Source Code Cross Referenced for RECompiler.java in  » Web-Crawler » WebSPHINX » org » apache » regexp » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Web Crawler » WebSPHINX » org.apache.regexp 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


0001:        package org.apache.regexp;
0002:
0003:        /*
0004:         * ====================================================================
0005:         * 
0006:         * The Apache Software License, Version 1.1
0007:         *
0008:         * Copyright (c) 1999 The Apache Software Foundation.  All rights 
0009:         * reserved.
0010:         *
0011:         * Redistribution and use in source and binary forms, with or without
0012:         * modification, are permitted provided that the following conditions
0013:         * are met:
0014:         *
0015:         * 1. Redistributions of source code must retain the above copyright
0016:         *    notice, this list of conditions and the following disclaimer. 
0017:         *
0018:         * 2. Redistributions in binary form must reproduce the above copyright
0019:         *    notice, this list of conditions and the following disclaimer in
0020:         *    the documentation and/or other materials provided with the
0021:         *    distribution.
0022:         *
0023:         * 3. The end-user documentation included with the redistribution, if
0024:         *    any, must include the following acknowlegement:  
0025:         *       "This product includes software developed by the 
0026:         *        Apache Software Foundation (http://www.apache.org/)."
0027:         *    Alternately, this acknowlegement may appear in the software itself,
0028:         *    if and wherever such third-party acknowlegements normally appear.
0029:         *
0030:         * 4. The names "The Jakarta Project", "Jakarta-Regexp", and "Apache Software
0031:         *    Foundation" must not be used to endorse or promote products derived
0032:         *    from this software without prior written permission. For written 
0033:         *    permission, please contact apache@apache.org.
0034:         *
0035:         * 5. Products derived from this software may not be called "Apache"
0036:         *    nor may "Apache" appear in their names without prior written
0037:         *    permission of the Apache Group.
0038:         *
0039:         * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
0040:         * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
0041:         * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
0042:         * DISCLAIMED.  IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
0043:         * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
0044:         * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
0045:         * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
0046:         * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
0047:         * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
0048:         * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
0049:         * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
0050:         * SUCH DAMAGE.
0051:         * ====================================================================
0052:         *
0053:         * This software consists of voluntary contributions made by many
0054:         * individuals on behalf of the Apache Software Foundation.  For more
0055:         * information on the Apache Software Foundation, please see
0056:         * <http://www.apache.org/>.
0057:         *
0058:         */
0059:
0060:        import org.apache.regexp.RE;
0061:        import java.util.Hashtable;
0062:
0063:        /**
0064:         * A regular expression compiler class.  This class compiles a pattern string into a
0065:         * regular expression program interpretable by the RE evaluator class.  The 'recompile'
0066:         * command line tool uses this compiler to pre-compile regular expressions for use
0067:         * with RE.  For a description of the syntax accepted by RECompiler and what you can
0068:         * do with regular expressions, see the documentation for the RE matcher class.
0069:         *
0070:         * @see RE
0071:         * @see recompile
0072:         *
0073:         * @author <a href="mailto:jonl@muppetlabs.com">Jonathan Locke</a>
0074:         * @version $Id: RECompiler.java,v 1.1.1.1 2002/01/31 03:14:36 rcm Exp $
0075:         */
0076:        public class RECompiler {
0077:            // The compiled program
0078:            char[] instruction; // The compiled RE 'program' instruction buffer
0079:            int lenInstruction; // The amount of the program buffer currently in use
0080:
0081:            // Input state for compiling regular expression
0082:            String pattern; // Input string
0083:            int len; // Length of the pattern string
0084:            int idx; // Current input index into ac
0085:            int parens; // Total number of paren pairs
0086:
0087:            // Node flags
0088:            static final int NODE_NORMAL = 0; // No flags (nothing special)
0089:            static final int NODE_NULLABLE = 1; // True if node is potentially null
0090:            static final int NODE_TOPLEVEL = 2; // True if top level expr
0091:
0092:            // Special types of 'escapes'
0093:            static final char ESC_MASK = 0xfff0; // Escape complexity mask
0094:            static final char ESC_BACKREF = 0xffff; // Escape is really a backreference
0095:            static final char ESC_COMPLEX = 0xfffe; // Escape isn't really a true character
0096:            static final char ESC_CLASS = 0xfffd; // Escape represents a whole class of characters
0097:
0098:            // {m,n} stacks
0099:            static final int maxBrackets = 10; // Maximum number of bracket pairs
0100:            static int brackets = 0; // Number of bracket sets
0101:            static int[] bracketStart = null; // Starting point
0102:            static int[] bracketEnd = null; // Ending point
0103:            static int[] bracketMin = null; // Minimum number of matches
0104:            static int[] bracketOpt = null; // Additional optional matches
0105:            static final int bracketUnbounded = -1; // Unbounded value
0106:            static final int bracketFinished = -2; // Unbounded value
0107:
0108:            // Lookup table for POSIX character class names
0109:            static Hashtable hashPOSIX = new Hashtable();
0110:            static {
0111:                hashPOSIX.put("alnum", new Character(RE.POSIX_CLASS_ALNUM));
0112:                hashPOSIX.put("alpha", new Character(RE.POSIX_CLASS_ALPHA));
0113:                hashPOSIX.put("blank", new Character(RE.POSIX_CLASS_BLANK));
0114:                hashPOSIX.put("cntrl", new Character(RE.POSIX_CLASS_CNTRL));
0115:                hashPOSIX.put("digit", new Character(RE.POSIX_CLASS_DIGIT));
0116:                hashPOSIX.put("graph", new Character(RE.POSIX_CLASS_GRAPH));
0117:                hashPOSIX.put("lower", new Character(RE.POSIX_CLASS_LOWER));
0118:                hashPOSIX.put("print", new Character(RE.POSIX_CLASS_PRINT));
0119:                hashPOSIX.put("punct", new Character(RE.POSIX_CLASS_PUNCT));
0120:                hashPOSIX.put("space", new Character(RE.POSIX_CLASS_SPACE));
0121:                hashPOSIX.put("upper", new Character(RE.POSIX_CLASS_UPPER));
0122:                hashPOSIX.put("xdigit", new Character(RE.POSIX_CLASS_XDIGIT));
0123:                hashPOSIX
0124:                        .put("javastart", new Character(RE.POSIX_CLASS_JSTART));
0125:                hashPOSIX.put("javapart", new Character(RE.POSIX_CLASS_JPART));
0126:            }
0127:
0128:            /**
0129:             * Constructor.  Creates (initially empty) storage for a regular expression program.
0130:             */
0131:            public RECompiler() {
0132:                // Start off with a generous, yet reasonable, initial size
0133:                instruction = new char[128];
0134:                lenInstruction = 0;
0135:            }
0136:
0137:            /**
0138:             * Ensures that n more characters can fit in the program buffer.
0139:             * If n more can't fit, then the size is doubled until it can.
0140:             * @param n Number of additional characters to ensure will fit.
0141:             */
0142:            void ensure(int n) {
0143:                // Get current program length
0144:                int curlen = instruction.length;
0145:
0146:                // If the current length + n more is too much
0147:                if (lenInstruction + n >= curlen) {
0148:                    // Double the size of the program array until n more will fit
0149:                    while (lenInstruction + n >= curlen) {
0150:                        curlen *= 2;
0151:                    }
0152:
0153:                    // Allocate new program array and move data into it
0154:                    char[] newInstruction = new char[curlen];
0155:                    System.arraycopy(instruction, 0, newInstruction, 0,
0156:                            lenInstruction);
0157:                    instruction = newInstruction;
0158:                }
0159:            }
0160:
0161:            /**
0162:             * Emit a single character into the program stream.
0163:             * @param c Character to add
0164:             */
0165:            void emit(char c) {
0166:                // Make room for character
0167:                ensure(1);
0168:
0169:                // Add character
0170:                instruction[lenInstruction++] = c;
0171:            }
0172:
0173:            /**
0174:             * Inserts a node with a given opcode and opdata at insertAt.  The node relative next
0175:             * pointer is initialized to 0.
0176:             * @param opcode Opcode for new node
0177:             * @param opdata Opdata for new node (only the low 16 bits are currently used)
0178:             * @param insertAt Index at which to insert the new node in the program
0179:             */
0180:            void nodeInsert(char opcode, int opdata, int insertAt) {
0181:                // Make room for a new node
0182:                ensure(RE.nodeSize);
0183:
0184:                // Move everything from insertAt to the end down nodeSize elements
0185:                System.arraycopy(instruction, insertAt, instruction, insertAt
0186:                        + RE.nodeSize, lenInstruction - insertAt);
0187:                instruction[insertAt + RE.offsetOpcode] = opcode;
0188:                instruction[insertAt + RE.offsetOpdata] = (char) opdata;
0189:                instruction[insertAt + RE.offsetNext] = 0;
0190:                lenInstruction += RE.nodeSize;
0191:            }
0192:
0193:            /**
0194:             * Appends a node to the end of a node chain
0195:             * @param node Start of node chain to traverse
0196:             * @param pointTo Node to have the tail of the chain point to
0197:             */
0198:            void setNextOfEnd(int node, int pointTo) {
0199:                // Traverse the chain until the next offset is 0
0200:                int next;
0201:                while ((next = instruction[node + RE.offsetNext]) != 0) {
0202:                    node += next;
0203:                }
0204:
0205:                // Point the last node in the chain to pointTo.
0206:                instruction[node + RE.offsetNext] = (char) (short) (pointTo - node);
0207:            }
0208:
0209:            /**
0210:             * Adds a new node
0211:             * @param opcode Opcode for node
0212:             * @param opdata Opdata for node (only the low 16 bits are currently used)
0213:             * @return Index of new node in program
0214:             */
0215:            int node(char opcode, int opdata) {
0216:                // Make room for a new node
0217:                ensure(RE.nodeSize);
0218:
0219:                // Add new node at end
0220:                instruction[lenInstruction + RE.offsetOpcode] = opcode;
0221:                instruction[lenInstruction + RE.offsetOpdata] = (char) opdata;
0222:                instruction[lenInstruction + RE.offsetNext] = 0;
0223:                lenInstruction += RE.nodeSize;
0224:
0225:                // Return index of new node
0226:                return lenInstruction - RE.nodeSize;
0227:            }
0228:
0229:            /**
0230:             * Throws a new internal error exception
0231:             * @exception Error Thrown in the event of an internal error.
0232:             */
0233:            void internalError() throws Error {
0234:                throw new Error("Internal error!");
0235:            }
0236:
0237:            /**
0238:             * Throws a new syntax error exception
0239:             * @exception RESyntaxException Thrown if the regular expression has invalid syntax.
0240:             */
0241:            void syntaxError(String s) throws RESyntaxException {
0242:                throw new RESyntaxException(s);
0243:            }
0244:
0245:            /**
0246:             * Allocate storage for brackets only as needed
0247:             */
0248:            void allocBrackets() {
0249:                // Allocate bracket stacks if not already done
0250:                if (bracketStart == null) {
0251:                    // Allocate storage
0252:                    bracketStart = new int[maxBrackets];
0253:                    bracketEnd = new int[maxBrackets];
0254:                    bracketMin = new int[maxBrackets];
0255:                    bracketOpt = new int[maxBrackets];
0256:
0257:                    // Initialize to invalid values
0258:                    for (int i = 0; i < maxBrackets; i++) {
0259:                        bracketStart[i] = bracketEnd[i] = bracketMin[i] = bracketOpt[i] = -1;
0260:                    }
0261:                }
0262:            }
0263:
0264:            /**
0265:             * Match bracket {m,n} expression put results in bracket member variables
0266:             * @exception RESyntaxException Thrown if the regular expression has invalid syntax.
0267:             */
0268:            void bracket() throws RESyntaxException {
0269:                // Current character must be a '{'
0270:                if (idx >= len || pattern.charAt(idx++) != '{') {
0271:                    internalError();
0272:                }
0273:
0274:                // Next char must be a digit
0275:                if (idx >= len || !Character.isDigit(pattern.charAt(idx))) {
0276:                    syntaxError("Expected digit");
0277:                }
0278:
0279:                // Get min ('m' of {m,n}) number
0280:                StringBuffer number = new StringBuffer();
0281:                while (idx < len && Character.isDigit(pattern.charAt(idx))) {
0282:                    number.append(pattern.charAt(idx++));
0283:                }
0284:                try {
0285:                    bracketMin[brackets] = Integer.parseInt(number.toString());
0286:                } catch (NumberFormatException e) {
0287:                    syntaxError("Expected valid number");
0288:                }
0289:
0290:                // If out of input, fail
0291:                if (idx >= len) {
0292:                    syntaxError("Expected comma or right bracket");
0293:                }
0294:
0295:                // If end of expr, optional limit is 0
0296:                if (pattern.charAt(idx) == '}') {
0297:                    idx++;
0298:                    bracketOpt[brackets] = 0;
0299:                    return;
0300:                }
0301:
0302:                // Must have at least {m,} and maybe {m,n}.
0303:                if (idx >= len || pattern.charAt(idx++) != ',') {
0304:                    syntaxError("Expected comma");
0305:                }
0306:
0307:                // If out of input, fail
0308:                if (idx >= len) {
0309:                    syntaxError("Expected comma or right bracket");
0310:                }
0311:
0312:                // If {m,} max is unlimited
0313:                if (pattern.charAt(idx) == '}') {
0314:                    idx++;
0315:                    bracketOpt[brackets] = bracketUnbounded;
0316:                    return;
0317:                }
0318:
0319:                // Next char must be a digit
0320:                if (idx >= len || !Character.isDigit(pattern.charAt(idx))) {
0321:                    syntaxError("Expected digit");
0322:                }
0323:
0324:                // Get max number
0325:                number.setLength(0);
0326:                while (idx < len && Character.isDigit(pattern.charAt(idx))) {
0327:                    number.append(pattern.charAt(idx++));
0328:                }
0329:                try {
0330:                    bracketOpt[brackets] = Integer.parseInt(number.toString())
0331:                            - bracketMin[brackets];
0332:                } catch (NumberFormatException e) {
0333:                    syntaxError("Expected valid number");
0334:                }
0335:
0336:                // Optional repetitions must be > 0
0337:                if (bracketOpt[brackets] <= 0) {
0338:                    syntaxError("Bad range");
0339:                }
0340:
0341:                // Must have close brace
0342:                if (idx >= len || pattern.charAt(idx++) != '}') {
0343:                    syntaxError("Missing close brace");
0344:                }
0345:            }
0346:
0347:            /**
0348:             * Match an escape sequence.  Handles quoted chars and octal escapes as well
0349:             * as normal escape characters.  Always advances the input stream by the
0350:             * right amount. This code "understands" the subtle difference between an
0351:             * octal escape and a backref.  You can access the type of ESC_CLASS or
0352:             * ESC_COMPLEX or ESC_BACKREF by looking at pattern[idx - 1].
0353:             * @return ESC_* code or character if simple escape
0354:             * @exception RESyntaxException Thrown if the regular expression has invalid syntax.
0355:             */
0356:            char escape() throws RESyntaxException {
0357:                // "Shouldn't" happen
0358:                if (pattern.charAt(idx) != '\\') {
0359:                    internalError();
0360:                }
0361:
0362:                // Escape shouldn't occur as last character in string!
0363:                if (idx + 1 == len) {
0364:                    syntaxError("Escape terminates string");
0365:                }
0366:
0367:                // Switch on character after backslash
0368:                idx += 2;
0369:                char escapeChar = pattern.charAt(idx - 1);
0370:                switch (escapeChar) {
0371:                case RE.E_BOUND:
0372:                case RE.E_NBOUND:
0373:                    return ESC_COMPLEX;
0374:
0375:                case RE.E_ALNUM:
0376:                case RE.E_NALNUM:
0377:                case RE.E_SPACE:
0378:                case RE.E_NSPACE:
0379:                case RE.E_DIGIT:
0380:                case RE.E_NDIGIT:
0381:                    return ESC_CLASS;
0382:
0383:                case 'u':
0384:                case 'x': {
0385:                    // Exact required hex digits for escape type
0386:                    int hexDigits = (escapeChar == 'u' ? 4 : 2);
0387:
0388:                    // Parse up to hexDigits characters from input
0389:                    int val = 0;
0390:                    for (; idx < len && hexDigits-- > 0; idx++) {
0391:                        // Get char
0392:                        char c = pattern.charAt(idx);
0393:
0394:                        // If it's a hexadecimal digit (0-9)
0395:                        if (c >= '0' && c <= '9') {
0396:                            // Compute new value
0397:                            val = (val << 4) + c - '0';
0398:                        } else {
0399:                            // If it's a hexadecimal letter (a-f)
0400:                            c = Character.toLowerCase(c);
0401:                            if (c >= 'a' && c <= 'f') {
0402:                                // Compute new value 
0403:                                val = (val << 4) + (c - 'a') + 10;
0404:                            } else {
0405:                                // If it's not a valid digit or hex letter, the escape must be invalid
0406:                                // because hexDigits of input have not been absorbed yet.
0407:                                syntaxError("Expected " + hexDigits
0408:                                        + " hexadecimal digits after \\"
0409:                                        + escapeChar);
0410:                            }
0411:                        }
0412:                    }
0413:                    return (char) val;
0414:                }
0415:
0416:                case 't':
0417:                    return '\t';
0418:
0419:                case 'n':
0420:                    return '\n';
0421:
0422:                case 'r':
0423:                    return '\r';
0424:
0425:                case 'f':
0426:                    return '\f';
0427:
0428:                case '0':
0429:                case '1':
0430:                case '2':
0431:                case '3':
0432:                case '4':
0433:                case '5':
0434:                case '6':
0435:                case '7':
0436:                case '8':
0437:                case '9':
0438:
0439:                    // An octal escape starts with a 0 or has two digits in a row
0440:                    if ((idx < len && Character.isDigit(pattern.charAt(idx)))
0441:                            || escapeChar == '0') {
0442:                        // Handle \nnn octal escapes
0443:                        int val = escapeChar - '0';
0444:                        if (idx < len && Character.isDigit(pattern.charAt(idx))) {
0445:                            val = ((val << 3) + (pattern.charAt(idx++) - '0'));
0446:                            if (idx < len
0447:                                    && Character.isDigit(pattern.charAt(idx))) {
0448:                                val = ((val << 3) + (pattern.charAt(idx++) - '0'));
0449:                            }
0450:                        }
0451:                        return (char) val;
0452:                    }
0453:
0454:                    // It's actually a backreference (\[1-9]), not an escape
0455:                    return ESC_BACKREF;
0456:
0457:                default:
0458:
0459:                    // Simple quoting of a character
0460:                    return escapeChar;
0461:                }
0462:            }
0463:
0464:            /**
0465:             * Compile a character class
0466:             * @return Index of class node
0467:             * @exception RESyntaxException Thrown if the regular expression has invalid syntax.
0468:             */
0469:            int characterClass() throws RESyntaxException {
0470:                // Check for bad calling or empty class
0471:                if (pattern.charAt(idx) != '[') {
0472:                    internalError();
0473:                }
0474:
0475:                // Check for unterminated or empty class
0476:                if ((idx + 1) >= len || pattern.charAt(++idx) == ']') {
0477:                    syntaxError("Empty or unterminated class");
0478:                }
0479:
0480:                // Check for POSIX character class
0481:                if (idx < len && pattern.charAt(idx) == ':') {
0482:                    // Skip colon
0483:                    idx++;
0484:
0485:                    // POSIX character classes are denoted with lowercase ASCII strings
0486:                    int idxStart = idx;
0487:                    while (idx < len && pattern.charAt(idx) >= 'a'
0488:                            && pattern.charAt(idx) <= 'z') {
0489:                        idx++;
0490:                    }
0491:
0492:                    // Should be a ":]" to terminate the POSIX character class
0493:                    if ((idx + 1) < len && pattern.charAt(idx) == ':'
0494:                            && pattern.charAt(idx + 1) == ']') {
0495:                        // Get character class
0496:                        String charClass = pattern.substring(idxStart, idx);
0497:
0498:                        // Select the POSIX class id
0499:                        Character i = (Character) hashPOSIX.get(charClass);
0500:                        if (i != null) {
0501:                            // Move past colon and right bracket
0502:                            idx += 2;
0503:
0504:                            // Return new POSIX character class node
0505:                            return node(RE.OP_POSIXCLASS, i.charValue());
0506:                        }
0507:                        syntaxError("Invalid POSIX character class '"
0508:                                + charClass + "'");
0509:                    }
0510:                    syntaxError("Invalid POSIX character class syntax");
0511:                }
0512:
0513:                // Try to build a class.  Create OP_ANYOF node
0514:                int ret = node(RE.OP_ANYOF, 0);
0515:
0516:                // Parse class declaration
0517:                char CHAR_INVALID = Character.MAX_VALUE;
0518:                char last = CHAR_INVALID;
0519:                char simpleChar = 0;
0520:                boolean include = true;
0521:                boolean definingRange = false;
0522:                int idxFirst = idx;
0523:                char rangeStart = Character.MIN_VALUE;
0524:                char rangeEnd;
0525:                RERange range = new RERange();
0526:                while (idx < len && pattern.charAt(idx) != ']') {
0527:
0528:                    switchOnCharacter:
0529:
0530:                    // Switch on character
0531:                    switch (pattern.charAt(idx)) {
0532:                    case '^':
0533:                        include = !include;
0534:                        if (idx == idxFirst) {
0535:                            range.include(Character.MIN_VALUE,
0536:                                    Character.MAX_VALUE, true);
0537:                        }
0538:                        idx++;
0539:                        continue;
0540:
0541:                    case '\\': {
0542:                        // Escape always advances the stream
0543:                        char c;
0544:                        switch (c = escape()) {
0545:                        case ESC_COMPLEX:
0546:                        case ESC_BACKREF:
0547:
0548:                            // Word boundaries and backrefs not allowed in a character class!
0549:                            syntaxError("Bad character class");
0550:
0551:                        case ESC_CLASS:
0552:
0553:                            // Classes can't be an endpoint of a range
0554:                            if (definingRange) {
0555:                                syntaxError("Bad character class");
0556:                            }
0557:
0558:                            // Handle specific type of class (some are ok)
0559:                            switch (pattern.charAt(idx - 1)) {
0560:                            case RE.E_NSPACE:
0561:                            case RE.E_NDIGIT:
0562:                            case RE.E_NALNUM:
0563:                                syntaxError("Bad character class");
0564:
0565:                            case RE.E_SPACE:
0566:                                range.include('\t', include);
0567:                                range.include('\r', include);
0568:                                range.include('\f', include);
0569:                                range.include('\n', include);
0570:                                range.include('\b', include);
0571:                                range.include(' ', include);
0572:                                break;
0573:
0574:                            case RE.E_ALNUM:
0575:                                range.include('a', 'z', include);
0576:                                range.include('A', 'Z', include);
0577:                                range.include('_', include);
0578:
0579:                                // Fall through!
0580:
0581:                            case RE.E_DIGIT:
0582:                                range.include('0', '9', include);
0583:                                break;
0584:                            }
0585:
0586:                            // Make last char invalid (can't be a range start)
0587:                            last = CHAR_INVALID;
0588:                            break;
0589:
0590:                        default:
0591:
0592:                            // Escape is simple so treat as a simple char
0593:                            simpleChar = c;
0594:                            break switchOnCharacter;
0595:                        }
0596:                    }
0597:                        continue;
0598:
0599:                    case '-':
0600:
0601:                        // Start a range if one isn't already started
0602:                        if (definingRange) {
0603:                            syntaxError("Bad class range");
0604:                        }
0605:                        definingRange = true;
0606:
0607:                        // If no last character, start of range is 0
0608:                        rangeStart = (last == CHAR_INVALID ? 0 : last);
0609:
0610:                        // Premature end of range. define up to Character.MAX_VALUE
0611:                        if ((idx + 1) < len && pattern.charAt(++idx) == ']') {
0612:                            simpleChar = Character.MAX_VALUE;
0613:                            break;
0614:                        }
0615:                        continue;
0616:
0617:                    default:
0618:                        simpleChar = pattern.charAt(idx++);
0619:                        break;
0620:                    }
0621:
0622:                    // Handle simple character simpleChar
0623:                    if (definingRange) {
0624:                        // if we are defining a range make it now
0625:                        rangeEnd = simpleChar;
0626:
0627:                        // Actually create a range if the range is ok
0628:                        if (rangeStart >= rangeEnd) {
0629:                            syntaxError("Bad character class");
0630:                        }
0631:                        range.include(rangeStart, rangeEnd, include);
0632:
0633:                        // We are done defining the range
0634:                        last = CHAR_INVALID;
0635:                        definingRange = false;
0636:                    } else {
0637:                        // If simple character and not start of range, include it
0638:                        if ((idx + 1) >= len || pattern.charAt(idx + 1) != '-') {
0639:                            range.include(simpleChar, include);
0640:                        }
0641:                        last = simpleChar;
0642:                    }
0643:                }
0644:
0645:                // Shouldn't be out of input
0646:                if (idx == len) {
0647:                    syntaxError("Unterminated character class");
0648:                }
0649:
0650:                // Absorb the ']' end of class marker
0651:                idx++;
0652:
0653:                // Emit character class definition
0654:                instruction[ret + RE.offsetOpdata] = (char) range.num;
0655:                for (int i = 0; i < range.num; i++) {
0656:                    emit((char) range.minRange[i]);
0657:                    emit((char) range.maxRange[i]);
0658:                }
0659:                return ret;
0660:            }
0661:
0662:            /**
0663:             * Absorb an atomic character string.  This method is a little tricky because
0664:             * it can un-include the last character of string if a closure operator follows.
0665:             * This is correct because *+? have higher precedence than concatentation (thus
0666:             * ABC* means AB(C*) and NOT (ABC)*).
0667:             * @return Index of new atom node
0668:             * @exception RESyntaxException Thrown if the regular expression has invalid syntax.
0669:             */
0670:            int atom() throws RESyntaxException {
0671:                // Create a string node
0672:                int ret = node(RE.OP_ATOM, 0);
0673:
0674:                // Length of atom
0675:                int lenAtom = 0;
0676:
0677:                // Loop while we've got input
0678:
0679:                atomLoop:
0680:
0681:                while (idx < len) {
0682:                    // Is there a next char?
0683:                    if ((idx + 1) < len) {
0684:                        char c = pattern.charAt(idx + 1);
0685:
0686:                        // If the next 'char' is an escape, look past the whole escape
0687:                        if (pattern.charAt(idx) == '\\') {
0688:                            int idxEscape = idx;
0689:                            escape();
0690:                            if (idx < len) {
0691:                                c = pattern.charAt(idx);
0692:                            }
0693:                            idx = idxEscape;
0694:                        }
0695:
0696:                        // Switch on next char
0697:                        switch (c) {
0698:                        case '{':
0699:                        case '?':
0700:                        case '*':
0701:                        case '+':
0702:
0703:                            // If the next character is a closure operator and our atom is non-empty, the
0704:                            // current character should bind to the closure operator rather than the atom
0705:                            if (lenAtom != 0) {
0706:                                break atomLoop;
0707:                            }
0708:                        }
0709:                    }
0710:
0711:                    // Switch on current char
0712:                    switch (pattern.charAt(idx)) {
0713:                    case ']':
0714:                    case '^':
0715:                    case '$':
0716:                    case '.':
0717:                    case '[':
0718:                    case '(':
0719:                    case ')':
0720:                    case '|':
0721:                        break atomLoop;
0722:
0723:                    case '{':
0724:                    case '?':
0725:                    case '*':
0726:                    case '+':
0727:
0728:                        // We should have an atom by now
0729:                        if (lenAtom == 0) {
0730:                            // No atom before closure
0731:                            syntaxError("Missing operand to closure");
0732:                        }
0733:                        break atomLoop;
0734:
0735:                    case '\\':
0736:
0737:                    {
0738:                        // Get the escaped character (advances input automatically)
0739:                        int idxBeforeEscape = idx;
0740:                        char c = escape();
0741:
0742:                        // Check if it's a simple escape (as opposed to, say, a backreference)
0743:                        if ((c & ESC_MASK) == ESC_MASK) {
0744:                            // Not a simple escape, so backup to where we were before the escape.
0745:                            idx = idxBeforeEscape;
0746:                            break atomLoop;
0747:                        }
0748:
0749:                        // Add escaped char to atom
0750:                        emit(c);
0751:                        lenAtom++;
0752:                    }
0753:                        break;
0754:
0755:                    default:
0756:
0757:                        // Add normal character to atom
0758:                        emit(pattern.charAt(idx++));
0759:                        lenAtom++;
0760:                        break;
0761:                    }
0762:                }
0763:
0764:                // This "shouldn't" happen
0765:                if (lenAtom == 0) {
0766:                    internalError();
0767:                }
0768:
0769:                // Emit the atom length into the program
0770:                instruction[ret + RE.offsetOpdata] = (char) lenAtom;
0771:                return ret;
0772:            }
0773:
0774:            /**
0775:             * Match a terminal node.
0776:             * @param flags Flags
0777:             * @return Index of terminal node (closeable)
0778:             * @exception RESyntaxException Thrown if the regular expression has invalid syntax.
0779:             */
0780:            int terminal(int[] flags) throws RESyntaxException {
0781:                switch (pattern.charAt(idx)) {
0782:                case RE.OP_EOL:
0783:                case RE.OP_BOL:
0784:                case RE.OP_ANY:
0785:                    return node(pattern.charAt(idx++), 0);
0786:
0787:                case '[':
0788:                    return characterClass();
0789:
0790:                case '(':
0791:                    return expr(flags);
0792:
0793:                case ')':
0794:                    syntaxError("Unexpected close paren");
0795:
0796:                case '|':
0797:                    internalError();
0798:
0799:                case ']':
0800:                    syntaxError("Mismatched class");
0801:
0802:                case 0:
0803:                    syntaxError("Unexpected end of input");
0804:
0805:                case '?':
0806:                case '+':
0807:                case '{':
0808:                case '*':
0809:                    syntaxError("Missing operand to closure");
0810:
0811:                case '\\': {
0812:                    // Don't forget, escape() advances the input stream!
0813:                    int idxBeforeEscape = idx;
0814:
0815:                    // Switch on escaped character
0816:                    switch (escape()) {
0817:                    case ESC_CLASS:
0818:                    case ESC_COMPLEX:
0819:                        flags[0] &= ~NODE_NULLABLE;
0820:                        return node(RE.OP_ESCAPE, pattern.charAt(idx - 1));
0821:
0822:                    case ESC_BACKREF: {
0823:                        char backreference = (char) (pattern.charAt(idx - 1) - '0');
0824:                        if (parens <= backreference) {
0825:                            syntaxError("Bad backreference");
0826:                        }
0827:                        flags[0] |= NODE_NULLABLE;
0828:                        return node(RE.OP_BACKREF, backreference);
0829:                    }
0830:
0831:                    default:
0832:
0833:                        // We had a simple escape and we want to have it end up in
0834:                        // an atom, so we back up and fall though to the default handling
0835:                        idx = idxBeforeEscape;
0836:                        flags[0] &= ~NODE_NULLABLE;
0837:                        break;
0838:                    }
0839:                }
0840:                }
0841:
0842:                // Everything above either fails or returns.
0843:                // If it wasn't one of the above, it must be the start of an atom.
0844:                flags[0] &= ~NODE_NULLABLE;
0845:                return atom();
0846:            }
0847:
0848:            /**
0849:             * Compile a possibly closured terminal
0850:             * @param flags Flags passed by reference
0851:             * @return Index of closured node
0852:             * @exception RESyntaxException Thrown if the regular expression has invalid syntax.
0853:             */
0854:            int closure(int[] flags) throws RESyntaxException {
0855:                // Before terminal
0856:                int idxBeforeTerminal = idx;
0857:
0858:                // Values to pass by reference to terminal()
0859:                int[] terminalFlags = { NODE_NORMAL };
0860:
0861:                // Get terminal symbol
0862:                int ret = terminal(terminalFlags);
0863:
0864:                // Or in flags from terminal symbol
0865:                flags[0] |= terminalFlags[0];
0866:
0867:                // Advance input, set NODE_NULLABLE flag and do sanity checks
0868:                if (idx >= len) {
0869:                    return ret;
0870:                }
0871:                boolean greedy = true;
0872:                char closureType = pattern.charAt(idx);
0873:                switch (closureType) {
0874:                case '?':
0875:                case '*':
0876:
0877:                    // The current node can be null
0878:                    flags[0] |= NODE_NULLABLE;
0879:
0880:                case '+':
0881:
0882:                    // Eat closure character
0883:                    idx++;
0884:
0885:                case '{':
0886:
0887:                    // Don't allow blantant stupidity
0888:                    int opcode = instruction[ret + RE.offsetOpcode];
0889:                    if (opcode == RE.OP_BOL || opcode == RE.OP_EOL) {
0890:                        syntaxError("Bad closure operand");
0891:                    }
0892:                    if ((terminalFlags[0] & NODE_NULLABLE) != 0) {
0893:                        syntaxError("Closure operand can't be nullable");
0894:                    }
0895:                    break;
0896:                }
0897:
0898:                // If the next character is a '?', make the closure non-greedy (reluctant)
0899:                if (idx < len && pattern.charAt(idx) == '?') {
0900:                    idx++;
0901:                    greedy = false;
0902:                }
0903:
0904:                if (greedy) {
0905:                    // Actually do the closure now
0906:                    switch (closureType) {
0907:                    case '{': {
0908:                        // We look for our bracket in the list
0909:                        boolean found = false;
0910:                        int i;
0911:                        allocBrackets();
0912:                        for (i = 0; i < brackets; i++) {
0913:                            if (bracketStart[i] == idx) {
0914:                                found = true;
0915:                                break;
0916:                            }
0917:                        }
0918:
0919:                        // If its not in the list we parse the {m,n}
0920:                        if (!found) {
0921:                            if (brackets >= maxBrackets) {
0922:                                syntaxError("Too many bracketed closures (limit is 10)");
0923:                            }
0924:                            bracketStart[brackets] = idx;
0925:                            bracket();
0926:                            bracketEnd[brackets] = idx;
0927:                            i = brackets++;
0928:                        }
0929:
0930:                        // If there's a min, rewind stream and reparse
0931:                        if (--bracketMin[i] > 0) {
0932:                            // Rewind stream and run it through again
0933:                            idx = idxBeforeTerminal;
0934:                            break;
0935:                        }
0936:
0937:                        // Do the right thing for maximum ({m,})
0938:                        if (bracketOpt[i] == bracketFinished) {
0939:                            // Drop through now and closure expression.
0940:                            // We are done with the {m,} expr, so skip rest
0941:                            closureType = '*';
0942:                            bracketOpt[i] = 0;
0943:                            idx = bracketEnd[i];
0944:                        } else if (bracketOpt[i] == bracketUnbounded) {
0945:                            idx = idxBeforeTerminal;
0946:                            bracketOpt[i] = bracketFinished;
0947:                            break;
0948:                        } else if (bracketOpt[i]-- > 0) {
0949:                            // Drop through to optionally close and then 'play it again sam!'
0950:                            idx = idxBeforeTerminal;
0951:                            closureType = '?';
0952:                        } else {
0953:                            // We are done. skip the rest of {m,n} expr
0954:                            idx = bracketEnd[i];
0955:                            break;
0956:                        }
0957:                    }
0958:
0959:                        // Fall through!
0960:
0961:                    case '?':
0962:                    case '*':
0963:
0964:                        if (!greedy) {
0965:                            break;
0966:                        }
0967:
0968:                        if (closureType == '?') {
0969:                            // X? is compiled as (X|)
0970:                            nodeInsert(RE.OP_BRANCH, 0, ret); // branch before X
0971:                            setNextOfEnd(ret, node(RE.OP_BRANCH, 0)); // inserted branch to option
0972:                            int nothing = node(RE.OP_NOTHING, 0); // which is OP_NOTHING
0973:                            setNextOfEnd(ret, nothing); // point (second) branch to OP_NOTHING
0974:                            setNextOfEnd(ret + RE.nodeSize, nothing); // point the end of X to OP_NOTHING node
0975:                        }
0976:
0977:                        if (closureType == '*') {
0978:                            // X* is compiled as (X{gotoX}|)
0979:                            nodeInsert(RE.OP_BRANCH, 0, ret); // branch before X
0980:                            setNextOfEnd(ret + RE.nodeSize, node(RE.OP_BRANCH,
0981:                                    0)); // end of X points to an option
0982:                            setNextOfEnd(ret + RE.nodeSize, node(RE.OP_GOTO, 0)); // to goto
0983:                            setNextOfEnd(ret + RE.nodeSize, ret); // the start again
0984:                            setNextOfEnd(ret, node(RE.OP_BRANCH, 0)); // the other option is
0985:                            setNextOfEnd(ret, node(RE.OP_NOTHING, 0)); // OP_NOTHING
0986:                        }
0987:                        break;
0988:
0989:                    case '+': {
0990:                        // X+ is compiled as X({gotoX}|)
0991:                        int branch;
0992:                        branch = node(RE.OP_BRANCH, 0); // a new branch
0993:                        setNextOfEnd(ret, branch); // is added to the end of X
0994:                        setNextOfEnd(node(RE.OP_GOTO, 0), ret); // one option is to go back to the start
0995:                        setNextOfEnd(branch, node(RE.OP_BRANCH, 0)); // the other option
0996:                        setNextOfEnd(ret, node(RE.OP_NOTHING, 0)); // is OP_NOTHING
0997:                    }
0998:                        break;
0999:                    }
1000:                } else {
1001:                    // Add end after closured subexpr
1002:                    setNextOfEnd(ret, node(RE.OP_END, 0));
1003:
1004:                    // Actually do the closure now
1005:                    switch (closureType) {
1006:                    case '?':
1007:                        nodeInsert(RE.OP_RELUCTANTMAYBE, 0, ret);
1008:                        break;
1009:
1010:                    case '*':
1011:                        nodeInsert(RE.OP_RELUCTANTSTAR, 0, ret);
1012:                        break;
1013:
1014:                    case '+':
1015:                        nodeInsert(RE.OP_RELUCTANTPLUS, 0, ret);
1016:                        break;
1017:                    }
1018:
1019:                    // Point to the expr after the closure
1020:                    setNextOfEnd(ret, lenInstruction);
1021:                }
1022:                return ret;
1023:            }
1024:
1025:            /**
1026:             * Compile one branch of an or operator (implements concatenation)
1027:             * @param flags Flags passed by reference
1028:             * @return Pointer to branch node
1029:             * @exception RESyntaxException Thrown if the regular expression has invalid syntax.
1030:             */
1031:            int branch(int[] flags) throws RESyntaxException {
1032:                // Get each possibly closured piece and concat
1033:                int node;
1034:                int ret = node(RE.OP_BRANCH, 0);
1035:                int chain = -1;
1036:                int[] closureFlags = new int[1];
1037:                boolean nullable = true;
1038:                while (idx < len && pattern.charAt(idx) != '|'
1039:                        && pattern.charAt(idx) != ')') {
1040:                    // Get new node
1041:                    closureFlags[0] = NODE_NORMAL;
1042:                    node = closure(closureFlags);
1043:                    if (closureFlags[0] == NODE_NORMAL) {
1044:                        nullable = false;
1045:                    }
1046:
1047:                    // If there's a chain, append to the end
1048:                    if (chain != -1) {
1049:                        setNextOfEnd(chain, node);
1050:                    }
1051:
1052:                    // Chain starts at current
1053:                    chain = node;
1054:                }
1055:
1056:                // If we don't run loop, make a nothing node
1057:                if (chain == -1) {
1058:                    node(RE.OP_NOTHING, 0);
1059:                }
1060:
1061:                // Set nullable flag for this branch
1062:                if (nullable) {
1063:                    flags[0] |= NODE_NULLABLE;
1064:                }
1065:                return ret;
1066:            }
1067:
1068:            /**
1069:             * Compile an expression with possible parens around it.  Paren matching
1070:             * is done at this level so we can tie the branch tails together.
1071:             * @param flags Flag value passed by reference
1072:             * @return Node index of expression in instruction array
1073:             * @exception RESyntaxException Thrown if the regular expression has invalid syntax.
1074:             */
1075:            int expr(int[] flags) throws RESyntaxException {
1076:                // Create open paren node unless we were called from the top level (which has no parens)
1077:                boolean paren = false;
1078:                int ret = -1;
1079:                int closeParens = parens;
1080:                if ((flags[0] & NODE_TOPLEVEL) == 0
1081:                        && pattern.charAt(idx) == '(') {
1082:                    idx++;
1083:                    paren = true;
1084:                    ret = node(RE.OP_OPEN, parens++);
1085:                }
1086:                flags[0] &= ~NODE_TOPLEVEL;
1087:
1088:                // Create a branch node
1089:                int branch = branch(flags);
1090:                if (ret == -1) {
1091:                    ret = branch;
1092:                } else {
1093:                    setNextOfEnd(ret, branch);
1094:                }
1095:
1096:                // Loop through branches
1097:                while (idx < len && pattern.charAt(idx) == '|') {
1098:                    idx++;
1099:                    branch = branch(flags);
1100:                    setNextOfEnd(ret, branch);
1101:                }
1102:
1103:                // Create an ending node (either a close paren or an OP_END)
1104:                int end;
1105:                if (paren) {
1106:                    if (idx < len && pattern.charAt(idx) == ')') {
1107:                        idx++;
1108:                    } else {
1109:                        syntaxError("Missing close paren");
1110:                    }
1111:                    end = node(RE.OP_CLOSE, closeParens);
1112:                } else {
1113:                    end = node(RE.OP_END, 0);
1114:                }
1115:
1116:                // Append the ending node to the ret nodelist
1117:                setNextOfEnd(ret, end);
1118:
1119:                // Hook the ends of each branch to the end node
1120:                for (int next = -1, i = ret; next != 0; next = instruction[i
1121:                        + RE.offsetNext], i += next) {
1122:                    // If branch, make the end of the branch's operand chain point to the end node.
1123:                    if (instruction[i + RE.offsetOpcode] == RE.OP_BRANCH) {
1124:                        setNextOfEnd(i + RE.nodeSize, end);
1125:                    }
1126:                }
1127:
1128:                // Return the node list
1129:                return ret;
1130:            }
1131:
1132:            /**
1133:             * Compiles a regular expression pattern into a program runnable by the pattern
1134:             * matcher class 'RE'.
1135:             * @param pattern Regular expression pattern to compile (see RECompiler class
1136:             * for details).
1137:             * @return A compiled regular expression program.
1138:             * @exception RESyntaxException Thrown if the regular expression has invalid syntax.
1139:             * @see RECompiler
1140:             * @see RE
1141:             */
1142:            public REProgram compile(String pattern) throws RESyntaxException {
1143:                // Initialize variables for compilation
1144:                this .pattern = pattern; // Save pattern in instance variable
1145:                len = pattern.length(); // Precompute pattern length for speed
1146:                idx = 0; // Set parsing index to the first character
1147:                lenInstruction = 0; // Set emitted instruction count to zero
1148:                parens = 1; // Set paren level to 1 (the implicit outer parens)
1149:                brackets = 0; // No bracketed closures yet
1150:
1151:                // Initialize pass by reference flags value
1152:                int[] flags = { NODE_TOPLEVEL };
1153:
1154:                // Parse expression
1155:                expr(flags);
1156:
1157:                // Should be at end of input
1158:                if (idx != len) {
1159:                    if (pattern.charAt(idx) == ')') {
1160:                        syntaxError("Unmatched close paren");
1161:                    }
1162:                    syntaxError("Unexpected input remains");
1163:                }
1164:
1165:                // Return the result
1166:                char[] ins = new char[lenInstruction];
1167:                System.arraycopy(instruction, 0, ins, 0, lenInstruction);
1168:                return new REProgram(ins);
1169:            }
1170:
1171:            /**
1172:             * Local, nested class for maintaining character ranges for character classes.
1173:             */
1174:            class RERange {
1175:                int size = 16; // Capacity of current range arrays
1176:                int[] minRange = new int[size]; // Range minima
1177:                int[] maxRange = new int[size]; // Range maxima
1178:                int num = 0; // Number of range array elements in use
1179:
1180:                /**
1181:                 * Deletes the range at a given index from the range lists
1182:                 * @param index Index of range to delete from minRange and maxRange arrays.
1183:                 */
1184:                void delete(int index) {
1185:                    // Return if no elements left or index is out of range
1186:                    if (num == 0 || index >= num) {
1187:                        return;
1188:                    }
1189:
1190:                    // Move elements down
1191:                    while (index++ < num) {
1192:                        if (index - 1 >= 0) {
1193:                            minRange[index - 1] = minRange[index];
1194:                            maxRange[index - 1] = maxRange[index];
1195:                        }
1196:                    }
1197:
1198:                    // One less element now
1199:                    num--;
1200:                }
1201:
1202:                /**
1203:                 * Merges a range into the range list, coalescing ranges if possible.
1204:                 * @param min Minimum end of range
1205:                 * @param max Maximum end of range
1206:                 */
1207:                void merge(int min, int max) {
1208:                    // Loop through ranges
1209:                    for (int i = 0; i < num; i++) {
1210:                        // Min-max is subsumed by minRange[i]-maxRange[i]
1211:                        if (min >= minRange[i] && max <= maxRange[i]) {
1212:                            return;
1213:                        }
1214:
1215:                        // Min-max subsumes minRange[i]-maxRange[i]
1216:                        else if (min <= minRange[i] && max >= maxRange[i]) {
1217:                            delete(i);
1218:                            merge(min, max);
1219:                            return;
1220:                        }
1221:
1222:                        // Min is in the range, but max is outside
1223:                        else if (min >= minRange[i] && min <= maxRange[i]) {
1224:                            delete(i);
1225:                            min = minRange[i];
1226:                            merge(min, max);
1227:                            return;
1228:                        }
1229:
1230:                        // Max is in the range, but min is outside
1231:                        else if (max >= minRange[i] && max <= maxRange[i]) {
1232:                            delete(i);
1233:                            max = maxRange[i];
1234:                            merge(min, max);
1235:                            return;
1236:                        }
1237:                    }
1238:
1239:                    // Must not overlap any other ranges
1240:                    if (num >= size) {
1241:                        size *= 2;
1242:                        int[] newMin = new int[size];
1243:                        int[] newMax = new int[size];
1244:                        System.arraycopy(minRange, 0, newMin, 0, num);
1245:                        System.arraycopy(maxRange, 0, newMax, 0, num);
1246:                        minRange = newMin;
1247:                        maxRange = newMax;
1248:                    }
1249:                    minRange[num] = min;
1250:                    maxRange[num] = max;
1251:                    num++;
1252:                }
1253:
1254:                /**
1255:                 * Removes a range by deleting or shrinking all other ranges
1256:                 * @param min Minimum end of range
1257:                 * @param max Maximum end of range
1258:                 */
1259:                void remove(int min, int max) {
1260:                    // Loop through ranges
1261:                    for (int i = 0; i < num; i++) {
1262:                        // minRange[i]-maxRange[i] is subsumed by min-max
1263:                        if (minRange[i] >= min && maxRange[i] <= max) {
1264:                            delete(i);
1265:                            i--;
1266:                            return;
1267:                        }
1268:
1269:                        // min-max is subsumed by minRange[i]-maxRange[i]
1270:                        else if (min >= minRange[i] && max <= maxRange[i]) {
1271:                            int minr = minRange[i];
1272:                            int maxr = maxRange[i];
1273:                            delete(i);
1274:                            if (minr < min - 1) {
1275:                                merge(minr, min - 1);
1276:                            }
1277:                            if (max + 1 < maxr) {
1278:                                merge(max + 1, maxr);
1279:                            }
1280:                            return;
1281:                        }
1282:
1283:                        // minRange is in the range, but maxRange is outside
1284:                        else if (minRange[i] >= min && minRange[i] <= max) {
1285:                            minRange[i] = max + 1;
1286:                            return;
1287:                        }
1288:
1289:                        // maxRange is in the range, but minRange is outside
1290:                        else if (maxRange[i] >= min && maxRange[i] <= max) {
1291:                            maxRange[i] = min - 1;
1292:                            return;
1293:                        }
1294:                    }
1295:                }
1296:
1297:                /**
1298:                 * Includes (or excludes) the range from min to max, inclusive.
1299:                 * @param min Minimum end of range
1300:                 * @param max Maximum end of range
1301:                 * @param include True if range should be included.  False otherwise.
1302:                 */
1303:                void include(int min, int max, boolean include) {
1304:                    if (include) {
1305:                        merge(min, max);
1306:                    } else {
1307:                        remove(min, max);
1308:                    }
1309:                }
1310:
1311:                /**
1312:                 * Includes a range with the same min and max
1313:                 * @param minmax Minimum and maximum end of range (inclusive)
1314:                 * @param include True if range should be included.  False otherwise.
1315:                 */
1316:                void include(char minmax, boolean include) {
1317:                    include(minmax, minmax, include);
1318:                }
1319:            }
1320:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.