carray.py :  » Database » PyTables » tables-2.1.2 » tables » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Database » PyTables 
PyTables » tables 2.1.2 » tables » carray.py
########################################################################
#
#       License: BSD
#       Created: June 15, 2005
#       Author:  Antonio Valentino
#       Modified by:  Francesc Alted
#
#       $Id: carray.py 3933 2008-12-09 16:06:28Z faltet $
#
########################################################################

"""Here is defined the CArray class.

See CArray class docstring for more info.

Classes:

    CArray

Functions:


Misc variables:

    __version__


"""

import sys, warnings

import numpy

from tables.utilsExtension import lrange
from tables.atom import Atom,EnumAtom,split_type
from tables.leaf import Leaf
from tables.array import Array
from tables.utils import correct_byteorder,SizeType


__version__ = "$Revision: 3933 $"


# default version for CARRAY objects
obversion = "1.0"    # Support for time & enumerated datatypes.



class CArray(Array):
    """
    This class represents homogeneous datasets in an HDF5 file.

    The difference between a `CArray` and a normal `Array`, from which
    it inherits, is that a `CArray` has a chunked layout and, as a
    consequence, it supports compression.  You can use datasets of
    this class to easily save or load arrays to or from disk, with
    compression support included.

    Example of use
    --------------

    See below a small example of the use of the `CArray` class.  The
    code is available in ``examples/carray1.py``::

        import numpy
        import tables

        fileName = 'carray1.h5'
        shape = (200, 300)
        atom = tables.UInt8Atom()
        filters = tables.Filters(complevel=5, complib='zlib')

        h5f = tables.openFile(fileName, 'w')
        ca = h5f.createCArray(h5f.root, 'carray', atom, shape, filters=filters)
        # Fill a hyperslab in ``ca``.
        ca[10:60, 20:70] = numpy.ones((50, 50))
        h5f.close()

        # Re-open a read another hyperslab
        h5f = tables.openFile(fileName)
        print h5f
        print h5f.root.carray[8:12, 18:22]
        h5f.close()

    The output for the previous script is something like::

        carray1.h5 (File) ''
        Last modif.: 'Thu Apr 12 10:15:38 2007'
        Object Tree:
        / (RootGroup) ''
        /carray (CArray(200, 300), shuffle, zlib(5)) ''

        [[0 0 0 0]
         [0 0 0 0]
         [0 0 1 1]
         [0 0 1 1]]
    """

    # Class identifier.
    _c_classId = 'CARRAY'


    # Properties
    # ~~~~~~~~~~

    # Special methods
    # ~~~~~~~~~~~~~~~
    def __init__( self, parentNode, name,
                  atom=None, shape=None,
                  title="", filters=None,
                  chunkshape=None, byteorder = None,
                  _log=True ):
        """
        Create a `CArray` instance.

        `atom`
            An `Atom` instance representing the *type* and *shape* of
            the atomic objects to be saved.

        `shape`
            The shape of the new array.

        `title`
            A description for this node (it sets the ``TITLE`` HDF5
            attribute on disk).

        `filters`
            An instance of the `Filters` class that provides
            information about the desired I/O filters to be applied
            during the life of this object.

        `chunkshape`
            The shape of the data chunk to be read or written in a
            single HDF5 I/O operation.  Filters are applied to those
            chunks of data.  The dimensionality of `chunkshape` must
            be the same as that of `shape`.  If ``None``, a sensible
            value is calculated (which is recommended).

        `byteorder`
            The byteorder of the data *on disk*, specified as 'little'
            or 'big'.  If this is not specified, the byteorder is that
            of the platform.
        """

        self.atom = atom
        """
        An `Atom` instance representing the shape, type of the atomic
        objects to be saved.
        """
        self.shape = None
        """The shape of the stored array."""
        self.extdim = -1  # `CArray` objects are not enlargeable by default
        """The index of the enlargeable dimension."""

        # Other private attributes
        self._v_version = None
        """The object version of this array."""
        self._v_new = new = atom is not None
        """Is this the first time the node has been created?"""
        self._v_new_title = title
        """New title for this node."""
        self._v_convert = True
        """Whether the ``Array`` object must be converted or not."""
        self._v_chunkshape = chunkshape
        """Private storage for the `chunkshape` property of the leaf."""

        # Miscellaneous iteration rubbish.
        self._start = None
        """Starting row for the current iteration."""
        self._stop = None
        """Stopping row for the current iteration."""
        self._step = None
        """Step size for the current iteration."""
        self._nrowsread = None
        """Number of rows read up to the current state of iteration."""
        self._startb = None
        """Starting row for current buffer."""
        self._stopb = None
        """Stopping row for current buffer. """
        self._row = None
        """Current row in iterators (sentinel)."""
        self._init = False
        """Whether we are in the middle of an iteration or not (sentinel)."""
        self.listarr = None
        """Current buffer in iterators."""

        if new:
            if not isinstance(atom, Atom):
                raise ValueError, """\
atom parameter should be an instance of tables.Atom and you passed a %s.""" \
% type(atom)
            if shape is None:
                raise ValueError("you must specify a non-empty shape")
            try:
                shape = tuple(shape)
            except TypeError:
                raise TypeError(
                    "`shape` parameter must be a sequence "
                    "and you passed a %s" % type(shape) )
            self.shape = tuple(SizeType(s) for s in shape)

            if chunkshape is not None:
                try:
                    chunkshape = tuple(chunkshape)
                except TypeError:
                    raise TypeError(
                        "`chunkshape` parameter must be a sequence "
                        "and you passed a %s" % type(chunkshape) )
                if len(shape) != len(chunkshape):
                    raise ValueError, """\
the shape (%s) and chunkshape (%s) ranks must be equal.""" \
% (shape, chunkshape)
                elif min(chunkshape) < 1:
                    raise ValueError, """ \
chunkshape parameter cannot have zero-dimensions."""
                self._v_chunkshape = tuple(SizeType(s) for s in chunkshape)

        # The `Array` class is not abstract enough! :(
        super(Array, self).__init__(parentNode, name, new, filters,
                                    byteorder, _log)


    def _g_create(self):
        """Create a new array in file (specific part)."""

        if min(self.shape) < 1:
            raise ValueError(
                "shape parameter cannot have zero-dimensions.")
        # Finish the common part of creation process
        return self._g_create_common(self.nrows)


    def _g_create_common(self, expectedrows):
        """Create a new array in file (common part)."""

        self._v_version = obversion

        if self._v_chunkshape is None:
            # Compute the optimal chunk size
            self._v_chunkshape = self._calc_chunkshape(
                expectedrows, self.rowsize, self.atom.itemsize)
        # Compute the optimal nrowsinbuf
        self.nrowsinbuf = self._calc_nrowsinbuf(
            self._v_chunkshape, self.rowsize, self.atom.itemsize)
        # Correct the byteorder if needed
        if self.byteorder is None:
            self.byteorder = correct_byteorder(self.atom.type, sys.byteorder)

        try:
            # ``self._v_objectID`` needs to be set because would be
            # needed for setting attributes in some descendants later
            # on
            self._v_objectID = self._createCArray(self._v_new_title)
        except:  #XXX
            # Problems creating the Array on disk. Close node and re-raise.
            self.close(flush=0)
            raise
        return self._v_objectID


    def _g_copyWithStats(self, group, name, start, stop, step,
                         title, filters, chunkshape, _log, **kwargs):
        "Private part of Leaf.copy() for each kind of leaf"
        (start, stop, step) = self._processRangeRead(start, stop, step)
        maindim = self.maindim
        shape = list(self.shape)
        shape[maindim] = lrange(start, stop, step).length
        # Now, fill the new carray with values from source
        nrowsinbuf = self.nrowsinbuf
        # The slices parameter for self.__getitem__
        slices = [slice(0, dim, 1) for dim in self.shape]
        # This is a hack to prevent doing unnecessary conversions
        # when copying buffers
        self._v_convert = False
        # Build the new CArray object
        object = CArray(group, name, atom=self.atom, shape=shape,
                        title=title, filters=filters, chunkshape=chunkshape,
                        _log=_log)
        # Start the copy itself
        for start2 in lrange(start, stop, step*nrowsinbuf):
            # Save the records on disk
            stop2 = start2 + step * nrowsinbuf
            if stop2 > stop:
                stop2 = stop
            # Set the proper slice in the main dimension
            slices[maindim] = slice(start2, stop2, step)
            start3 = (start2-start)/step
            stop3 = start3 + nrowsinbuf
            if stop3 > shape[maindim]:
                stop3 = shape[maindim]
            # The next line should be generalised if, in the future,
            # maindim is designed to be different from 0 in CArrays.
            # See ticket #199.
            object[start3:stop3] = self.__getitem__(tuple(slices))
        # Activate the conversion again (default)
        self._v_convert = True
        nbytes = numpy.prod(self.shape, dtype=SizeType)*self.atom.itemsize

        return (object, nbytes)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.