chaos.py :  » Media-Sound-Audio » athenaCL » athenaCL » libATH » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Media Sound Audio » athenaCL 
athenaCL » athenaCL » libATH » chaos.py
#-----------------------------------------------------------------||||||||||||--
# Name:         chaos.py
# Purpose:      chaotic and fractal utilities.
#
# Authors:      Christopher Ariza
#
# Copyright:    (c) 2005 Christopher Ariza
# License:      GPL
#-----------------------------------------------------------------||||||||||||--



import math



#-----------------------------------------------------------------||||||||||||--
def _fibonacciNumber(goldenUpper, goldenLower, i):
   """return i-th number in the Fibonacci series
   """   
   i = i + 1
   n = ((math.pow(goldenUpper, i) - math.pow(goldenLower, i)) /
         math.sqrt(5.0))
   return math.floor(n)

def fibonacciSeries(j, k):
   """return a subset of the fibonacci series.
   Syntax:
   fibonacciSeries(n)
   Return Fiboacci terms from 0 to n-1.
   fibonacciSeries(j, k)
   Return Fibonacci terms from j to k-1
   """
   goldenUpper = (1.0 + math.sqrt(5.0)) / 2.0
   goldenLower = (1.0 - math.sqrt(5)) / 2.0
   return [_fibonacciNumber(goldenUpper, goldenLower, i) for i in range(j, k)] 
   
def fibonacciSuccessor(n):
   """given a number from the Fibonacci series, return its
   sucessor in the same series.
   """
   return math.floor((n + 1.0 + math.sqrt(5.0 * n ** 2)) / 2.0)

#-----------------------------------------------------------------||||||||||||--
def verhulst(p, x):
   """logistic map or verhulst equation, w/o state variables"""
   return p * x * (1 - x)


#-----------------------------------------------------------------||||||||||||--
# note: usful to get values for x, (x, y) alternating, and x, y, z, alternating

# x(n+1)=y(n)+1-ax(n)^2
# y(n+1)=bx(n)
# X and Y are the initial values for the system and should both be a number close to zero. A and B control the behaviour of the system. Both should  be a positive value. The system will be stable if the values for A and B  are set following this general guideline:
#A<=(2.0-B)
# or; A+B <= 2.0
#It is not possible to predict the maximum and minimum of the output  values. To 
    
# test values
# a, b
# 1.4, 0.3: chaotic, b/n -1 and 1.2
# .4, .3: period 2, b/n 0 and 1
# 0, .3: cons, b/n 0 and 1
# .1, .1: cons, b/n 0 and 1
# 1, 1: overflow error
# 2, 2: negative infinity
# .5, .5: periodic 2, b/n -1 and 1
# 1.5, .2: chaotic, b/n -1 and 1
# .2, 1.01: used mathworld example

# reccomended x,y start points for strange attractor
# x = 0.63135448, y = 0.18940634.

class Henon:

   def __init__(self, a=1.4, b=0.3, x=0.63135448, y=0.18940634):
      self.a = a
      self.b = b
      self.x = x
      self.y = y
      
   def __call__(self, a=None, b=None):
      """can provide dynamic a and b values
      values are not scaled or altered from original
      in case of overflow error, will distort to accomodate"""
      if a != None: self.a = float(a)
      if b != None: self.b = float(b)
      try:
         xTemp = 1.0 - (self.a * pow(self.x, 2.0)) + self.y
      except OverflowError:
         xTemp = 0.0
      yTemp = self.b * self.x
      self.x = xTemp
      self.y = yTemp
      return self.x, self.y
      
      

#-----------------------------------------------------------------||||||||||||--


# x'=sigma*(y-x)
# y'=Rx-y-xz
# z'=xy-Bz
# 
# X, Y, and Z set the initial conditions. SIGMA, R, and B control the  behaviour of the system. In general, higher values for R and B increase  the chaos, while the same is true for lower values for SIGMA:
# It is not possible to predict the maximum and minimum of the output  values.

# The Lorenz attractor is an attractor that arises in a simplified system of equations describing the two-dimensional flow  of fluid of uniform depth, with an imposed temperature difference DeltaT, under gravity g, with buoyancy a, thermal diffusivity k, and kinematic viscosity v.
# ... representing one of the earliest discoveries of the so-called butterfly effect.
# where X is proportional to convective intensity, Y to the temperature  difference between descending and ascending currents, and Z to the difference  in vertical temperature profile from linearity.
# where [sigma] is the Prandtl number, Ra is the Rayleigh number, Ra, is the critical Rayleigh number, and b is a geometric factor  (Tabor 1989, p. 206). Lorenz took b=8/3 and [sigma]=10 (2.666).

# stable values for positive r if sigma greater than b + 1
# r = 28 is chaotic, r 99.96 is periodic

# b is often 8/3 (2.6666666666666665): others 3/8 (.375)
# act examples:
# s, r, b
# 10 28 1.0
# 10 28 3/8
# 10 28 5.2
# 2  28 3/8
# 10 40 3/8 

class Lorenz:
   """this does not work: produces values that are too small"""
   def __init__(self, r=28, s=10.0, b=2.6666666666, 
                      x=1.0, y=1.0, z=1.0):   
      self.r = float(r)
      self.s = float(s)
      self.b = float(b)

      self.x = float(x)
      self.y = float(y)
      self.z = float(z)
   
      # dont know where this value of d is coming from
      # little uses .003
      # others use 1.0/128 (0.0078125)
      # mikelson uses .001
      # berg uses .01
      self.d = 0.01
      
   def __call__(self, r=None, s=None, b=None):
      if r != None: self.r = float(r)
      if s != None: self.s = float(s)
      if b != None: self.b = float(b)
      
      xTemp = self.s * (self.y - self.x)
      yTemp = (self.r * self.x) - self.y - (self.x * self.z)
      zTemp = (self.x * self.y) - (self.b * self.z)
      self.x = self.x + (self.d * xTemp)
      self.y = self.y + (self.d * yTemp)
      self.z = self.z + (self.d * zTemp)
      return self.x, self.y, self.z
   




#-----------------------------------------------------------------||||||||||||--


if __name__ == "__main__":
   a = Henon()
   b = Lorenz()
   for obj in [a, b]:
      print '\n', obj.__class__
      for i in range(500):
         out = obj()
         if len(out) == 2:
            x, y = out
            print str(x).ljust(20), str(y).ljust(20)
         elif len(out) == 3:      
            x, y, z = out
            print str(x).ljust(20), str(y).ljust(20), str(z).ljust(20)
      


# end
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.