poly.py :  » Language-Interface » ChinesePython » chinesepython2.1.3-0.4 » Lib » lib-old » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Language Interface » ChinesePython 
ChinesePython » chinesepython2.1.3 0.4 » Lib » lib old » poly.py
# module 'poly' -- Polynomials

# A polynomial is represented by a list of coefficients, e.g.,
# [1, 10, 5] represents 1*x**0 + 10*x**1 + 5*x**2 (or 1 + 10x + 5x**2).
# There is no way to suppress internal zeros; trailing zeros are
# taken out by normalize().

def normalize(p): # Strip unnecessary zero coefficients
  n = len(p)
  while n:
    if p[n-1]: return p[:n]
    n = n-1
  return []

def plus(a, b):
  if len(a) < len(b): a, b = b, a # make sure a is the longest
  res = a[:] # make a copy
  for i in range(len(b)):
    res[i] = res[i] + b[i]
  return normalize(res)

def minus(a, b):
  neg_b = map(lambda x: -x, b[:])
  return plus(a, neg_b)

def one(power, coeff): # Representation of coeff * x**power
  res = []
  for i in range(power): res.append(0)
  return res + [coeff]

def times(a, b):
  res = []
  for i in range(len(a)):
    for j in range(len(b)):
      res = plus(res, one(i+j, a[i]*b[j]))
  return res

def power(a, n): # Raise polynomial a to the positive integral power n
  if n == 0: return [1]
  if n == 1: return a
  if n/2*2 == n:
    b = power(a, n/2)
    return times(b, b)
  return times(power(a, n-1), a)

def der(a): # First derivative
  res = a[1:]
  for i in range(len(res)):
    res[i] = res[i] * (i+1)
  return res

# Computing a primitive function would require rational arithmetic...
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.