random.py :  » Mobile » Python-for-PalmOS » Python-1.5.2+reduced-1.0 » Lib » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Mobile » Python for PalmOS 
Python for PalmOS » Python 1.5.2 reduced 1.0 » Lib » random.py
"""Random variable generators.

    distributions on the real line:
    ------------------------------
           normal (Gaussian)
           lognormal
           negative exponential
           gamma
           beta

    distributions on the circle (angles 0 to 2pi)
    ---------------------------------------------
           circular uniform
           von Mises

Translated from anonymously contributed C/C++ source.

Multi-threading note: the random number generator used here is not
thread-safe; it is possible that two calls return the same random
value.  See whrandom.py for more info.
"""

import whrandom
from whrandom import random,uniform,randint,choice,randrange# For export!
frommathlog,exp,pi,e,sqrt,acos,cos,sin

# Interfaces to replace remaining needs for importing whrandom
# XXX TO DO: make the distribution functions below into methods.

def makeseed(a=None):
  """Turn a hashable value into three seed values for whrandom.seed().

  None or no argument returns (0, 0, 0), to seed from current time.

  """
  if a is None:
    return (0, 0, 0)
  a = hash(a)
  a, x = divmod(a, 256)
  a, y = divmod(a, 256)
  a, z = divmod(a, 256)
  x = (x + a) % 256 or 1
  y = (y + a) % 256 or 1
  z = (z + a) % 256 or 1
  return (x, y, z)

def seed(a=None):
  """Seed the default generator from any hashable value.

  None or no argument returns (0, 0, 0) to seed from current time.

  """
  x, y, z = makeseed(a)
  whrandom.seed(x, y, z)

class generator(whrandom.whrandom):
  """Random generator class."""

  def __init__(self, a=None):
    """Constructor.  Seed from current time or hashable value."""
    self.seed(a)

  def seed(self, a=None):
    """Seed the generator from current time or hashable value."""
    x, y, z = makeseed(a)
    whrandom.whrandom.seed(self, x, y, z)

def new_generator(a=None):
  """Return a new random generator instance."""
  return generator(a)

# Housekeeping function to verify that magic constants have been
# computed correctly

def verify(name, expected):
  computed = eval(name)
  if abs(computed - expected) > 1e-7:
    raise ValueError, \
  'computed value for %s deviates too much (computed %g, expected %g)' % \
  (name, computed, expected)

# -------------------- normal distribution --------------------

NV_MAGICCONST = 4*exp(-0.5)/sqrt(2.0)
verify('NV_MAGICCONST', 1.71552776992141)
def normalvariate(mu, sigma):
  # mu = mean, sigma = standard deviation

  # Uses Kinderman and Monahan method. Reference: Kinderman,
  # A.J. and Monahan, J.F., "Computer generation of random
  # variables using the ratio of uniform deviates", ACM Trans
  # Math Software, 3, (1977), pp257-260.

  while 1:
    u1 = random()
    u2 = random()
    z = NV_MAGICCONST*(u1-0.5)/u2
    zz = z*z/4.0
    if zz <= -log(u2):
      break
  return mu+z*sigma

# -------------------- lognormal distribution --------------------

def lognormvariate(mu, sigma):
  return exp(normalvariate(mu, sigma))

# -------------------- circular uniform --------------------

def cunifvariate(mean, arc):
  # mean: mean angle (in radians between 0 and pi)
  # arc:  range of distribution (in radians between 0 and pi)

  return (mean + arc * (random() - 0.5)) % pi

# -------------------- exponential distribution --------------------

def expovariate(lambd):
  # lambd: rate lambd = 1/mean
  # ('lambda' is a Python reserved word)

  u = random()
  while u <= 1e-7:
    u = random()
  return -log(u)/lambd

# -------------------- von Mises distribution --------------------

TWOPI = 2.0*pi
verify('TWOPI', 6.28318530718)

def vonmisesvariate(mu, kappa):
  # mu:    mean angle (in radians between 0 and 2*pi)
  # kappa: concentration parameter kappa (>= 0)
  # if kappa = 0 generate uniform random angle

  # Based upon an algorithm published in: Fisher, N.I.,
  # "Statistical Analysis of Circular Data", Cambridge
  # University Press, 1993.

  # Thanks to Magnus Kessler for a correction to the
  # implementation of step 4.

  if kappa <= 1e-6:
    return TWOPI * random()

  a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa)
  b = (a - sqrt(2.0 * a))/(2.0 * kappa)
  r = (1.0 + b * b)/(2.0 * b)

  while 1:
    u1 = random()

    z = cos(pi * u1)
    f = (1.0 + r * z)/(r + z)
    c = kappa * (r - f)

    u2 = random()

    if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
      break

  u3 = random()
  if u3 > 0.5:
    theta = (mu % TWOPI) + acos(f)
  else:
    theta = (mu % TWOPI) - acos(f)

  return theta

# -------------------- gamma distribution --------------------

LOG4 = log(4.0)
verify('LOG4', 1.38629436111989)

def gammavariate(alpha, beta):
        # beta times standard gamma
  ainv = sqrt(2.0 * alpha - 1.0)
  return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)

SG_MAGICCONST = 1.0 + log(4.5)
verify('SG_MAGICCONST', 2.50407739677627)

def stdgamma(alpha, ainv, bbb, ccc):
  # ainv = sqrt(2 * alpha - 1)
  # bbb = alpha - log(4)
  # ccc = alpha + ainv

  if alpha <= 0.0:
    raise ValueError, 'stdgamma: alpha must be > 0.0'

  if alpha > 1.0:

    # Uses R.C.H. Cheng, "The generation of Gamma
    # variables with non-integral shape parameters",
    # Applied Statistics, (1977), 26, No. 1, p71-74

    while 1:
      u1 = random()
      u2 = random()
      v = log(u1/(1.0-u1))/ainv
      x = alpha*exp(v)
      z = u1*u1*u2
      r = bbb+ccc*v-x
      if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z):
        return x

  elif alpha == 1.0:
    # expovariate(1)
    u = random()
    while u <= 1e-7:
      u = random()
    return -log(u)

  else:  # alpha is between 0 and 1 (exclusive)

    # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

    while 1:
      u = random()
      b = (e + alpha)/e
      p = b*u
      if p <= 1.0:
        x = pow(p, 1.0/alpha)
      else:
        # p > 1
        x = -log((b-p)/alpha)
      u1 = random()
      if not (((p <= 1.0) and (u1 > exp(-x))) or
          ((p > 1)  and  (u1 > pow(x, alpha - 1.0)))):
        break
    return x


# -------------------- Gauss (faster alternative) --------------------

gauss_next = None
def gauss(mu, sigma):

  # When x and y are two variables from [0, 1), uniformly
  # distributed, then
  #
  #    cos(2*pi*x)*sqrt(-2*log(1-y))
  #    sin(2*pi*x)*sqrt(-2*log(1-y))
  #
  # are two *independent* variables with normal distribution
  # (mu = 0, sigma = 1).
  # (Lambert Meertens)
  # (corrected version; bug discovered by Mike Miller, fixed by LM)

  # Multithreading note: When two threads call this function
  # simultaneously, it is possible that they will receive the
  # same return value.  The window is very small though.  To
  # avoid this, you have to use a lock around all calls.  (I
  # didn't want to slow this down in the serial case by using a
  # lock here.)

  global gauss_next

  z = gauss_next
  gauss_next = None
  if z is None:
    x2pi = random() * TWOPI
    g2rad = sqrt(-2.0 * log(1.0 - random()))
    z = cos(x2pi) * g2rad
    gauss_next = sin(x2pi) * g2rad

  return mu + z*sigma

# -------------------- beta --------------------

def betavariate(alpha, beta):

  # Discrete Event Simulation in C, pp 87-88.

  y = expovariate(alpha)
  z = expovariate(1.0/beta)
  return z/(y+z)

# -------------------- Pareto --------------------

def paretovariate(alpha):
  # Jain, pg. 495

  u = random()
  return 1.0 / pow(u, 1.0/alpha)

# -------------------- Weibull --------------------

def weibullvariate(alpha, beta):
  # Jain, pg. 499; bug fix courtesy Bill Arms

  u = random()
  return alpha * pow(-log(u), 1.0/beta)

# -------------------- shuffle --------------------
# Not quite a random distribution, but a standard algorithm.
# This implementation due to Tim Peters.

def shuffle(x, random=random, int=int):
    """x, random=random.random -> shuffle list x in place; return None.

    Optional arg random is a 0-argument function returning a random
    float in [0.0, 1.0); by default, the standard random.random.

    Note that for even rather small len(x), the total number of
    permutations of x is larger than the period of most random number
    generators; this implies that "most" permutations of a long
    sequence can never be generated.
    """

    for i in xrange(len(x)-1, 0, -1):
        # pick an element in x[:i+1] with which to exchange x[i]
        j = int(random() * (i+1))
        x[i], x[j] = x[j], x[i]

# -------------------- test program --------------------

def test(N = 200):
  print 'TWOPI         =', TWOPI
  print 'LOG4          =', LOG4
  print 'NV_MAGICCONST =', NV_MAGICCONST
  print 'SG_MAGICCONST =', SG_MAGICCONST
  test_generator(N, 'random()')
  test_generator(N, 'normalvariate(0.0, 1.0)')
  test_generator(N, 'lognormvariate(0.0, 1.0)')
  test_generator(N, 'cunifvariate(0.0, 1.0)')
  test_generator(N, 'expovariate(1.0)')
  test_generator(N, 'vonmisesvariate(0.0, 1.0)')
  test_generator(N, 'gammavariate(0.5, 1.0)')
  test_generator(N, 'gammavariate(0.9, 1.0)')
  test_generator(N, 'gammavariate(1.0, 1.0)')
  test_generator(N, 'gammavariate(2.0, 1.0)')
  test_generator(N, 'gammavariate(20.0, 1.0)')
  test_generator(N, 'gammavariate(200.0, 1.0)')
  test_generator(N, 'gauss(0.0, 1.0)')
  test_generator(N, 'betavariate(3.0, 3.0)')
  test_generator(N, 'paretovariate(1.0)')
  test_generator(N, 'weibullvariate(1.0, 1.0)')

def test_generator(n, funccall):
  import time
  print n, 'times', funccall
  code = compile(funccall, funccall, 'eval')
  sum = 0.0
  sqsum = 0.0
  smallest = 1e10
  largest = -1e10
  t0 = time.time()
  for i in range(n):
    x = eval(code)
    sum = sum + x
    sqsum = sqsum + x*x
    smallest = min(x, smallest)
    largest = max(x, largest)
  t1 = time.time()
  print round(t1-t0, 3), 'sec,', 
  avg = sum/n
  stddev = sqrt(sqsum/n - avg*avg)
  print 'avg %g, stddev %g, min %g, max %g' % \
      (avg, stddev, smallest, largest)

if __name__ == '__main__':
  test()
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.