earray.py :  » Database » PyTables » tables-2.1.2 » tables » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Database » PyTables 
PyTables » tables 2.1.2 » tables » earray.py
########################################################################
#
#       License: BSD
#       Created: December 15, 2003
#       Author:  Francesc Alted - faltet@pytables.com
#
#       $Id: earray.py 4021 2009-02-18 08:56:22Z faltet $
#
########################################################################

"""Here is defined the EArray class.

See EArray class docstring for more info.

Classes:

    EArray

Functions:


Misc variables:

    __version__


"""

import sys

import numpy

from tables.utilsExtension import lrange
from tables.utils import convertToNPAtom,convertToNPAtom2,SizeType
from tables.atom import Atom,EnumAtom,split_type
from tables.leaf import Leaf
from tables.carray import CArray

__version__ = "$Revision: 4021 $"


# default version for EARRAY objects
#obversion = "1.0"    # initial version
#obversion = "1.1"    # support for complex datatypes
#obversion = "1.2"    # This adds support for time datatypes.
obversion = "1.3"    # This adds support for enumerated datatypes.



class EArray(CArray):
    """
    This class represents extendible, homogeneous datasets in an HDF5 file.

    The main difference between an `EArray` and a `CArray`, from which
    it inherits, is that the former can be enlarged along one of its
    dimensions, the *enlargeable dimension*.  That means that the
    `Leaf.extdim` attribute of any `EArray` instance will always be
    non-negative.  Multiple enlargeable dimensions might be supported
    in the future.

    New rows can be added to the end of an enlargeable array by using
    the `EArray.append()` method.  The array can also be shrunken
    along its enlargeable dimension using the `EArray.truncate()`
    method.

    Public methods
    --------------

    append(sequence)
        Add a ``sequence`` of data to the end of the dataset.

    Example of use
    --------------

    See below a small example of the use of the `EArray` class.  The
    code is available in ``examples/earray1.py``::

        import tables
        import numpy

        fileh = tables.openFile('earray1.h5', mode='w')
        a = tables.StringAtom(itemsize=8)
        # Use ``a`` as the object type for the enlargeable array.
        array_c = fileh.createEArray(fileh.root, 'array_c', a, (0,), \"Chars\")
        array_c.append(numpy.array(['a'*2, 'b'*4], dtype='S8'))
        array_c.append(numpy.array(['a'*6, 'b'*8, 'c'*10], dtype='S8'))

        # Read the string ``EArray`` we have created on disk.
        for s in array_c:
            print 'array_c[%s] => %r' % (array_c.nrow, s)
        # Close the file.
        fileh.close()

    The output for the previous script is something like::

        array_c[0] => 'aa'
        array_c[1] => 'bbbb'
        array_c[2] => 'aaaaaa'
        array_c[3] => 'bbbbbbbb'
        array_c[4] => 'cccccccc'
    """

    # Class identifier.
    _c_classId = 'EARRAY'


    # Special methods
    # ~~~~~~~~~~~~~~~
    def __init__( self, parentNode, name,
                  atom=None, shape=None, title="",
                  filters=None, expectedrows=None,
                  chunkshape=None, byteorder=None,
                  _log=True ):
        """
        Create an `EArray` instance.

        `atom` -- An `Atom` instance representing the *type* and *shape*
            of the atomic objects to be saved.

        `shape` -- The shape of the new array.  One (and only one) of
            the shape dimensions *must* be 0.  The dimension being 0
            means that the resulting `EArray` object can be extended
            along it.  Multiple enlargeable dimensions are not supported
            right now.

        `title` -- A description for this node (it sets the ``TITLE``
            HDF5 attribute on disk).

        `filters` -- An instance of the `Filters` class that provides
            information about the desired I/O filters to be applied
            during the life of this object.

        `expectedrows` -- A user estimate about the number of row
            elements that will be added to the growable dimension in the
            `EArray` node.  If not provided, the default value is
            ``EXPECTED_ROWS_EARRAY`` (see ``tables/parameters.py``).  If
            you plan to create either a much smaller or a much bigger
            `EArray` try providing a guess; this will optimize the HDF5
            B-Tree creation and management process time and the amount
            of memory used.

        `chunkshape` -- The shape of the data chunk to be read or
            written in a single HDF5 I/O operation.  Filters are applied
            to those chunks of data.  The dimensionality of `chunkshape`
            must be the same as that of `shape` (beware: no dimension
            should be 0 this time!).  If ``None``, a sensible value is
            calculated based on the `expectedrows` parameter (which is
            recommended).

        `byteorder` -- The byteorder of the data *on disk*, specified as
            'little' or 'big'. If this is not specified, the byteorder
            is that of the platform.
        """
        # Specific of EArray
        if expectedrows is None:
            expectedrows = parentNode._v_file.params['EXPECTED_ROWS_EARRAY']
        self._v_expectedrows = expectedrows
        """The expected number of rows to be stored in the array."""

        # Call the parent (CArray) init code
        super(EArray, self).__init__(parentNode, name, atom, shape, title,
                                     filters, chunkshape, byteorder, _log)


    # Public and private methods
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~
    def _g_create(self):
        """Create a new array in file (specific part)."""

        # Pre-conditions and extdim computation
        zerodims = numpy.sum(numpy.array(self.shape) == 0)
        if zerodims > 0:
            if zerodims == 1:
                self.extdim = list(self.shape).index(0)
            else:
                raise NotImplementedError(
                    "Multiple enlargeable (0-)dimensions are not "
                    "supported.")
        else:
            raise ValueError(
                "When creating EArrays, you need to set one of "
                "the dimensions of the Atom instance to zero.")

        # Finish the common part of the creation process
        return self._g_create_common(self._v_expectedrows)


    def _checkShapeAppend(self, nparr):
        "Test that nparr shape is consistent with underlying EArray."

        # The arrays conforms self expandibility?
        myrank = len(self.shape)
        narank = len(nparr.shape) - len(self.atom.shape)
        if myrank != narank:
            raise ValueError("""\
the ranks of the appended object (%d) and the ``%s`` EArray (%d) differ"""
                             % (narank, self._v_pathname, myrank))
        for i in range(myrank):
            if i != self.extdim and self.shape[i] != nparr.shape[i]:
                raise ValueError("""\
the shapes of the appended object and the ``%s`` EArray \
differ in non-enlargeable dimension %d""" % (self._v_pathname, i))


    def append(self, sequence):
        """
        Add a `sequence` of data to the end of the dataset.

        The sequence must have the same type as the array; otherwise a
        ``TypeError`` is raised.  In the same way, the dimensions of
        the `sequence` must conform to the shape of the array, that
        is, all dimensions must match, with the exception of the
        enlargeable dimension, which can be of any length (even 0!).
        If the shape of the `sequence` is invalid, a ``ValueError`` is
        raised.
        """

        self._v_file._checkWritable()

        # Convert the sequence into a NumPy object
        nparr = convertToNPAtom2(sequence, self.atom)
        # Check if it has a consistent shape with underlying EArray
        self._checkShapeAppend(nparr)
        # If the size of the nparr is zero, don't do anything else
        if nparr.size > 0:
            self._append(nparr)


    def _g_copyWithStats(self, group, name, start, stop, step,
                         title, filters, chunkshape, _log, **kwargs):
        "Private part of Leaf.copy() for each kind of leaf."
        (start, stop, step) = self._processRangeRead(start, stop, step)
        # Build the new EArray object
        maindim = self.maindim
        shape = list(self.shape)
        shape[maindim] = 0
        # The number of final rows
        nrows = lrange(start, stop, step).length
        # Build the new EArray object
        object = EArray(
            group, name, atom=self.atom, shape=shape, title=title,
            filters=filters, expectedrows=nrows, chunkshape=chunkshape,
            _log=_log)
        # Now, fill the new earray with values from source
        nrowsinbuf = self.nrowsinbuf
        # The slices parameter for self.__getitem__
        slices = [slice(0, dim, 1) for dim in self.shape]
        # This is a hack to prevent doing unnecessary conversions
        # when copying buffers
        self._v_convert = False
        # Start the copy itself
        for start2 in lrange(start, stop, step*nrowsinbuf):
            # Save the records on disk
            stop2 = start2+step*nrowsinbuf
            if stop2 > stop:
                stop2 = stop
            # Set the proper slice in the extensible dimension
            slices[maindim] = slice(start2, stop2, step)
            object._append(self.__getitem__(tuple(slices)))
        # Active the conversion again (default)
        self._v_convert = True
        nbytes = numpy.prod(self.shape, dtype=SizeType)*self.atom.itemsize

        return (object, nbytes)


## Local Variables:
## mode: python
## py-indent-offset: 4
## tab-width: 4
## fill-column: 72
## End:
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.