush();
0354:                m_bsStream.flush();
0355:            }
0356:
0357:            /**
0358:             * modified by Oliver Merkel, 010128
0359:             *
0360:             * @param bv Description of Parameter
0361:             * @exception java.io.IOException Description of Exception
0362:             */
0363:            public void write(int bv) throws IOException {
0364:                int b = (256 + bv) % 256;
0365:                if (m_currentChar != -1) {
0366:                    if (m_currentChar == b) {
0367:                        m_runLength++;
0368:                        if (m_runLength > 254) {
0369:                            writeRun();
0370:                            m_currentChar = -1;
0371:                            m_runLength = 0;
0372:                        }
0373:                    } else {
0374:                        writeRun();
0375:                        m_runLength = 1;
0376:                        m_currentChar = b;
0377:                    }
0378:                } else {
0379:                    m_currentChar = b;
0380:                    m_runLength++;
0381:                }
0382:            }
0383:
0384:            private void allocateCompressStructures() {
0385:                int n = BASE_BLOCK_SIZE * m_blockSize100k;
0386:                m_block = new char[(n + 1 + NUM_OVERSHOOT_BYTES)];
0387:                m_quadrant = new int[(n + NUM_OVERSHOOT_BYTES)];
0388:                m_zptr = new int[n];
0389:                m_ftab = new int[65537];
0390:
0391:                if (m_block == null || m_quadrant == null || m_zptr == null
0392:                        || m_ftab == null) {
0393:                    //int totalDraw = (n + 1 + NUM_OVERSHOOT_BYTES) + (n + NUM_OVERSHOOT_BYTES) + n + 65537;
0394:                    //compressOutOfMemory ( totalDraw, n );
0395:                }
0396:
0397:                /*
0398:                 * The back end needs a place to store the MTF values
0399:                 * whilst it calculates the coding tables.  We could
0400:                 * put them in the zptr array.  However, these values
0401:                 * will fit in a short, so we overlay szptr at the
0402:                 * start of zptr, in the hope of reducing the number
0403:                 * of cache misses induced by the multiple traversals
0404:                 * of the MTF values when calculating coding tables.
0405:                 * Seems to improve compression speed by about 1%.
0406:                 */
0407:                //    szptr = zptr;
0408:                m_szptr = new short[2 * n];
0409:            }
0410:
0411:            private void bsFinishedWithStream() throws IOException {
0412:                while (m_bsLive > 0) {
0413:                    int ch = (m_bsBuff >> 24);
0414:                    try {
0415:                        m_bsStream.write(ch);// write 8-bit
0416:                    } catch (IOException e) {
0417:                        throw e;
0418:                    }
0419:                    m_bsBuff <<= 8;
0420:                    m_bsLive -= 8;
0421:                }
0422:            }
0423:
0424:            private void bsPutIntVS(int numBits, int c) throws IOException {
0425:                bsW(numBits, c);
0426:            }
0427:
0428:            private void bsPutUChar(int c) throws IOException {
0429:                bsW(8, c);
0430:            }
0431:
0432:            private void bsPutint(int u) throws IOException {
0433:                bsW(8, (u >> 24) & 0xff);
0434:                bsW(8, (u >> 16) & 0xff);
0435:                bsW(8, (u >> 8) & 0xff);
0436:                bsW(8, u & 0xff);
0437:            }
0438:
0439:            private void bsSetStream(OutputStream f) {
0440:                m_bsStream = f;
0441:                m_bsLive = 0;
0442:                m_bsBuff = 0;
0443:            }
0444:
0445:            private void bsW(int n, int v) throws IOException {
0446:                while (m_bsLive >= 8) {
0447:                    int ch = (m_bsBuff >> 24);
0448:                    try {
0449:                        m_bsStream.write(ch);// write 8-bit
0450:                    } catch (IOException e) {
0451:                        throw e;
0452:                    }
0453:                    m_bsBuff <<= 8;
0454:                    m_bsLive -= 8;
0455:                }
0456:                m_bsBuff |= (v << (32 - m_bsLive - n));
0457:                m_bsLive += n;
0458:            }
0459:
0460:            private void doReversibleTransformation() {
0461:                int i;
0462:
0463:                m_workLimit = m_workFactor * m_last;
0464:                m_workDone = 0;
0465:                m_blockRandomised = false;
0466:                m_firstAttempt = true;
0467:
0468:                mainSort();
0469:
0470:                if (m_workDone > m_workLimit && m_firstAttempt) {
0471:                    randomiseBlock();
0472:                    m_workLimit = 0;
0473:                    m_workDone = 0;
0474:                    m_blockRandomised = true;
0475:                    m_firstAttempt = false;
0476:                    mainSort();
0477:                }
0478:
0479:                m_origPtr = -1;
0480:                for (i = 0; i <= m_last; i++) {
0481:                    if (m_zptr[i] == 0) {
0482:                        m_origPtr = i;
0483:                        break;
0484:                    }
0485:                }
0486:                ;
0487:
0488:                if (m_origPtr == -1) {
0489:                    panic();
0490:                }
0491:            }
0492:
0493:            private void endBlock() throws IOException {
0494:                m_blockCRC = m_crc.getFinalCRC();
0495:                m_combinedCRC = (m_combinedCRC << 1) | (m_combinedCRC >>> 31);
0496:                m_combinedCRC ^= m_blockCRC;
0497:
0498:                /*
0499:                 * sort the block and establish posn of original string
0500:                 */
0501:                doReversibleTransformation();
0502:
0503:                /*
0504:                 * A 6-byte block header, the value chosen arbitrarily
0505:                 * as 0x314159265359 :-).  A 32 bit value does not really
0506:                 * give a strong enough guarantee that the value will not
0507:                 * appear by chance in the compressed datastream.  Worst-case
0508:                 * probability of this event, for a 900k block, is about
0509:                 * 2.0e-3 for 32 bits, 1.0e-5 for 40 bits and 4.0e-8 for 48 bits.
0510:                 * For a compressed file of size 100Gb -- about 100000 blocks --
0511:                 * only a 48-bit marker will do.  NB: normal compression/
0512:                 * decompression do *not* rely on these statistical properties.
0513:                 * They are only important when trying to recover blocks from
0514:                 * damaged files.
0515:                 */
0516:                bsPutUChar(0x31);
0517:                bsPutUChar(0x41);
0518:                bsPutUChar(0x59);
0519:                bsPutUChar(0x26);
0520:                bsPutUChar(0x53);
0521:                bsPutUChar(0x59);
0522:
0523:                /*
0524:                 * Now the block's CRC, so it is in a known place.
0525:                 */
0526:                bsPutint(m_blockCRC);
0527:
0528:                /*
0529:                 * Now a single bit indicating randomisation.
0530:                 */
0531:                if (m_blockRandomised) {
0532:                    bsW(1, 1);
0533:                } else {
0534:                    bsW(1, 0);
0535:                }
0536:
0537:                /*
0538:                 * Finally, block's contents proper.
0539:                 */
0540:                moveToFrontCodeAndSend();
0541:            }
0542:
0543:            private void endCompression() throws IOException {
0544:                /*
0545:                 * Now another magic 48-bit number, 0x177245385090, to
0546:                 * indicate the end of the last block.  (sqrt(pi), if
0547:                 * you want to know.  I did want to use e, but it contains
0548:                 * too much repetition -- 27 18 28 18 28 46 -- for me
0549:                 * to feel statistically comfortable.  Call me paranoid.)
0550:                 */
0551:                bsPutUChar(0x17);
0552:                bsPutUChar(0x72);
0553:                bsPutUChar(0x45);
0554:                bsPutUChar(0x38);
0555:                bsPutUChar(0x50);
0556:                bsPutUChar(0x90);
0557:
0558:                bsPutint(m_combinedCRC);
0559:
0560:                bsFinishedWithStream();
0561:            }
0562:
0563:            private boolean fullGtU(int i1, int i2) {
0564:                int k;
0565:                char c1;
0566:                char c2;
0567:                int s1;
0568:                int s2;
0569:
0570:                c1 = m_block[i1 + 1];
0571:                c2 = m_block[i2 + 1];
0572:                if (c1 != c2) {
0573:                    return (c1 > c2);
0574:                }
0575:                i1++;
0576:                i2++;
0577:
0578:                c1 = m_block[i1 + 1];
0579:                c2 = m_block[i2 + 1];
0580:                if (c1 != c2) {
0581:                    return (c1 > c2);
0582:                }
0583:                i1++;
0584:                i2++;
0585:
0586:                c1 = m_block[i1 + 1];
0587:                c2 = m_block[i2 + 1];
0588:                if (c1 != c2) {
0589:                    return (c1 > c2);
0590:                }
0591:                i1++;
0592:                i2++;
0593:
0594:                c1 = m_block[i1 + 1];
0595:                c2 = m_block[i2 + 1];
0596:                if (c1 != c2) {
0597:                    return (c1 > c2);
0598:                }
0599:                i1++;
0600:                i2++;
0601:
0602:                c1 = m_block[i1 + 1];
0603:                c2 = m_block[i2 + 1];
0604:                if (c1 != c2) {
0605:                    return (c1 > c2);
0606:                }
0607:                i1++;
0608:                i2++;
0609:
0610:                c1 = m_block[i1 + 1];
0611:                c2 = m_block[i2 + 1];
0612:                if (c1 != c2) {
0613:                    return (c1 > c2);
0614:                }
0615:                i1++;
0616:                i2++;
0617:
0618:                k = m_last + 1;
0619:
0620:                do {
0621:                    c1 = m_block[i1 + 1];
0622:                    c2 = m_block[i2 + 1];
0623:                    if (c1 != c2) {
0624:                        return (c1 > c2);
0625:                    }
0626:                    s1 = m_quadrant[i1];
0627:                    s2 = m_quadrant[i2];
0628:                    if (s1 != s2) {
0629:                        return (s1 > s2);
0630:                    }
0631:                    i1++;
0632:                    i2++;
0633:
0634:                    c1 = m_block[i1 + 1];
0635:                    c2 = m_block[i2 + 1];
0636:                    if (c1 != c2) {
0637:                        return (c1 > c2);
0638:                    }
0639:                    s1 = m_quadrant[i1];
0640:                    s2 = m_quadrant[i2];
0641:                    if (s1 != s2) {
0642:                        return (s1 > s2);
0643:                    }
0644:                    i1++;
0645:                    i2++;
0646:
0647:                    c1 = m_block[i1 + 1];
0648:                    c2 = m_block[i2 + 1];
0649:                    if (c1 != c2) {
0650:                        return (c1 > c2);
0651:                    }
0652:                    s1 = m_quadrant[i1];
0653:                    s2 = m_quadrant[i2];
0654:                    if (s1 != s2) {
0655:                        return (s1 > s2);
0656:                    }
0657:                    i1++;
0658:                    i2++;
0659:
0660:                    c1 = m_block[i1 + 1];
0661:                    c2 = m_block[i2 + 1];
0662:                    if (c1 != c2) {
0663:                        return (c1 > c2);
0664:                    }
0665:                    s1 = m_quadrant[i1];
0666:                    s2 = m_quadrant[i2];
0667:                    if (s1 != s2) {
0668:                        return (s1 > s2);
0669:                    }
0670:                    i1++;
0671:                    i2++;
0672:
0673:                    if (i1 > m_last) {
0674:                        i1 -= m_last;
0675:                        i1--;
0676:                    }
0677:                    ;
0678:                    if (i2 > m_last) {
0679:                        i2 -= m_last;
0680:                        i2--;
0681:                    }
0682:                    ;
0683:
0684:                    k -= 4;
0685:                    m_workDone++;
0686:                } while (k >= 0);
0687:
0688:                return false;
0689:            }
0690:
0691:            private void generateMTFValues() {
0692:                char[] yy = new char[256];
0693:                int i;
0694:                int j;
0695:                char tmp;
0696:                char tmp2;
0697:                int zPend;
0698:                int wr;
0699:                int EOB;
0700:
0701:                makeMaps();
0702:                EOB = m_nInUse + 1;
0703:
0704:                for (i = 0; i <= EOB; i++) {
0705:                    m_mtfFreq[i] = 0;
0706:                }
0707:
0708:                wr = 0;
0709:                zPend = 0;
0710:                for (i = 0; i < m_nInUse; i++) {
0711:                    yy[i] = (char) i;
0712:                }
0713:
0714:                for (i = 0; i <= m_last; i++) {
0715:                    char ll_i;
0716:
0717:                    ll_i = m_unseqToSeq[m_block[m_zptr[i]]];
0718:
0719:                    j = 0;
0720:                    tmp = yy[j];
0721:                    while (ll_i != tmp) {
0722:                        j++;
0723:                        tmp2 = tmp;
0724:                        tmp = yy[j];
0725:                        yy[j] = tmp2;
0726:                    }
0727:                    ;
0728:                    yy[0] = tmp;
0729:
0730:                    if (j == 0) {
0731:                        zPend++;
0732:                    } else {
0733:                        if (zPend > 0) {
0734:                            zPend--;
0735:                            while (true) {
0736:                                switch (zPend % 2) {
0737:                                case 0:
0738:                                    m_szptr[wr] = (short) RUNA;
0739:                                    wr++;
0740:                                    m_mtfFreq[RUNA]++;
0741:                                    break;
0742:                                case 1:
0743:                                    m_szptr[wr] = (short) RUNB;
0744:                                    wr++;
0745:                                    m_mtfFreq[RUNB]++;
0746:                                    break;
0747:                                }
0748:                                ;
0749:                                if (zPend < 2) {
0750:                                    break;
0751:                                }
0752:                                zPend = (zPend - 2) / 2;
0753:                            }
0754:                            ;
0755:                            zPend = 0;
0756:                        }
0757:                        m_szptr[wr] = (short) (j + 1);
0758:                        wr++;
0759:                        m_mtfFreq[j + 1]++;
0760:                    }
0761:                }
0762:
0763:                if (zPend > 0) {
0764:                    zPend--;
0765:                    while (true) {
0766:                        switch (zPend % 2) {
0767:                        case 0:
0768:                            m_szptr[wr] = (short) RUNA;
0769:                            wr++;
0770:                            m_mtfFreq[RUNA]++;
0771:                            break;
0772:                        case 1:
0773:                            m_szptr[wr] = (short) RUNB;
0774:                            wr++;
0775:                            m_mtfFreq[RUNB]++;
0776:                            break;
0777:                        }
0778:                        if (zPend < 2) {
0779:                            break;
0780:                        }
0781:                        zPend = (zPend - 2) / 2;
0782:                    }
0783:                }
0784:
0785:                m_szptr[wr] = (short) EOB;
0786:                wr++;
0787:                m_mtfFreq[EOB]++;
0788:
0789:                m_nMTF = wr;
0790:            }
0791:
0792:            private void hbAssignCodes(int[] code, char[] length, int minLen,
0793:                    int maxLen, int alphaSize) {
0794:                int n;
0795:                int vec;
0796:                int i;
0797:
0798:                vec = 0;
0799:                for (n = minLen; n <= maxLen; n++) {
0800:                    for (i = 0; i < alphaSize; i++) {
0801:                        if (length[i] == n) {
0802:                            code[i] = vec;
0803:                            vec++;
0804:                        }
0805:                    }
0806:                    ;
0807:                    vec <<= 1;
0808:                }
0809:            }
0810:
0811:            private void initBlock() {
0812:                //        blockNo++;
0813:                m_crc.initialiseCRC();
0814:                m_last = -1;
0815:                //        ch = 0;
0816:
0817:                for (int i = 0; i < 256; i++) {
0818:                    m_inUse[i] = false;
0819:                }
0820:
0821:                /*
0822:                 * 20 is just a paranoia constant
0823:                 */
0824:                m_allowableBlockSize = BASE_BLOCK_SIZE * m_blockSize100k - 20;
0825:            }
0826:
0827:            private void initialize() throws IOException {
0828:                /*
0829:                 * Write `magic' bytes h indicating file-format == huffmanised,
0830:                 * followed by a digit indicating blockSize100k.
0831:                 */
0832:                bsPutUChar('h');
0833:                bsPutUChar('0' + m_blockSize100k);
0834:
0835:                m_combinedCRC = 0;
0836:            }
0837:
0838:            private void mainSort() {
0839:                int i;
0840:                int j;
0841:                int ss;
0842:                int sb;
0843:                int[] runningOrder = new int[256];
0844:                int[] copy = new int[256];
0845:                boolean[] bigDone = new boolean[256];
0846:                int c1;
0847:                int c2;
0848:
0849:                /*
0850:                 * In the various block-sized structures, live data runs
0851:                 * from 0 to last+NUM_OVERSHOOT_BYTES inclusive.  First,
0852:                 * set up the overshoot area for block.
0853:                 */
0854:                //   if (verbosity >= 4) fprintf ( stderr, "        sort initialise ...\n" );
0855:                for (i = 0; i < NUM_OVERSHOOT_BYTES; i++) {
0856:                    m_block[m_last + i + 2] = m_block[(i % (m_last + 1)) + 1];
0857:                }
0858:                for (i = 0; i <= m_last + NUM_OVERSHOOT_BYTES; i++) {
0859:                    m_quadrant[i] = 0;
0860:                }
0861:
0862:                m_block[0] = m_block[m_last + 1];
0863:
0864:                if (m_last < 4000) {
0865:                    /*
0866:                     * Use simpleSort(), since the full sorting mechanism
0867:                     * has quite a large constant overhead.
0868:                     */
0869:                    for (i = 0; i <= m_last; i++) {
0870:                        m_zptr[i] = i;
0871:                    }
0872:                    m_firstAttempt = false;
0873:                    m_workDone = 0;
0874:                    m_workLimit = 0;
0875:                    simpleSort(0, m_last, 0);
0876:                } else {
0877:                    for (i = 0; i <= 255; i++) {
0878:                        bigDone[i] = false;
0879:                    }
0880:
0881:                    for (i = 0; i <= 65536; i++) {
0882:                        m_ftab[i] = 0;
0883:                    }
0884:
0885:                    c1 = m_block[0];
0886:                    for (i = 0; i <= m_last; i++) {
0887:                        c2 = m_block[i + 1];
0888:                        m_ftab[(c1 << 8) + c2]++;
0889:                        c1 = c2;
0890:                    }
0891:
0892:                    for (i = 1; i <= 65536; i++) {
0893:                        m_ftab[i] += m_ftab[i - 1];
0894:                    }
0895:
0896:                    c1 = m_block[1];
0897:                    for (i = 0; i < m_last; i++) {
0898:                        c2 = m_block[i + 2];
0899:                        j = (c1 << 8) + c2;
0900:                        c1 = c2;
0901:                        m_ftab[j]--;
0902:                        m_zptr[m_ftab[j]] = i;
0903:                    }
0904:
0905:                    j = ((m_block[m_last + 1]) << 8) + (m_block[1]);
0906:                    m_ftab[j]--;
0907:                    m_zptr[m_ftab[j]] = m_last;
0908:
0909:                    /*
0910:                     * Now ftab contains the first loc of every small bucket.
0911:                     * Calculate the running order, from smallest to largest
0912:                     * big bucket.
0913:                     */
0914:                    for (i = 0; i <= 255; i++) {
0915:                        runningOrder[i] = i;
0916:                    }
0917:                    {
0918:                        int vv;
0919:                        int h = 1;
0920:                        do {
0921:                            h = 3 * h + 1;
0922:                        } while (h <= 256);
0923:                        do {
0924:                            h = h / 3;
0925:                            for (i = h; i <= 255; i++) {
0926:                                vv = runningOrder[i];
0927:                                j = i;
0928:                                while ((m_ftab[((runningOrder[j - h]) + 1) << 8] - m_ftab[(runningOrder[j
0929:                                        - h]) << 8]) > (m_ftab[((vv) + 1) << 8] - m_ftab[(vv) << 8])) {
0930:                                    runningOrder[j] = runningOrder[j - h];
0931:                                    j = j - h;
0932:                                    if (j <= (h - 1)) {
0933:                                        break;
0934:                                    }
0935:                                }
0936:                                runningOrder[j] = vv;
0937:                            }
0938:                        } while (h != 1);
0939:                    }
0940:
0941:                    /*
0942:                     * The main sorting loop.
0943:                     */
0944:                    for (i = 0; i <= 255; i++) {
0945:
0946:                        /*
0947:                         * Process big buckets, starting with the least full.
0948:                         */
0949:                        ss = runningOrder[i];
0950:
0951:                        /*
0952:                         * Complete the big bucket [ss] by quicksorting
0953:                         * any unsorted small buckets [ss, j].  Hopefully
0954:                         * previous pointer-scanning phases have already
0955:                         * completed many of the small buckets [ss, j], so
0956:                         * we don't have to sort them at all.
0957:                         */
0958:                        for (j = 0; j <= 255; j++) {
0959:                            sb = (ss << 8) + j;
0960:                            if (!((m_ftab[sb] & SETMASK) == SETMASK)) {
0961:                                int lo = m_ftab[sb] & CLEARMASK;
0962:                                int hi = (m_ftab[sb + 1] & CLEARMASK) - 1;
0963:                                if (hi > lo) {
0964:                                    qSort3(lo, hi, 2);
0965:                                    if (m_workDone > m_workLimit
0966:                                            && m_firstAttempt) {
0967:                                        return;
0968:                                    }
0969:                                }
0970:                                m_ftab[sb] |= SETMASK;
0971:                            }
0972:                        }
0973:
0974:                        /*
0975:                         * The ss big bucket is now done.  Record this fact,
0976:                         * and update the quadrant descriptors.  Remember to
0977:                         * update quadrants in the overshoot area too, if
0978:                         * necessary.  The "if (i < 255)" test merely skips
0979:                         * this updating for the last bucket processed, since
0980:                         * updating for the last bucket is pointless.
0981:                         */
0982:                        bigDone[ss] = true;
0983:
0984:                        if (i < 255) {
0985:                            int bbStart = m_ftab[ss << 8] & CLEARMASK;
0986:                            int bbSize = (m_ftab[(ss + 1) << 8] & CLEARMASK)
0987:                                    - bbStart;
0988:                            int shifts = 0;
0989:
0990:                            while ((bbSize >> shifts) > 65534) {
0991:                                shifts++;
0992:                            }
0993:
0994:                            for (j = 0; j < bbSize; j++) {
0995:                                int a2update = m_zptr[bbStart + j];
0996:                                int qVal = (j >> shifts);
0997:                                m_quadrant[a2update] = qVal;
0998:                                if (a2update < NUM_OVERSHOOT_BYTES) {
0999:                                    m_quadrant[a2update + m_last + 1] = qVal;
1000:                                }
1001:                            }
1002:
1003:                            if (!(((bbSize - 1) >> shifts) <= 65535)) {
1004:                                panic();
1005:                            }
1006:                        }
1007:
1008:                        /*
1009:                         * Now scan this big bucket so as to synthesise the
1010:                         * sorted order for small buckets [t, ss] for all t != ss.
1011:                         */
1012:                        for (j = 0; j <= 255; j++) {
1013:                            copy[j] = m_ftab[(j << 8) + ss] & CLEARMASK;
1014:                        }
1015:
1016:                        for (j = m_ftab[ss << 8] & CLEARMASK; j < (m_ftab[(ss + 1) << 8] & CLEARMASK); j++) {
1017:                            c1 = m_block[m_zptr[j]];
1018:                            if (!bigDone[c1]) {
1019:                                m_zptr[copy[c1]] = m_zptr[j] == 0 ? m_last
1020:                                        : m_zptr[j] - 1;
1021:                                copy[c1]++;
1022:                            }
1023:                        }
1024:
1025:                        for (j = 0; j <= 255; j++) {
1026:                            m_ftab[(j << 8) + ss] |= SETMASK;
1027:                        }
1028:                    }
1029:                }
1030:            }
1031:
1032:            private void makeMaps() {
1033:                int i;
1034:                m_nInUse = 0;
1035:                for (i = 0; i < 256; i++) {
1036:                    if (m_inUse[i]) {
1037:                        m_seqToUnseq[m_nInUse] = (char) i;
1038:                        m_unseqToSeq[i] = (char) m_nInUse;
1039:                        m_nInUse++;
1040:                    }
1041:                }
1042:            }
1043:
1044:            private char med3(char a, char b, char c) {
1045:                char t;
1046:                if (a > b) {
1047:                    t = a;
1048:                    a = b;
1049:                    b = t;
1050:                }
1051:                if (b > c) {
1052:                    t = b;
1053:                    b = c;
1054:                    c = t;
1055:                }
1056:                if (a > b) {
1057:                    b = a;
1058:                }
1059:                return b;
1060:            }
1061:
1062:            private void moveToFrontCodeAndSend() throws IOException {
1063:                bsPutIntVS(24, m_origPtr);
1064:                generateMTFValues();
1065:                sendMTFValues();
1066:            }
1067:
1068:            private void qSort3(int loSt, int hiSt, int dSt) {
1069:                int unLo;
1070:                int unHi;
1071:                int ltLo;
1072:                int gtHi;
1073:                int med;
1074:                int n;
1075:                int m;
1076:                int sp;
1077:                int lo;
1078:                int hi;
1079:                int d;
1080:                StackElem[] stack = new StackElem[QSORT_STACK_SIZE];
1081:                for (int count = 0; count < QSORT_STACK_SIZE; count++) {
1082:                    stack[count] = new StackElem();
1083:                }
1084:
1085:                sp = 0;
1086:
1087:                stack[sp].m_ll = loSt;
1088:                stack[sp].m_hh = hiSt;
1089:                stack[sp].m_dd = dSt;
1090:                sp++;
1091:
1092:                while (sp > 0) {
1093:                    if (sp >= QSORT_STACK_SIZE) {
1094:                        panic();
1095:                    }
1096:
1097:                    sp--;
1098:                    lo = stack[sp].m_ll;
1099:                    hi = stack[sp].m_hh;
1100:                    d = stack[sp].m_dd;
1101:
1102:                    if (hi - lo < SMALL_THRESH || d > DEPTH_THRESH) {
1103:                        simpleSort(lo, hi, d);
1104:                        if (m_workDone > m_workLimit && m_firstAttempt) {
1105:                            return;
1106:                        }
1107:                        continue;
1108:                    }
1109:
1110:                    med = med3(m_block[m_zptr[lo] + d + 1], m_block[m_zptr[hi]
1111:                            + d + 1], m_block[m_zptr[(lo + hi) >> 1] + d + 1]);
1112:
1113:                    unLo = lo;
1114:                    ltLo = lo;
1115:                    unHi = hi;
1116:                    gtHi = hi;
1117:
1118:                    while (true) {
1119:                        while (true) {
1120:                            if (unLo > unHi) {
1121:                                break;
1122:                            }
1123:                            n = m_block[m_zptr[unLo] + d + 1] - med;
1124:                            if (n == 0) {
1125:                                int temp = 0;
1126:                                temp = m_zptr[unLo];
1127:                                m_zptr[unLo] = m_zptr[ltLo];
1128:                                m_zptr[ltLo] = temp;
1129:                                ltLo++;
1130:                                unLo++;
1131:                                continue;
1132:                            }
1133:                            ;
1134:                            if (n > 0) {
1135:                                break;
1136:                            }
1137:                            unLo++;
1138:                        }
1139:                        while (true) {
1140:                            if (unLo > unHi) {
1141:                                break;
1142:                            }
1143:                            n = m_block[m_zptr[unHi] + d + 1] - med;
1144:                            if (n == 0) {
1145:                                int temp = 0;
1146:                                temp = m_zptr[unHi];
1147:                                m_zptr[unHi] = m_zptr[gtHi];
1148:                                m_zptr[gtHi] = temp;
1149:                                gtHi--;
1150:                                unHi--;
1151:                                continue;
1152:                            }
1153:                            ;
1154:                            if (n < 0) {
1155:                                break;
1156:                            }
1157:                            unHi--;
1158:                        }
1159:                        if (unLo > unHi) {
1160:                            break;
1161:                        }
1162:                        int temp = 0;
1163:                        temp = m_zptr[unLo];
1164:                        m_zptr[unLo] = m_zptr[unHi];
1165:                        m_zptr[unHi] = temp;
1166:                        unLo++;
1167:                        unHi--;
1168:                    }
1169:
1170:                    if (gtHi < ltLo) {
1171:                        stack[sp].m_ll = lo;
1172:                        stack[sp].m_hh = hi;
1173:                        stack[sp].m_dd = d + 1;
1174:                        sp++;
1175:                        continue;
1176:                    }
1177:
1178:                    n = ((ltLo - lo) < (unLo - ltLo)) ? (ltLo - lo)
1179:                            : (unLo - ltLo);
1180:                    vswap(lo, unLo - n, n);
1181:                    m = ((hi - gtHi) < (gtHi - unHi)) ? (hi - gtHi)
1182:                            : (gtHi - unHi);
1183:                    vswap(unLo, hi - m + 1, m);
1184:
1185:                    n = lo + unLo - ltLo - 1;
1186:                    m = hi - (gtHi - unHi) + 1;
1187:
1188:                    stack[sp].m_ll = lo;
1189:                    stack[sp].m_hh = n;
1190:                    stack[sp].m_dd = d;
1191:                    sp++;
1192:
1193:                    stack[sp].m_ll = n + 1;
1194:                    stack[sp].m_hh = m - 1;
1195:                    stack[sp].m_dd = d + 1;
1196:                    sp++;
1197:
1198:                    stack[sp].m_ll = m;
1199:                    stack[sp].m_hh = hi;
1200:                    stack[sp].m_dd = d;
1201:                    sp++;
1202:                }
1203:            }
1204:
1205:            private void randomiseBlock() {
1206:                int i;
1207:                int rNToGo = 0;
1208:                int rTPos = 0;
1209:                for (i = 0; i < 256; i++) {
1210:                    m_inUse[i] = false;
1211:                }
1212:
1213:                for (i = 0; i <= m_last; i++) {
1214:                    if (rNToGo == 0) {
1215:                        rNToGo = (char) RAND_NUMS[rTPos];
1216:                        rTPos++;
1217:                        if (rTPos == 512) {
1218:                            rTPos = 0;
1219:                        }
1220:                    }
1221:                    rNToGo--;
1222:                    m_block[i + 1] ^= ((rNToGo == 1) ? 1 : 0);
1223:                    // handle 16 bit signed numbers
1224:                    m_block[i + 1] &= 0xFF;
1225:
1226:                    m_inUse[m_block[i + 1]] = true;
1227:                }
1228:            }
1229:
1230:            private void sendMTFValues() throws IOException {
1231:                char[][] len = new char[N_GROUPS][MAX_ALPHA_SIZE];
1232:
1233:                int v;
1234:
1235:                int t;
1236:
1237:                int i;
1238:
1239:                int j;
1240:
1241:                int gs;
1242:
1243:                int ge;
1244:
1245:                int bt;
1246:
1247:                int bc;
1248:
1249:                int iter;
1250:                int nSelectors = 0;
1251:                int alphaSize;
1252:                int minLen;
1253:                int maxLen;
1254:                int selCtr;
1255:                int nGroups;
1256:
1257:                alphaSize = m_nInUse + 2;
1258:                for (t = 0; t < N_GROUPS; t++) {
1259:                    for (v = 0; v < alphaSize; v++) {
1260:                        len[t][v] = (char) GREATER_ICOST;
1261:                    }
1262:                }
1263:
1264:                /*
1265:                 * Decide how many coding tables to use
1266:                 */
1267:                if (m_nMTF <= 0) {
1268:                    panic();
1269:                }
1270:
1271:                if (m_nMTF < 200) {
1272:                    nGroups = 2;
1273:                } else if (m_nMTF < 600) {
1274:                    nGroups = 3;
1275:                } else if (m_nMTF < 1200) {
1276:                    nGroups = 4;
1277:                } else if (m_nMTF < 2400) {
1278:                    nGroups = 5;
1279:                } else {
1280:                    nGroups = 6;
1281:                }
1282:                {
1283:                    /*
1284:                     * Generate an initial set of coding tables
1285:                     */
1286:                    int nPart;
1287:                    int remF;
1288:                    int tFreq;
1289:                    int aFreq;
1290:
1291:                    nPart = nGroups;
1292:                    remF = m_nMTF;
1293:                    gs = 0;
1294:                    while (nPart > 0) {
1295:                        tFreq = remF / nPart;
1296:                        ge = gs - 1;
1297:                        aFreq = 0;
1298:                        while (aFreq < tFreq && ge < alphaSize - 1) {
1299:                            ge++;
1300:                            aFreq += m_mtfFreq[ge];
1301:                        }
1302:
1303:                        if (ge > gs && nPart != nGroups && nPart != 1
1304:                                && ((nGroups - nPart) % 2 == 1)) {
1305:                            aFreq -= m_mtfFreq[ge];
1306:                            ge--;
1307:                        }
1308:
1309:                        for (v = 0; v < alphaSize; v++) {
1310:                            if (v >= gs && v <= ge) {
1311:                                len[nPart - 1][v] = (char) LESSER_ICOST;
1312:                            } else {
1313:                                len[nPart - 1][v] = (char) GREATER_ICOST;
1314:                            }
1315:                        }
1316:
1317:                        nPart--;
1318:                        gs = ge + 1;
1319:                        remF -= aFreq;
1320:                    }
1321:                }
1322:
1323:                int[][] rfreq = new int[N_GROUPS][MAX_ALPHA_SIZE];
1324:                int[] fave = new int[N_GROUPS];
1325:                short[] cost = new short[N_GROUPS];
1326:                /*
1327:                 * Iterate up to N_ITERS times to improve the tables.
1328:                 */
1329:                for (iter = 0; iter < N_ITERS; iter++) {
1330:                    for (t = 0; t < nGroups; t++) {
1331:                        fave[t] = 0;
1332:                    }
1333:
1334:                    for (t = 0; t < nGroups; t++) {
1335:                        for (v = 0; v < alphaSize; v++) {
1336:                            rfreq[t][v] = 0;
1337:                        }
1338:                    }
1339:
1340:                    nSelectors = 0;
1341:                    gs = 0;
1342:                    while (true) {
1343:
1344:                        /*
1345:                         * Set group start & end marks.
1346:                         */
1347:                        if (gs >= m_nMTF) {
1348:                            break;
1349:                        }
1350:                        ge = gs + G_SIZE - 1;
1351:                        if (ge >= m_nMTF) {
1352:                            ge = m_nMTF - 1;
1353:                        }
1354:
1355:                        /*
1356:                         * Calculate the cost of this group as coded
1357:                         * by each of the coding tables.
1358:                         */
1359:                        for (t = 0; t < nGroups; t++) {
1360:                            cost[t] = 0;
1361:                        }
1362:
1363:                        if (nGroups == 6) {
1364:                            short cost0 = 0;
1365:                            short cost1 = 0;
1366:                            short cost2 = 0;
1367:                            short cost3 = 0;
1368:                            short cost4 = 0;
1369:                            short cost5 = 0;
1370:
1371:                            for (i = gs; i <= ge; i++) {
1372:                                short icv = m_szptr[i];
1373:                                cost0 += len[0][icv];
1374:                                cost1 += len[1][icv];
1375:                                cost2 += len[2][icv];
1376:                                cost3 += len[3][icv];
1377:                                cost4 += len[4][icv];
1378:                                cost5 += len[5][icv];
1379:                            }
1380:                            cost[0] = cost0;
1381:                            cost[1] = cost1;
1382:                            cost[2] = cost2;
1383:                            cost[3] = cost3;
1384:                            cost[4] = cost4;
1385:                            cost[5] = cost5;
1386:                        } else {
1387:                            for (i = gs; i <= ge; i++) {
1388:                                short icv = m_szptr[i];
1389:                                for (t = 0; t < nGroups; t++) {
1390:                                    cost[t] += len[t][icv];
1391:                                }
1392:                            }
1393:                        }
1394:
1395:                        /*
1396:                         * Find the coding table which is best for this group,
1397:                         * and record its identity in the selector table.
1398:                         */
1399:                        bc = 999999999;
1400:                        bt = -1;
1401:                        for (t = 0; t < nGroups; t++) {
1402:                            if (cost[t] < bc) {
1403:                                bc = cost[t];
1404:                                bt = t;
1405:                            }
1406:                        }
1407:                        ;
1408:                        fave[bt]++;
1409:                        m_selector[nSelectors] = (char) bt;
1410:                        nSelectors++;
1411:
1412:                        /*
1413:                         * Increment the symbol frequencies for the selected table.
1414:                         */
1415:                        for (i = gs; i <= ge; i++) {
1416:                            rfreq[bt][m_szptr[i]]++;
1417:                        }
1418:
1419:                        gs = ge + 1;
1420:                    }
1421:
1422:                    /*
1423:                     * Recompute the tables based on the accumulated frequencies.
1424:                     */
1425:                    for (t = 0; t < nGroups; t++) {
1426:                        hbMakeCodeLengths(len[t], rfreq[t], alphaSize, 20);
1427:                    }
1428:                }
1429:
1430:                rfreq = null;
1431:                fave = null;
1432:                cost = null;
1433:
1434:                if (!(nGroups < 8)) {
1435:                    panic();
1436:                }
1437:                if (!(nSelectors < 32768 && nSelectors <= (2 + (900000 / G_SIZE)))) {
1438:                    panic();
1439:                }
1440:                {
1441:                    /*
1442:                     * Compute MTF values for the selectors.
1443:                     */
1444:                    char[] pos = new char[N_GROUPS];
1445:                    char ll_i;
1446:                    char tmp2;
1447:                    char tmp;
1448:                    for (i = 0; i < nGroups; i++) {
1449:                        pos[i] = (char) i;
1450:                    }
1451:                    for (i = 0; i < nSelectors; i++) {
1452:                        ll_i = m_selector[i];
1453:                        j = 0;
1454:                        tmp = pos[j];
1455:                        while (ll_i != tmp) {
1456:                            j++;
1457:                            tmp2 = tmp;
1458:                            tmp = pos[j];
1459:                            pos[j] = tmp2;
1460:                        }
1461:                        pos[0] = tmp;
1462:                        m_selectorMtf[i] = (char) j;
1463:                    }
1464:                }
1465:
1466:                int[][] code = new int[N_GROUPS][MAX_ALPHA_SIZE];
1467:
1468:                /*
1469:                 * Assign actual codes for the tables.
1470:                 */
1471:                for (t = 0; t < nGroups; t++) {
1472:                    minLen = 32;
1473:                    maxLen = 0;
1474:                    for (i = 0; i < alphaSize; i++) {
1475:                        if (len[t][i] > maxLen) {
1476:                            maxLen = len[t][i];
1477:                        }
1478:                        if (len[t][i] < minLen) {
1479:                            minLen = len[t][i];
1480:                        }
1481:                    }
1482:                    if (maxLen > 20) {
1483:                        panic();
1484:                    }
1485:                    if (minLen < 1) {
1486:                        panic();
1487:                    }
1488:                    hbAssignCodes(code[t], len[t], minLen, maxLen, alphaSize);
1489:                }
1490:                {
1491:                    /*
1492:                     * Transmit the mapping table.
1493:                     */
1494:                    boolean[] inUse16 = new boolean[16];
1495:                    for (i = 0; i < 16; i++) {
1496:                        inUse16[i] = false;
1497:                        for (j = 0; j < 16; j++) {
1498:                            if (m_inUse[i * 16 + j]) {
1499:                                inUse16[i] = true;
1500:                            }
1501:                        }
1502:                    }
1503:
1504:                    for (i = 0; i < 16; i++) {
1505:                        if (inUse16[i]) {
1506:                            bsW(1, 1);
1507:                        } else {
1508:                            bsW(1, 0);
1509:                        }
1510:                    }
1511:
1512:                    for (i = 0; i < 16; i++) {
1513:                        if (inUse16[i]) {
1514:                            for (j = 0; j < 16; j++) {
1515:                                if (m_inUse[i * 16 + j]) {
1516:                                    bsW(1, 1);
1517:                                } else {
1518:                                    bsW(1, 0);
1519:                                }
1520:                            }
1521:                        }
1522:                    }
1523:
1524:                }
1525:
1526:                /*
1527:                 * Now the selectors.
1528:                 */
1529:                bsW(3, nGroups);
1530:                bsW(15, nSelectors);
1531:                for (i = 0; i < nSelectors; i++) {
1532:                    for (j = 0; j < m_selectorMtf[i]; j++) {
1533:                        bsW(1, 1);
1534:                    }
1535:                    bsW(1, 0);
1536:                }
1537:
1538:                for (t = 0; t < nGroups; t++) {
1539:                    int curr = len[t][0];
1540:                    bsW(5, curr);
1541:                    for (i = 0; i < alphaSize; i++) {
1542:                        while (curr < len[t][i]) {
1543:                            bsW(2, 2);
1544:                            curr++;
1545:                            /*
1546:                             * 10
1547:                             */
1548:                        }
1549:                        while (curr > len[t][i]) {
1550:                            bsW(2, 3);
1551:                            curr--;
1552:                            /*
1553:                             * 11
1554:                             */
1555:                        }
1556:                        bsW(1, 0);
1557:                    }
1558:                }
1559:
1560:                /*
1561:                 * And finally, the block data proper
1562:                 */
1563:                selCtr = 0;
1564:                gs = 0;
1565:                while (true) {
1566:                    if (gs >= m_nMTF) {
1567:                        break;
1568:                    }
1569:                    ge = gs + G_SIZE - 1;
1570:                    if (ge >= m_nMTF) {
1571:                        ge = m_nMTF - 1;
1572:                    }
1573:                    for (i = gs; i <= ge; i++) {
1574:                        bsW(len[m_selector[selCtr]][m_szptr[i]],
1575:                                code[m_selector[selCtr]][m_szptr[i]]);
1576:                    }
1577:
1578:                    gs = ge + 1;
1579:                    selCtr++;
1580:                }
1581:                if (!(selCtr == nSelectors)) {
1582:                    panic();
1583:                }
1584:            }
1585:
1586:            private void simpleSort(int lo, int hi, int d) {
1587:                int i;
1588:                int j;
1589:                int h;
1590:                int bigN;
1591:                int hp;
1592:                int v;
1593:
1594:                bigN = hi - lo + 1;
1595:                if (bigN < 2) {
1596:                    return;
1597:                }
1598:
1599:                hp = 0;
1600:                while (m_incs[hp] < bigN) {
1601:                    hp++;
1602:                }
1603:                hp--;
1604:
1605:                for (; hp >= 0; hp--) {
1606:                    h = m_incs[hp];
1607:
1608:                    i = lo + h;
1609:                    while (true) {
1610:                        /*
1611:                         * copy 1
1612:                         */
1613:                        if (i > hi) {
1614:                            break;
1615:                        }
1616:                        v = m_zptr[i];
1617:                        j = i;
1618:                        while (fullGtU(m_zptr[j - h] + d, v + d)) {
1619:                            m_zptr[j] = m_zptr[j - h];
1620:                            j = j - h;
1621:                            if (j <= (lo + h - 1)) {
1622:                                break;
1623:                            }
1624:                        }
1625:                        m_zptr[j] = v;
1626:                        i++;
1627:
1628:                        /*
1629:                         * copy 2
1630:                         */
1631:                        if (i > hi) {
1632:                            break;
1633:                        }
1634:                        v = m_zptr[i];
1635:                        j = i;
1636:                        while (fullGtU(m_zptr[j - h] + d, v + d)) {
1637:                            m_zptr[j] = m_zptr[j - h];
1638:                            j = j - h;
1639:                            if (j <= (lo + h - 1)) {
1640:                                break;
1641:                            }
1642:                        }
1643:                        m_zptr[j] = v;
1644:                        i++;
1645:
1646:                        /*
1647:                         * copy 3
1648:                         */
1649:                        if (i > hi) {
1650:                            break;
1651:                        }
1652:                        v = m_zptr[i];
1653:                        j = i;
1654:                        while (fullGtU(m_zptr[j - h] + d, v + d)) {
1655:                            m_zptr[j] = m_zptr[j - h];
1656:                            j = j - h;
1657:                            if (j <= (lo + h - 1)) {
1658:                                break;
1659:                            }
1660:                        }
1661:                        m_zptr[j] = v;
1662:                        i++;
1663:
1664:                        if (m_workDone > m_workLimit && m_firstAttempt) {
1665:                            return;
1666:                        }
1667:                    }
1668:                }
1669:            }
1670:
1671:            private void vswap(int p1, int p2, int n) {
1672:                int temp = 0;
1673:                while (n > 0) {
1674:                    temp = m_zptr[p1];
1675:                    m_zptr[p1] = m_zptr[p2];
1676:                    m_zptr[p2] = temp;
1677:                    p1++;
1678:                    p2++;
1679:                    n--;
1680:                }
1681:            }
1682:
1683:            private void writeRun() throws IOException {
1684:                if (m_last < m_allowableBlockSize) {
1685:                    m_inUse[m_currentChar] = true;
1686:                    for (int i = 0; i < m_runLength; i++) {
1687:                        m_crc.updateCRC((char) m_currentChar);
1688:                    }
1689:                    switch (m_runLength) {
1690:                    case 1:
1691:                        m_last++;
1692:                        m_block[m_last + 1] = (char) m_currentChar;
1693:                        break;
1694:                    case 2:
1695:                        m_last++;
1696:                        m_block[m_last + 1] = (char) m_currentChar;
1697:                        m_last++;
1698:                        m_block[m_last + 1] = (char) m_currentChar;
1699:                        break;
1700:                    case 3:
1701:                        m_last++;
1702:                        m_block[m_last + 1] = (char) m_currentChar;
1703:                        m_last++;
1704:                        m_block[m_last + 1] = (char) m_currentChar;
1705:                        m_last++;
1706:                        m_block[m_last + 1] = (char) m_currentChar;
1707:                        break;
1708:                    default:
1709:                        m_inUse[m_runLength - 4] = true;
1710:                        m_last++;
1711:                        m_block[m_last + 1] = (char) m_currentChar;
1712:                        m_last++;
1713:                        m_block[m_last + 1] = (char) m_currentChar;
1714:                        m_last++;
1715:                        m_block[m_last + 1] = (char) m_currentChar;
1716:                        m_last++;
1717:                        m_block[m_last + 1] = (char) m_currentChar;
1718:                        m_last++;
1719:                        m_block[m_last + 1] = (char) (m_runLength - 4);
1720:                        break;
1721:                    }
1722:                } else {
1723:                    endBlock();
1724:                    initBlock();
1725:                    writeRun();
1726:                }
1727:            }
1728:
1729:            private static class StackElem {
1730:                int m_dd;
1731:                int m_hh;
1732:                int m_ll;
1733:            }
1734:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.