array.py :  » Database » PyTables » tables-2.1.2 » tables » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Database » PyTables 
PyTables » tables 2.1.2 » tables » array.py
########################################################################
#
#       License: BSD
#       Created: October 10, 2002
#       Author:  Francesc Alted - faltet@pytables.com
#
#       $Id: array.py 4125 2009-04-22 09:07:48Z faltet $
#
########################################################################

"""Here is defined the Array class.

See Array class docstring for more info.

Classes:

    Array
    ImageArray

Functions:


Misc variables:

    __version__


"""

import types, warnings, sys

import numpy

from tables import hdf5Extension
from tables.utilsExtension import lrange
from tables.filters import Filters
from tables.flavor import flavor_of,array_as_internal,internal_to_flavor
from tables.utils import is_idx,convertToNPAtom2,SizeType
from tables.atom import split_type
from tables.leaf import Leaf


__version__ = "$Revision: 4125 $"


# default version for ARRAY objects
#obversion = "1.0"    # initial version
#obversion = "2.0"    # Added an optional EXTDIM attribute
#obversion = "2.1"    # Added support for complex datatypes
#obversion = "2.2"    # This adds support for time datatypes.
obversion = "2.3"    # This adds support for enumerated datatypes.


class Array(hdf5Extension.Array, Leaf):
    """
    This class represents homogeneous datasets in an HDF5 file.

    This class provides methods to write or read data to or from array
    objects in the file.  This class does not allow you to enlarge the
    datasets on disk; use the `EArray` class if you want enlargeable
    dataset support or compression features, or `CArray` if you just
    want compression.

    An interesting property of the `Array` class is that it remembers
    the *flavor* of the object that has been saved so that if you
    saved, for example, a ``list``, you will get a ``list`` during
    readings afterwards; if you saved a NumPy array, you will get a
    NumPy object, and so forth.

    Note that this class inherits all the public attributes and
    methods that `Leaf` already provides.  However, as `Array`
    instances have no internal I/O buffers, it is not necessary to use
    the ``flush()`` method they inherit from `Leaf` in order to save
    their internal state to disk.  When a writing method call returns,
    all the data is already on disk.

    Public instance variables
    -------------------------

    atom
        An `Atom` instance representing the *type* and *shape* of the
        atomic objects to be saved.
    rowsize
        The size of the rows in dimensions orthogonal to ``maindim``.
    nrow
        On iterators, this is the index of the current row.

    Public methods
    --------------

    getEnum()
        Get the enumerated type associated with this array.
    iterrows([start][, stop][, step])
        Iterate over the rows of the array.
    next()
        Get the next element of the array during an iteration.
    read([start][, stop][, step])
        Get data in the array as an object of the current flavor.

    Special methods
    ---------------

    The following methods automatically trigger actions when an
    `Array` instance is accessed in a special way
    (e.g. ``array[2:3,...,::2]`` will be equivalent to a call to
    ``array.__getitem__((slice(2, 3, None), Ellipsis, slice(None,
    None, 2)))``).

    __getitem__(key)
        Get a row, a range of rows or a slice from the array.
    __iter__()
        Iterate over the rows of the array.
    __setitem__(key, value)
        Set a row, a range of rows or a slice in the array.
    """

    # Class identifier.
    _c_classId = 'ARRAY'


    # Properties
    # ~~~~~~~~~~
    def _getnrows(self):
        if self.shape == ():
            return SizeType(1)  # scalar case
        else:
            return self.shape[self.maindim]
    nrows = property(
        _getnrows, None, None,
        "The length of the main dimension of the array.")

    def _getrowsize(self):
        maindim = self.maindim
        rowsize = self.atom.itemsize
        for i, dim in enumerate(self.shape):
            if i != maindim:
                rowsize *= dim
        return rowsize
    rowsize = property(
        _getrowsize, None, None,
        "The size of the rows in dimensions orthogonal to maindim.")

    # Other methods
    # ~~~~~~~~~~~~~
    def __init__(self, parentNode, name,
                 object=None, title="",
                 byteorder=None, _log=True):
        """
        Create an `Array` instance.

        `object`
            The array or scalar to be saved.  Accepted types are NumPy
            arrays and scalars, ``numarray`` arrays and string arrays,
            Numeric arrays and scalars, as well as native Python
            sequences and scalars, provided that values are regular
            (i.e. they are not like ``[[1,2],2]``) and homogeneous
            (i.e. all the elements are of the same type).

        `title`
            A description for this node (it sets the ``TITLE`` HDF5
            attribute on disk).

        `byteorder`
            The byteorder of the data *on disk*, specified as 'little'
            or 'big'.  If this is not specified, the byteorder is that
            of the given `object`.
        """

        self._v_version = None
        """The object version of this array."""
        self._v_new = new = object is not None
        """Is this the first time the node has been created?"""
        self._v_new_title = title
        """New title for this node."""
        self._object = object
        """
        The object to be stored in the array.  It can be any of
        ``numpy``, ``numarray``, ``numeric``, list, tuple, string,
        integer of floating point types, provided that they are
        regular (i.e. they are not like ``[[1, 2], 2]``).
        """
        self._v_convert = True
        """Whether the ``Array`` object must be converted or not."""

        # Miscellaneous iteration rubbish.
        self._start = None
        """Starting row for the current iteration."""
        self._stop = None
        """Stopping row for the current iteration."""
        self._step = None
        """Step size for the current iteration."""
        self._nrowsread = None
        """Number of rows read up to the current state of iteration."""
        self._startb = None
        """Starting row for current buffer."""
        self._stopb = None
        """Stopping row for current buffer. """
        self._row = None
        """Current row in iterators (sentinel)."""
        self._init = False
        """Whether we are in the middle of an iteration or not (sentinel)."""
        self.listarr = None
        """Current buffer in iterators."""

        # Documented (*public*) attributes.
        self.atom = None
        """
        An `Atom` instance representing the *type* and *shape* of the
        atomic objects to be saved.
        """
        self.shape = None
        """The shape of the stored array."""
        self.nrow = None
        """On iterators, this is the index of the current row."""
        self.extdim = -1   # ordinary arrays are not enlargeable
        """The index of the enlargeable dimension."""

        # Ordinary arrays have no filters: leaf is created with default ones.
        super(Array, self).__init__(parentNode, name, new, Filters(),
                                    byteorder, _log)


    def _g_create(self):
        """Save a new array in file."""

        self._v_version = obversion
        try:
            # `Leaf._g_postInitHook()` should be setting the flavor on disk.
            self._flavor = flavor = flavor_of(self._object)
            nparr = array_as_internal(self._object, flavor)
        except:  #XXX
            # Problems converting data. Close the node and re-raise exception.
            self.close(flush=0)
            raise

        # Raise an error in case of unsupported object
        if nparr.dtype.kind in ['V', 'U', 'O']:  # in void, unicode, object
            raise TypeError, \
"Array objects cannot currently deal with void, unicode or object arrays"

        # Decrease the number of references to the object
        self._object = None

        # The shape of this array
        self.shape = tuple(SizeType(s) for s in nparr.shape)

        # Fix the byteorder of data
        nparr = self._g_fix_byteorder_data(nparr, nparr.dtype.byteorder)

        # Create the array on-disk
        try:
            # ``self._v_objectID`` needs to be set because would be
            # needed for setting attributes in some descendants later
            # on
            (self._v_objectID, self.atom) = self._createArray(
                nparr, self._v_new_title)
        except:  #XXX
            # Problems creating the Array on disk. Close node and re-raise.
            self.close(flush=0)
            raise

        # Compute the optimal buffer size
        chunkshape = self._calc_chunkshape(
            self.nrows, self.rowsize, self.atom.itemsize)
        self.nrowsinbuf = self._calc_nrowsinbuf(
            chunkshape, self.rowsize, self.atom.itemsize)
        # Arrays don't have chunkshapes (so, set it to None)
        self._v_chunkshape = None

        return self._v_objectID


    def _g_open(self):
        """Get the metadata info for an array in file."""

        (oid, self.atom, self.shape, self._v_chunkshape) = self._openArray()

        # Compute the optimal buffer size
        if not self._v_chunkshape:  # non-chunked case
            # Compute a sensible chunkshape
            chunkshape = self._calc_chunkshape(
                self.nrows, self.rowsize, self.atom.itemsize)
        else:
            chunkshape = self._v_chunkshape
        self.nrowsinbuf = self._calc_nrowsinbuf(
            chunkshape, self.rowsize, self.atom.itemsize)

        return oid


    def getEnum(self):
        """
        Get the enumerated type associated with this array.

        If this array is of an enumerated type, the corresponding `Enum`
        instance is returned.  If it is not of an enumerated type, a
        ``TypeError`` is raised.
        """

        if self.atom.kind != 'enum':
            raise TypeError("array ``%s`` is not of an enumerated type"
                            % self._v_pathname)

        return self.atom.enum


    def iterrows(self, start=None, stop=None, step=None):
        """
        Iterate over the rows of the array.

        This method returns an iterator yielding an object of the
        current flavor for each selected row in the array.  The
        returned rows are taken from the *main dimension*.

        If a range is not supplied, *all the rows* in the array are
        iterated upon --you can also use the `Array.__iter__()`
        special method for that purpose.  If you only want to iterate
        over a given *range of rows* in the array, you may use the
        `start`, `stop` and `step` parameters, which have the same
        meaning as in `Array.read()`.

        Example of use::

            result = [row for row in arrayInstance.iterrows(step=4)]
        """

        try:
            (self._start, self._stop, self._step) = \
                          self._processRangeRead(start, stop, step)
        except IndexError:
            # If problems with indexes, silently return the null tuple
            return ()
        self._initLoop()
        return self


    def __iter__(self):
        """
        Iterate over the rows of the array.

        This is equivalent to calling `Array.iterrows()` with default
        arguments, i.e. it iterates over *all the rows* in the array.

        Example of use::

            result = [row[2] for row in array]

        Which is equivalent to::

            result = [row[2] for row in array.iterrows()]
        """

        if not self._init:
            # If the iterator is called directly, assign default variables
            self._start = 0
            self._stop = self.nrows
            self._step = 1
            # and initialize the loop
            self._initLoop()
        return self


    def _initLoop(self):
        "Initialization for the __iter__ iterator"

        self._nrowsread = self._start
        self._startb = self._start
        self._row = -1   # Sentinel
        self._init = True  # Sentinel
        self.nrow = SizeType(self._start - self._step)    # row number


    def next(self):
        """
        Get the next element of the array during an iteration.

        The element is returned as an object of the current flavor.
        """
        if self._nrowsread >= self._stop:
            self._init = False
            raise StopIteration        # end of iteration
        else:
            # Read a chunk of rows
            if self._row+1 >= self.nrowsinbuf or self._row < 0:
                self._stopb = self._startb+self._step*self.nrowsinbuf
                # Protection for reading more elements than needed
                if self._stopb > self._stop:
                    self._stopb = self._stop
                listarr = self._read(self._startb, self._stopb, self._step)
                # Swap the axes to easy the return of elements
                if self.extdim > 0:
                    listarr = listarr.swapaxes(self.extdim, 0)
                self.listarr = internal_to_flavor(listarr, self.flavor)
                self._row = -1
                self._startb = self._stopb
            self._row += 1
            self.nrow += self._step
            self._nrowsread += self._step
            # Fixes bug #968132
            #if self.listarr.shape:
            if self.shape:
                return self.listarr[self._row]
            else:
                return self.listarr    # Scalar case


    def _interpret_indexing(self, keys):
        """Internal routine used by __getitem__ and __setitem__"""

        maxlen = len(self.shape)
        shape = (maxlen,)
        startl = numpy.empty(shape=shape, dtype=SizeType)
        stopl = numpy.empty(shape=shape, dtype=SizeType)
        stepl = numpy.empty(shape=shape, dtype=SizeType)
        stop_None = numpy.zeros(shape=shape, dtype=SizeType)
        if not isinstance(keys, tuple):
            keys = (keys,)
        nkeys = len(keys)
        dim = 0
        # Here is some problem when dealing with [...,...] params
        # but this is a bit weird way to pass parameters anyway
        for key in keys:
            ellipsis = 0  # Sentinel
            if isinstance(key, types.EllipsisType):
                ellipsis = 1
                for diml in xrange(dim, len(self.shape) - (nkeys - dim) + 1):
                    startl[dim] = 0
                    stopl[dim] = self.shape[diml]
                    stepl[dim] = 1
                    dim += 1
            elif dim >= maxlen:
                raise IndexError, "Too many indices for object '%s'" % \
                      self._v_pathname
            elif is_idx(key):
                # Protection for index out of range
                if key >= self.shape[dim]:
                    raise IndexError, "Index out of range"
                if key < 0:
                    # To support negative values (Fixes bug #968149)
                    key += self.shape[dim]
                start, stop, step = self._processRange(
                    key, key+1, 1, dim=dim )
                stop_None[dim] = 1
            elif isinstance(key, slice):
                start, stop, step = self._processRange(
                    key.start, key.stop, key.step, dim=dim )
            else:
                raise TypeError, "Non-valid index or slice: %s" % \
                      key
            if not ellipsis:
                startl[dim] = start
                stopl[dim] = stop
                stepl[dim] = step
                dim += 1

        # Complete the other dimensions, if needed
        if dim < len(self.shape):
            for diml in xrange(dim, len(self.shape)):
                startl[dim] = 0
                stopl[dim] = self.shape[diml]
                stepl[dim] = 1
                dim += 1

        # Compute the shape for the container properly. Fixes #1288792
        shape = []
        for dim in xrange(len(self.shape)):
            # The negative division operates differently with python scalars
            # and numpy scalars (which are similar to C conventions). See:
            # http://www.python.org/doc/faq/programming.html#why-does-22-10-return-3
            # and
            # http://www.peterbe.com/Integer-division-in-programming-languages
            # for more info on this issue.
            # I've finally decided to rely on the len(xrange) function.
            # F. Alted 2006-09-25
            # Switch to `lrange` to allow long ranges (see #99).
            #new_dim = ((stopl[dim] - startl[dim] - 1) / stepl[dim]) + 1
            new_dim = lrange(startl[dim], stopl[dim], stepl[dim]).length
            if not (new_dim == 1 and stop_None[dim]):
            #if not stop_None[dim]:
                # Append dimension
                shape.append(new_dim)

        return startl, stopl, stepl, shape


    def __getitem__(self, key):
        """
        Get a row, a range of rows or a slice from the array.

        The set of tokens allowed for the `key` is the same as that
        for extended slicing in Python (including the ``Ellipsis`` or
        ``...`` token).  The result is an object of the current
        flavor; its shape depends on the kind of slice used as `key`
        and the shape of the array itself.

        Example of use::

            array1 = array[4]  # array1.shape == array.shape[1:]
            array2 = array[4:1000:2]  # len(array2.shape) == len(array.shape)
            array3 = array[::2, 1:4, :]
            array4 = array[1, ..., ::2, 1:4, 4:]  # general slice selection
        """
        startl, stopl, stepl, shape = self._interpret_indexing(key)
        arr = self._readSlice(startl, stopl, stepl, shape)
        if self.flavor == "numpy" or not self._v_convert:
            return arr
        return internal_to_flavor(arr, self.flavor)


    def _checkShape(self, nparr, slice_shape):
        "Test that nparr shape is consistent with underlying object."
        if nparr.shape != slice_shape:
            # Create an array compliant with the specified shape
            narr = numpy.empty(shape=slice_shape, dtype=self.atom.dtype)
            # Assign the value to it
            try:
                narr[...] = nparr
            except Exception, exc:  #XXX
                raise ValueError, \
"""value parameter '%s' cannot be converted into an array object
compliant with %s: '%r' The error was: <%s>""" % \
            (nparr, self.__class__.__name__, self, exc)
            return narr
        return nparr


    def __setitem__(self, key, value):
        """
        Set a row, a range of rows or a slice in the array.

        It takes different actions depending on the type of the `key`
        parameter: if it is an integer, the corresponding array row is
        set to `value` (the value is broadcast when needed).  If `key`
        is a slice, the row slice determined by it is set to `value`
        (as usual, if the slice to be updated exceeds the actual shape
        of the array, only the values in the existing range are
        updated).

        If `value` is a multidimensional object, then its shape must
        be compatible with the shape determined by `key`, otherwise, a
        ``ValueError`` will be raised.

        Example of use::

            a1[0] = 333        # assign an integer to a Integer Array row
            a2[0] = 'b'        # assign a string to a string Array row
            a3[1:4] = 5        # broadcast 5 to slice 1:4
            a4[1:4:2] = 'xXx'  # broadcast 'xXx' to slice 1:4:2
            # General slice update (a5.shape = (4,3,2,8,5,10).
            a5[1, ..., ::2, 1:4, 4:] = arange(1728, shape=(4,3,2,4,3,6))
        """

        startl, stopl, stepl, shape = self._interpret_indexing(key)
        countl = ((stopl - startl - 1) / stepl) + 1
        # Create an array compliant with the specified slice
        nparr = convertToNPAtom2(value, self.atom)
        # Check whether it has a consistent shape with underlying object
        nparr = self._checkShape(nparr, tuple(shape))

        if nparr.size:
            self._modify(startl, stepl, countl, nparr)


    # Accessor for the _readArray method in superclass
    def _readSlice(self, startl, stopl, stepl, shape):
        # Create the container for the slice
        arr = numpy.empty(dtype=self.atom.dtype, shape=shape)
        # Protection against reading empty arrays
        if 0 not in shape:
            # Arrays that have non-zero dimensionality
            self._g_readSlice(startl, stopl, stepl, arr)
        # For zero-shaped arrays, return the scalar
        if arr.shape == ():
            arr = arr[()]
        return arr


    def _read(self, start, stop, step):
        """Read the array from disk without slice or flavor processing."""

        #rowstoread = ((stop - start - 1) / step) + 1
        rowstoread = lrange(start, stop, step).length
        shape = list(self.shape)
        if shape:
            shape[self.maindim] = rowstoread
        arr = numpy.empty(dtype=self.atom.dtype, shape=shape)

        # Protection against reading empty arrays
        if 0 not in shape:
            # Arrays that have non-zero dimensionality
            self._readArray(start, stop, step, arr)
        return arr


    def read(self, start=None, stop=None, step=None):
        """
        Get data in the array as an object of the current flavor.

        The `start`, `stop` and `step` parameters can be used to
        select only a *range of rows* in the array.  Their meanings
        are the same as in the built-in ``range()`` Python function,
        except that negative values of `step` are not allowed yet.
        Moreover, if only `start` is specified, then `stop` will be
        set to ``start+1``.  If you do not specify neither `start` nor
        `stop`, then *all the rows* in the array are selected.
        """
        (start, stop, step) = self._processRangeRead(start, stop, step)
        arr = self._read(start, stop, step)
        return internal_to_flavor(arr, self.flavor)


    def _g_copyWithStats(self, group, name, start, stop, step,
                         title, filters, chunkshape, _log, **kwargs):
        "Private part of Leaf.copy() for each kind of leaf"
        # Compute the correct indices.
        (start, stop, step) = self._processRangeRead(start, stop, step)
        # Get the slice of the array
        # (non-buffered version)
        if self.shape:
            arr = self[start:stop:step]
        else:
            arr = self[()]
        # Build the new Array object
        object = Array(group, name, arr, title=title, _log=_log)
        nbytes = self.atom.itemsize
        for i in self.shape:
            nbytes*=i

        return (object, nbytes)


    def __repr__(self):
        """This provides more metainfo in addition to standard __str__"""

        return """%s
  atom := %r
  maindim := %r
  flavor := %r
  byteorder := %r
  chunkshape := %r""" % (self, self.atom, self.maindim,
                         self.flavor, self.byteorder,
                         self.chunkshape)



class ImageArray(Array):

    """
    Array containing an image.

    This class has no additional behaviour or functionality compared
    to that of an ordinary array.  It simply enables the user to open
    an ``IMAGE`` HDF5 node as a normal `Array` node in PyTables.
    """

    # Class identifier.
    _c_classId = 'IMAGE'
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.