strongly_connected.py :  » Network » NetworkX » networkx-1.1 » networkx » algorithms » components » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Network » NetworkX 
NetworkX » networkx 1.1 » networkx » algorithms » components » strongly_connected.py
# -*- coding: utf-8 -*-
"""
Strongly connected components.
"""
__authors__ = "\n".join(['Eben Kenah',
                         'Aric Hagberg (hagberg@lanl.gov)'
                         'Christopher Ellison'])
#    Copyright (C) 2004-2010 by 
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.

__all__ = ['number_strongly_connected_components', 
           'strongly_connected_components',
           'strongly_connected_component_subgraphs',
           'is_strongly_connected', 
           'strongly_connected_components_recursive',
           'kosaraju_strongly_connected_components',
           'condensation',
           ]

import networkx as nx

def strongly_connected_components(G):
    """Return nodes in strongly connected components of graph.

    Parameters
    ----------
    G : NetworkX Graph
       An directed graph.

    Returns
    -------
    comp : list of lists
       A list of nodes for each component of G.
       The list is ordered from largest connected component to smallest.

    See Also       
    --------
    connected_components

    Notes
    -----
    Uses Tarjan's algorithm with Nuutila's modifications.
    Nonrecursive version of algorithm.

    References
    ----------
    .. [1] Depth-first search and linear graph algorithms, R. Tarjan
       SIAM Journal of Computing 1(2):146-160, (1972).

    .. [2] On finding the strongly connected components in a directed graph.
       E. Nuutila and E. Soisalon-Soinen 
       Information Processing Letters 49(1): 9-14, (1994)..
    """
    preorder={}
    lowlink={}    
    scc_found={}
    scc_queue = []
    scc_list=[]
    i=0     # Preorder counter
    for source in G:
        if source not in scc_found:
            queue=[source]
            while queue:
                v=queue[-1]
                if v not in preorder:
                    i=i+1
                    preorder[v]=i
                done=1
                v_nbrs=G[v]
                for w in v_nbrs:
                    if w not in preorder:
                        queue.append(w)
                        done=0
                        break
                if done==1:
                    lowlink[v]=preorder[v]
                    for w in v_nbrs:
                        if w not in scc_found:
                            if preorder[w]>preorder[v]:
                                lowlink[v]=min([lowlink[v],lowlink[w]])
                            else:
                                lowlink[v]=min([lowlink[v],preorder[w]])
                    queue.pop()
                    if lowlink[v]==preorder[v]:
                        scc_found[v]=True
                        scc=[v]
                        while scc_queue and preorder[scc_queue[-1]]>preorder[v]:
                            k=scc_queue.pop()
                            scc_found[k]=True
                            scc.append(k)
                        scc_list.append(scc)
                    else:
                        scc_queue.append(v)
    scc_list.sort(key=len,reverse=True)            
    return scc_list


def kosaraju_strongly_connected_components(G,source=None):
    """Return nodes in strongly connected components of graph.

    Parameters
    ----------
    G : NetworkX Graph
       An directed graph.

    Returns
    -------
    comp : list of lists
       A list of nodes for each component of G.
       The list is ordered from largest connected component to smallest.

    See Also       
    --------
    connected_components

    Notes
    -----
    Uses Kosaraju's algorithm.
    """
    components=[]
    post=nx.dfs_postorder(G,source=source,reverse_graph=True)
    seen={}
    while post:
        r=post.pop()
        if r in seen:
            continue
        c=nx.dfs_preorder(G,r)
        new=[v for v in c if v not in seen]
        seen.update([(u,True) for u in new])
        components.append(new)
    components.sort(key=len,reverse=True)            
    return components            


def strongly_connected_components_recursive(G):
    """Return nodes in strongly connected components of graph.

    Recursive version of algorithm.

    Parameters
    ----------
    G : NetworkX Graph
       An directed graph.

    Returns
    -------
    comp : list of lists
       A list of nodes for each component of G.
       The list is ordered from largest connected component to smallest.

    See Also       
    --------
    connected_components

    Notes
    -----
    Uses Tarjan's algorithm with Nuutila's modifications.

    References
    ----------
    .. [1] Depth-first search and linear graph algorithms, R. Tarjan
       SIAM Journal of Computing 1(2):146-160, (1972).

    .. [2] On finding the strongly connected components in a directed graph.
       E. Nuutila and E. Soisalon-Soinen 
       Information Processing Letters 49(1): 9-14, (1994)..
    """
    def visit(v,cnt):
        root[v]=cnt
        visited[v]=cnt
        cnt+=1
        stack.append(v)
        for w in G[v]:
            if w not in visited: visit(w,cnt)
            if w not in component:
                root[v]=min(root[v],root[w])
        if root[v]==visited[v]:
            component[v]=root[v]
            tmpc=[v] # hold nodes in this component
            while stack[-1]!=v:
                w=stack.pop()                
                component[w]=root[v]
                tmpc.append(w)
            stack.remove(v) 
            scc.append(tmpc) # add to scc list
    scc=[]
    visited={}   
    component={}
    root={}
    cnt=0
    stack=[]
    for source in G:
        if source not in visited: 
            visit(source,cnt)

    scc.sort(key=len,reverse=True)            
    return scc


def strongly_connected_component_subgraphs(G):
    """Return strongly connected components as subgraphs.

    Parameters
    ----------
    G : NetworkX Graph
       A graph.

    Returns
    -------
    glist : list
      A list of graphs, one for each strongly connected component of G.

    See Also
    --------
    connected_component_subgraphs

    Notes
    -----
    The list is ordered from largest connected component to smallest.
    For undirected graphs only. 
    """
    cc=strongly_connected_components(G)
    graph_list=[]
    for c in cc:
        graph_list.append(G.subgraph(c))
    return graph_list


def number_strongly_connected_components(G):
    """Return number of strongly connected components in graph.

    Parameters
    ----------
    G : NetworkX graph
       A directed graph.

    Returns
    -------
    n : integer
       Number of strongly connected components

    See Also       
    --------
    connected_components

    Notes
    -----
    For directed graphs only. 
    """
    return len(strongly_connected_components(G))


def is_strongly_connected(G):
    """Test directed graph for strong connectivity.

    Parameters
    ----------
    G : NetworkX Graph
       A directed graph.

    Returns
    -------
    connected : bool
      True if the graph is strongly connected, False otherwise.

    See Also
    --------
    strongly_connected_components

    Notes
    -----
    For directed graphs only. 
    """
    if not G.is_directed():
        raise nx.NetworkXError,\
              """Not allowed for undirected graph G.
              See is_connected() for connectivity test."""

    if len(G)==0:
        raise nx.NetworkXPointlessConcept(
            """Connectivity is undefined for the null graph.""")

    return len(strongly_connected_components(G)[0])==len(G)


def condensation(G):
    """Returns the condensation of G.

    The condensation of G is the graph with each of the strongly connected 
    components contracted into a single node.

    Parameters
    ----------
    G : NetworkX Graph
       A directed graph.

    Returns
    -------
    cG : NetworkX DiGraph
       The condensation of G.

    Notes
    -----
    After contracting all strongly connected components to a single node,
    the resulting graph is a directed acyclic graph.

    """
    scc = strongly_connected_components(G)
    mapping = dict([(n,tuple(sorted(c))) for c in scc for n in c])
    cG = nx.DiGraph()
    for u in mapping:
        cG.add_node(mapping[u])
        for _,v,d in G.edges_iter(u, data=True):
            if v not in mapping[u]:
                cG.add_edge(mapping[u], mapping[v])
    return cG

www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.