indexed_search.py :  » Database » PyTables » tables-2.1.2 » bench » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Database » PyTables 
PyTables » tables 2.1.2 » bench » indexed_search.py
from time import time
import subprocess
import random
import numpy

# Constants
STEP = 1000*100  # the size of the buffer to fill the table, in rows
SCALE = 0.1      # standard deviation of the noise compared with actual values
NI_NTIMES = 1      # The number of queries for doing a mean (non-idx cols)
#COLDCACHE = 10   # The number of reads where the cache is considered 'cold'
#WARMCACHE = 50   # The number of reads until the cache is considered 'warmed'
#READ_TIMES = WARMCACHE+50    # The number of complete calls to DB.query_db()
COLDCACHE = 50   # The number of reads where the cache is considered 'cold'
WARMCACHE = 50  # The number of reads until the cache is considered 'warmed'
READ_TIMES = WARMCACHE+50    # The number of complete calls to DB.query_db()
MROW = 1000*1000.

# Test values
#COLDCACHE = 5   # The number of reads where the cache is considered 'cold'
#WARMCACHE = 5   # The number of reads until the cache is considered 'warmed'
#READ_TIMES = 10    # The number of complete calls to DB.query_db()

# global variables
rdm_cod = ['lin', 'rnd']
prec = 6  # precision for printing floats purposes


def get_nrows(nrows_str):
    if nrows_str.endswith("k"):
        return int(float(nrows_str[:-1])*1000)
    elif nrows_str.endswith("m"):
        return int(float(nrows_str[:-1])*1000*1000)
    elif nrows_str.endswith("g"):
        return int(float(nrows_str[:-1])*1000*1000*1000)
    else:
        raise ValueError, "value of nrows must end with either 'k', 'm' or 'g' suffixes."

class DB(object):

    def __init__(self, nrows, rng, userandom):
        global step, scale
        self.step = STEP
        self.scale = SCALE
        self.rng = rng
        self.userandom = userandom
        self.filename = '-'.join([rdm_cod[userandom], nrows])
        self.nrows = get_nrows(nrows)

    def get_db_size(self):
        sout = subprocess.Popen("sync;du -s %s" % self.filename, shell=True,
                                stdout=subprocess.PIPE).stdout
        line = [l for l in sout][0]
        return int(line.split()[0])

    def print_mtime(self, t1, explain):
        mtime = time()-t1
        print "%s:" % explain, round(mtime, 6)
        print "Krows/s:", round((self.nrows/1000.)/mtime, 6)

    def print_qtime(self, colname, ltimes):
        qtime1 = ltimes[0] # First measured time
        qtime2 = ltimes[-1]  # Last measured time
        print "Query time for %s:" % colname, round(qtime1, 6)
        print "Mrows/s:", round((self.nrows/(MROW))/qtime1, 6)
        print "Query time for %s (cached):" % colname, round(qtime2, 6)
        print "Mrows/s (cached):", round((self.nrows/(MROW))/qtime2, 6)

    def norm_times(self, ltimes):
        "Get the mean and stddev of ltimes, avoiding the extreme values."
        lmean = ltimes.mean(); lstd = ltimes.std()
        ntimes = ltimes[ltimes < lmean+lstd]
        nmean = ntimes.mean(); nstd = ntimes.std()
        return nmean, nstd

    def print_qtime_idx(self, colname, ltimes, repeated, verbose):
        if repeated:
            r = "[REP] "
        else:
            r = "[NOREP] "
        ltimes = numpy.array(ltimes)
        ntimes = len(ltimes)
        qtime1 = ltimes[0] # First measured time
        ctimes = ltimes[1:COLDCACHE]
        cmean, cstd = self.norm_times(ctimes)
        wtimes = ltimes[WARMCACHE:]
        wmean, wstd = self.norm_times(wtimes)
        if verbose:
            print "Times for cold cache:\n", ctimes
            #print "Times for warm cache:\n", wtimes
            print "Histogram for warm cache: %s\n%s" % \
                  numpy.histogram(wtimes, new=True)
        print "%s1st query time for %s:" % (r, colname), \
              round(qtime1, prec)
        print "%sQuery time for %s (cold cache):" % (r, colname), \
              round(cmean, prec), "+-", round(cstd, prec)
        print "%sQuery time for %s (warm cache):" % (r, colname), \
              round(wmean, prec), "+-", round(wstd, prec)

    def print_db_sizes(self, init, filled, indexed):
        table_size = (filled-init)/1024.
        indexes_size = (indexed-filled)/1024.
        print "Table size (MB):", round(table_size, 3)
        print "Indexes size (MB):", round(indexes_size, 3)
        print "Full size (MB):", round(table_size+indexes_size, 3)

    def fill_arrays(self, start, stop):
        arr_f8 = numpy.arange(start, stop, dtype='float64')
        arr_i4 = numpy.arange(start, stop, dtype='int32')
        if self.userandom:
            arr_f8 += numpy.random.normal(0, stop*self.scale,
                                          size=stop-start)
            arr_i4 = numpy.array(arr_f8, dtype='int32')
        return arr_i4, arr_f8

    def create_db(self, dtype, kind, optlevel, verbose):
        self.con = self.open_db(remove=1)
        self.create_table(self.con)
        init_size = self.get_db_size()
        t1=time()
        self.fill_table(self.con)
        table_size = self.get_db_size()
        self.print_mtime(t1, 'Insert time')
        self.index_db(dtype, kind, optlevel, verbose)
        indexes_size = self.get_db_size()
        self.print_db_sizes(init_size, table_size, indexes_size)
        self.close_db(self.con)

    def index_db(self, dtype, kind, optlevel, verbose):
        if dtype == "int":
            idx_cols = ['col2']
        elif dtype == "float":
            idx_cols = ['col4']
        else:
            idx_cols = ['col2', 'col4']
        for colname in idx_cols:
            t1=time()
            self.index_col(self.con, colname, kind, optlevel, verbose)
            self.print_mtime(t1, 'Index time (%s)' % colname)

    def query_db(self, niter, dtype, onlyidxquery, onlynonidxquery,
                 avoidfscache, verbose, inkernel):
        self.con = self.open_db()
        if dtype == "int":
            reg_cols = ['col1']
            idx_cols = ['col2']
        elif dtype == "float":
            reg_cols = ['col3']
            idx_cols = ['col4']
        else:
            reg_cols = ['col1', 'col3']
            idx_cols = ['col2', 'col4']
        if avoidfscache:
            rseed = int(numpy.random.randint(self.nrows))
        else:
            rseed = 19
        # Query for non-indexed columns
        numpy.random.seed(rseed)
        base = numpy.random.randint(self.nrows)
        if not onlyidxquery:
            for colname in reg_cols:
                ltimes = []
                random.seed(rseed)
                for i in range(NI_NTIMES):
                    t1=time()
                    results = self.do_query(self.con, colname, base, inkernel)
                    ltimes.append(time()-t1)
                if verbose:
                    print "Results len:", results
                self.print_qtime(colname, ltimes)
            # Always reopen the file after *every* query loop.
            # Necessary to make the benchmark to run correctly.
            self.close_db(self.con)
            self.con = self.open_db()
        # Query for indexed columns
        if not onlynonidxquery:
            for colname in idx_cols:
                ltimes = []
                numpy.random.seed(rseed)
                rndbase = numpy.random.randint(self.nrows, size=niter)
                # First, non-repeated queries
                for i in range(niter):
                    base = rndbase[i]
                    t1=time()
                    results = self.do_query(self.con, colname, base, inkernel)
                    #results, tprof = self.do_query(self.con, colname, base, inkernel)
                    ltimes.append(time()-t1)
                if verbose:
                    print "Results len:", results
                self.print_qtime_idx(colname, ltimes, False, verbose)
                # Always reopen the file after *every* query loop.
                # Necessary to make the benchmark to run correctly.
                self.close_db(self.con)
                self.con = self.open_db()
                ltimes = []
#                 # Second, repeated queries
#                 for i in range(niter):
#                     t1=time()
#                     results = self.do_query(self.con, colname, base, inkernel)
#                     #results, tprof = self.do_query(self.con, colname, base, inkernel)
#                     ltimes.append(time()-t1)
#                 if verbose:
#                     print "Results len:", results
#                 self.print_qtime_idx(colname, ltimes, True, verbose)
                # Print internal PyTables index tprof statistics
                #tprof = numpy.array(tprof)
                #tmean, tstd = self.norm_times(tprof)
                #print "tprof-->", round(tmean, prec), "+-", round(tstd, prec)
                #print "tprof hist-->", \
                #    numpy.histogram(tprof, new=True)
                #print "tprof raw-->", tprof
                # Always reopen the file after *every* query loop.
                # Necessary to make the benchmark to run correctly.
                self.close_db(self.con)
                self.con = self.open_db()
        # Finally, close the file.
        self.close_db(self.con)

    def close_db(self, con):
        con.close()


if __name__=="__main__":
    import sys, os
    import getopt

    try:
        import psyco
        psyco_imported = 1
    except:
        psyco_imported = 0

    usage = """usage: %s [-T] [-P] [-v] [-f] [-k] [-p] [-m] [-c] [-q] [-i] [-I] [-S] [-x] [-z complevel] [-l complib] [-R range] [-N niter] [-n nrows] [-d datadir] [-O level] [-t kind] [-s] col -Q [suplim]
            -T use Pytables
            -P use Postgres
            -v verbose
            -f do a profile of the run (only query functionality & Python 2.5)
            -k do a profile for kcachegrind use (out file is 'indexed_search.kcg')
            -p use "psyco" if available
            -m use random values to fill the table
            -q do a query (both indexed and non-indexed versions)
            -i do a query (just indexed one)
            -I do a query (just in-kernel one)
            -S do a query (just standard one)
            -x choose a different seed for random numbers (i.e. avoid FS cache)
            -c create the database
            -z compress with zlib (no compression by default)
            -l use complib for compression (zlib used by default)
            -R select a range in a field in the form "start,stop" (def "0,10")
            -N number of iterations for reading
            -n sets the number of rows (in krows) in each table
            -d directory to save data (default: data.nobackup)
            -O set the optimization level for PyTables Pro indexes
            -t select the index type: "medium" (default) or "full", "light", "ultralight"
            -s select a type column for operations ('int' or 'float'. def all)
            -Q do a repeteated query up to 10**value
            \n""" % sys.argv[0]

    try:
        opts, pargs = getopt.getopt(sys.argv[1:], 'TPvfkpmcqiISxz:l:R:N:n:d:O:t:s:Q:')
    except:
        sys.stderr.write(usage)
        sys.exit(1)

    # default options
    usepytables = 0
    usepostgres = 0
    verbose = 0
    doprofile = 0
    dokprofile = 0
    usepsyco = 0
    userandom = 0
    docreate = 0
    optlevel = 0
    kind = "medium"
    docompress = 0
    complib = "zlib"
    doquery = False
    onlyidxquery = False
    onlynonidxquery = False
    inkernel = True
    avoidfscache = 0
    #rng = [-10, 10]
    rng = [-1000, -1000]
    repeatquery = 0
    repeatvalue = 0
    krows = '1k'
    niter = READ_TIMES
    dtype = "all"
    datadir = "data.nobackup"

    # Get the options
    for option in opts:
        if option[0] == '-T':
            usepytables = 1
        elif option[0] == '-P':
            usepostgres = 1
        elif option[0] == '-v':
            verbose = 1
        elif option[0] == '-f':
            doprofile = 1
        elif option[0] == '-k':
            dokprofile = 1
        elif option[0] == '-p':
            usepsyco = 1
        elif option[0] == '-m':
            userandom = 1
        elif option[0] == '-c':
            docreate = 1
        elif option[0] == '-q':
            doquery = True
        elif option[0] == '-i':
            doquery = True
            onlyidxquery = True
        elif option[0] == '-I':
            doquery = True
            onlynonidxquery = True
        elif option[0] == '-S':
            doquery = True
            onlynonidxquery = True
            inkernel = False
        elif option[0] == '-x':
            avoidfscache = 1
        elif option[0] == '-z':
            docompress = int(option[1])
        elif option[0] == '-l':
            complib = option[1]
        elif option[0] == '-R':
            rng = [int(i) for i in option[1].split(",")]
        elif option[0] == '-N':
            niter = int(option[1])
        elif option[0] == '-n':
            krows = option[1]
        elif option[0] == '-d':
            datadir = option[1]
        elif option[0] == '-O':
            optlevel = int(option[1])
        elif option[0] == '-t':
            if option[1] in ('full', 'medium', 'light', 'ultralight'):
                kind = option[1]
            else:
                print "kind should be either 'full', 'medium', 'light' or 'ultralight'"
                sys.exit(1)
        elif option[0] == '-s':
            if option[1] in ('int', 'float'):
                dtype = option[1]
            else:
                print "column should be either 'int' or 'float'"
                sys.exit(1)
        elif option[0] == '-Q':
            repeatquery = 1
            repeatvalue = int(option[1])

    # If not database backend selected, abort
    if not usepytables and not usepostgres:
        print "Please select a backend:"
        print "PyTables: -T"
        print "Postgres: -P"
        sys.exit(1)

    # Create the class for the database
    if usepytables:
        from pytables_backend import PyTables_DB
        db = PyTables_DB(krows, rng, userandom, datadir,
                         docompress, complib, kind, optlevel)
    elif usepostgres:
        from postgres_backend import Postgres_DB
        db = Postgres_DB(krows, rng, userandom)

    if not avoidfscache:
        # in order to always generate the same random sequence
        numpy.random.seed(20)

    if verbose:
        if userandom:
            print "using random values"
        if onlyidxquery:
            print "doing indexed queries only"

    if psyco_imported and usepsyco:
        psyco.bind(db.create_db)
        psyco.bind(db.query_db)

    if docreate:
        if verbose:
            print "writing %s rows" % krows
        db.create_db(dtype, kind, optlevel, verbose)

    if doquery:
        print "Calling query_db() %s times" % niter
        if doprofile:
            import pstats
            import cProfile as prof
            prof.run('db.query_db(niter, dtype, onlyidxquery, onlynonidxquery, avoidfscache, verbose, inkernel)', 'indexed_search.prof')
            stats = pstats.Stats('indexed_search.prof')
            stats.strip_dirs()
            stats.sort_stats('time', 'calls')
            if verbose:
                stats.print_stats()
            else:
                stats.print_stats(20)
        elif dokprofile:
            from cProfile import Profile
            import lsprofcalltree
            prof = Profile()
            prof.run('db.query_db(niter, dtype, onlyidxquery, onlynonidxquery, avoidfscache, verbose, inkernel)')
            kcg = lsprofcalltree.KCacheGrind(prof)
            ofile = open('indexed_search.kcg','w')
            kcg.output(ofile)
            ofile.close()
        elif doprofile:
            import hotshot, hotshot.stats
            prof = hotshot.Profile("indexed_search.prof")
            benchtime, stones = prof.run('db.query_db(niter, dtype, onlyidxquery, onlynonidxquery, avoidfscache, verbose, inkernel)')
            prof.close()
            stats = hotshot.stats.load("indexed_search.prof")
            stats.strip_dirs()
            stats.sort_stats('time', 'calls')
            stats.print_stats(20)
        else:
            db.query_db(niter, dtype, onlyidxquery, onlynonidxquery,
                        avoidfscache, verbose, inkernel)

    if repeatquery:
        # Start by a range which is almost None
        db.rng = [1, 1]
        if verbose:
            print "range:", db.rng
        db.query_db(niter, dtype, onlyidxquery, onlynonidxquery,
                    avoidfscache, verbose, inkernel)
        for i in xrange(repeatvalue):
            for j in (1, 2, 5):
                rng = j*10**i
                db.rng = [-rng/2, rng/2]
                if verbose:
                    print "range:", db.rng
#                 if usepostgres:
#                     os.system("echo 1 > /proc/sys/vm/drop_caches; /etc/init.d/postgresql restart")
#                 else:
#                     os.system("echo 1 > /proc/sys/vm/drop_caches")
                db.query_db(niter, dtype, onlyidxquery, onlynonidxquery,
                            avoidfscache, verbose, inkernel)

www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.