__rijndael.py :  » Network » emesene » emesene-1.6.2 » plugins_base » encryptMessage » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Network » emesene 
emesene » emesene 1.6.2 » plugins_base » encryptMessage » __rijndael.py
"""
A pure python (slow) implementation of rijndael with a decent interface

To include -

from rijndael import rijndael

To do a key setup -

r = rijndael(key, block_size = 16)

key must be a string of length 16, 24, or 32
blocksize must be 16, 24, or 32. Default is 16

To use -

ciphertext = r.encrypt(plaintext)
plaintext = r.decrypt(ciphertext)

If any strings are of the wrong length a ValueError is thrown
"""

# ported from the Java reference code by Bram Cohen, April 2001
# this code is public domain, unless someone makes 
# an intellectual property claim against the reference 
# code, in which case it can be made public domain by 
# deleting all the comments and renaming all the variables

import copy
import string

shifts = [[[0, 0], [1, 3], [2, 2], [3, 1]],
          [[0, 0], [1, 5], [2, 4], [3, 3]],
          [[0, 0], [1, 7], [3, 5], [4, 4]]]

# [keysize][block_size]
num_rounds = {16: {16: 10, 24: 12, 32: 14}, 24: {16: 12, 24: 12, 32: 14}, 32: {16: 14, 24: 14, 32: 14}}

A = [[1, 1, 1, 1, 1, 0, 0, 0],
     [0, 1, 1, 1, 1, 1, 0, 0],
     [0, 0, 1, 1, 1, 1, 1, 0],
     [0, 0, 0, 1, 1, 1, 1, 1],
     [1, 0, 0, 0, 1, 1, 1, 1],
     [1, 1, 0, 0, 0, 1, 1, 1],
     [1, 1, 1, 0, 0, 0, 1, 1],
     [1, 1, 1, 1, 0, 0, 0, 1]]

# produce log and alog tables, needed for multiplying in the
# field GF(2^m) (generator = 3)
alog = [1]
for i in xrange(255):
    j = (alog[-1] << 1) ^ alog[-1]
    if j & 0x100 != 0:
        j ^= 0x11B
    alog.append(j)

log = [0] * 256
for i in xrange(1, 255):
    log[alog[i]] = i

# multiply two elements of GF(2^m)
def mul(a, b):
    if a == 0 or b == 0:
        return 0
    return alog[(log[a & 0xFF] + log[b & 0xFF]) % 255]

# substitution box based on F^{-1}(x)
box = [[0] * 8 for i in xrange(256)]
box[1][7] = 1
for i in xrange(2, 256):
    j = alog[255 - log[i]]
    for t in xrange(8):
        box[i][t] = (j >> (7 - t)) & 0x01

B = [0, 1, 1, 0, 0, 0, 1, 1]

# affine transform:  box[i] <- B + A*box[i]
cox = [[0] * 8 for i in xrange(256)]
for i in xrange(256):
    for t in xrange(8):
        cox[i][t] = B[t]
        for j in xrange(8):
            cox[i][t] ^= A[t][j] * box[i][j]

# S-boxes and inverse S-boxes
S =  [0] * 256
Si = [0] * 256
for i in xrange(256):
    S[i] = cox[i][0] << 7
    for t in xrange(1, 8):
        S[i] ^= cox[i][t] << (7-t)
    Si[S[i] & 0xFF] = i

# T-boxes
G = [[2, 1, 1, 3],
    [3, 2, 1, 1],
    [1, 3, 2, 1],
    [1, 1, 3, 2]]

AA = [[0] * 8 for i in xrange(4)]

for i in xrange(4):
    for j in xrange(4):
        AA[i][j] = G[i][j]
        AA[i][i+4] = 1

for i in xrange(4):
    pivot = AA[i][i]
    if pivot == 0:
        t = i + 1
        while AA[t][i] == 0 and t < 4:
            t += 1
            assert t != 4, 'G matrix must be invertible'
            for j in xrange(8):
                AA[i][j], AA[t][j] = AA[t][j], AA[i][j]
            pivot = AA[i][i]
    for j in xrange(8):
        if AA[i][j] != 0:
            AA[i][j] = alog[(255 + log[AA[i][j] & 0xFF] - log[pivot & 0xFF]) % 255]
    for t in xrange(4):
        if i != t:
            for j in xrange(i+1, 8):
                AA[t][j] ^= mul(AA[i][j], AA[t][i])
            AA[t][i] = 0

iG = [[0] * 4 for i in xrange(4)]

for i in xrange(4):
    for j in xrange(4):
        iG[i][j] = AA[i][j + 4]

def mul4(a, bs):
    if a == 0:
        return 0
    r = 0
    for b in bs:
        r <<= 8
        if b != 0:
            r = r | mul(a, b)
    return r

T1 = []
T2 = []
T3 = []
T4 = []
T5 = []
T6 = []
T7 = []
T8 = []
U1 = []
U2 = []
U3 = []
U4 = []

for t in xrange(256):
    s = S[t]
    T1.append(mul4(s, G[0]))
    T2.append(mul4(s, G[1]))
    T3.append(mul4(s, G[2]))
    T4.append(mul4(s, G[3]))

    s = Si[t]
    T5.append(mul4(s, iG[0]))
    T6.append(mul4(s, iG[1]))
    T7.append(mul4(s, iG[2]))
    T8.append(mul4(s, iG[3]))

    U1.append(mul4(t, iG[0]))
    U2.append(mul4(t, iG[1]))
    U3.append(mul4(t, iG[2]))
    U4.append(mul4(t, iG[3]))

# round constants
rcon = [1]
r = 1
for t in xrange(1, 30):
    r = mul(2, r)
    rcon.append(r)

del A
del AA
del pivot
del B
del G
del box
del log
del alog
del i
del j
del r
del s
del t
del mul
del mul4
del cox
del iG

class rijndaelLib:
    def __init__(self, key, block_size = 16):
        if block_size != 16 and block_size != 24 and block_size != 32:
            raise ValueError('Invalid block size: ' + str(block_size))
        if len(key) != 16 and len(key) != 24 and len(key) != 32:
            raise ValueError('Invalid key size: ' + str(len(key)))
        self.block_size = block_size

        ROUNDS = num_rounds[len(key)][block_size]
        BC = block_size / 4
        # encryption round keys
        Ke = [[0] * BC for i in xrange(ROUNDS + 1)]
        # decryption round keys
        Kd = [[0] * BC for i in xrange(ROUNDS + 1)]
        ROUND_KEY_COUNT = (ROUNDS + 1) * BC
        KC = len(key) / 4

        # copy user material bytes into temporary ints
        tk = []
        for i in xrange(0, KC):
            tk.append((ord(key[i * 4]) << 24) | (ord(key[i * 4 + 1]) << 16) |
                (ord(key[i * 4 + 2]) << 8) | ord(key[i * 4 + 3]))

        # copy values into round key arrays
        t = 0
        j = 0
        while j < KC and t < ROUND_KEY_COUNT:
            Ke[t / BC][t % BC] = tk[j]
            Kd[ROUNDS - (t / BC)][t % BC] = tk[j]
            j += 1
            t += 1
        tt = 0
        rconpointer = 0
        while t < ROUND_KEY_COUNT:
            # extrapolate using phi (the round key evolution function)
            tt = tk[KC - 1]
            tk[0] ^= (S[(tt >> 16) & 0xFF] & 0xFF) << 24 ^  \
                     (S[(tt >>  8) & 0xFF] & 0xFF) << 16 ^  \
                     (S[ tt        & 0xFF] & 0xFF) <<  8 ^  \
                     (S[(tt >> 24) & 0xFF] & 0xFF)       ^  \
                     (rcon[rconpointer]    & 0xFF) << 24
            rconpointer += 1
            if KC != 8:
                for i in xrange(1, KC):
                    tk[i] ^= tk[i-1]
            else:
                for i in xrange(1, KC / 2):
                    tk[i] ^= tk[i-1]
                tt = tk[KC / 2 - 1]
                tk[KC / 2] ^= (S[ tt        & 0xFF] & 0xFF)       ^ \
                              (S[(tt >>  8) & 0xFF] & 0xFF) <<  8 ^ \
                              (S[(tt >> 16) & 0xFF] & 0xFF) << 16 ^ \
                              (S[(tt >> 24) & 0xFF] & 0xFF) << 24
                for i in xrange(KC / 2 + 1, KC):
                    tk[i] ^= tk[i-1]
            # copy values into round key arrays
            j = 0
            while j < KC and t < ROUND_KEY_COUNT:
                Ke[t / BC][t % BC] = tk[j]
                Kd[ROUNDS - (t / BC)][t % BC] = tk[j]
                j += 1
                t += 1
        # inverse MixColumn where needed
        for r in xrange(1, ROUNDS):
            for j in xrange(BC):
                tt = Kd[r][j]
                Kd[r][j] = U1[(tt >> 24) & 0xFF] ^ \
                           U2[(tt >> 16) & 0xFF] ^ \
                           U3[(tt >>  8) & 0xFF] ^ \
                           U4[ tt        & 0xFF]
        self.Ke = Ke
        self.Kd = Kd

    def encrypt(self, plaintext):
        if len(plaintext) != self.block_size:
            raise ValueError('wrong block length, expected ' + str(self.block_size) + ' got ' + str(len(plaintext)))
        Ke = self.Ke

        BC = self.block_size / 4
        ROUNDS = len(Ke) - 1
        if BC == 4:
            SC = 0
        elif BC == 6:
            SC = 1
        else:
            SC = 2
        s1 = shifts[SC][1][0]
        s2 = shifts[SC][2][0]
        s3 = shifts[SC][3][0]
        a = [0] * BC
        # temporary work array
        t = []
        # plaintext to ints + key
        for i in xrange(BC):
            t.append((ord(plaintext[i * 4    ]) << 24 |
                      ord(plaintext[i * 4 + 1]) << 16 |
                      ord(plaintext[i * 4 + 2]) <<  8 |
                      ord(plaintext[i * 4 + 3])        ) ^ Ke[0][i])
        # apply round transforms
        for r in xrange(1, ROUNDS):
            for i in xrange(BC):
                a[i] = (T1[(t[ i           ] >> 24) & 0xFF] ^
                        T2[(t[(i + s1) % BC] >> 16) & 0xFF] ^
                        T3[(t[(i + s2) % BC] >>  8) & 0xFF] ^
                        T4[ t[(i + s3) % BC]        & 0xFF]  ) ^ Ke[r][i]
            t = copy.copy(a)
        # last round is special
        result = []
        for i in xrange(BC):
            tt = Ke[ROUNDS][i]
            result.append((S[(t[ i           ] >> 24) & 0xFF] ^ (tt >> 24)) & 0xFF)
            result.append((S[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16)) & 0xFF)
            result.append((S[(t[(i + s2) % BC] >>  8) & 0xFF] ^ (tt >>  8)) & 0xFF)
            result.append((S[ t[(i + s3) % BC]        & 0xFF] ^  tt       ) & 0xFF)
        return string.join(map(chr, result), '')

    def decrypt(self, ciphertext):
        if len(ciphertext) != self.block_size:
            raise ValueError('wrong block length, expected ' + str(self.block_size) + ' got ' + str(len(ciphertext)))
        Kd = self.Kd

        BC = self.block_size / 4
        ROUNDS = len(Kd) - 1
        if BC == 4:
            SC = 0
        elif BC == 6:
            SC = 1
        else:
            SC = 2
        s1 = shifts[SC][1][1]
        s2 = shifts[SC][2][1]
        s3 = shifts[SC][3][1]
        a = [0] * BC
        # temporary work array
        t = [0] * BC
        # ciphertext to ints + key
        for i in xrange(BC):
            t[i] = (ord(ciphertext[i * 4    ]) << 24 |
                    ord(ciphertext[i * 4 + 1]) << 16 |
                    ord(ciphertext[i * 4 + 2]) <<  8 |
                    ord(ciphertext[i * 4 + 3])        ) ^ Kd[0][i]
        # apply round transforms
        for r in xrange(1, ROUNDS):
            for i in xrange(BC):
                a[i] = (T5[(t[ i           ] >> 24) & 0xFF] ^
                        T6[(t[(i + s1) % BC] >> 16) & 0xFF] ^
                        T7[(t[(i + s2) % BC] >>  8) & 0xFF] ^
                        T8[ t[(i + s3) % BC]        & 0xFF]  ) ^ Kd[r][i]
            t = copy.copy(a)
        # last round is special
        result = []
        for i in xrange(BC):
            tt = Kd[ROUNDS][i]
            result.append((Si[(t[ i           ] >> 24) & 0xFF] ^ (tt >> 24)) & 0xFF)
            result.append((Si[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16)) & 0xFF)
            result.append((Si[(t[(i + s2) % BC] >>  8) & 0xFF] ^ (tt >>  8)) & 0xFF)
            result.append((Si[ t[(i + s3) % BC]        & 0xFF] ^  tt       ) & 0xFF)
        return string.join(map(chr, result), '')

def encrypt(key, block):
    return rijndael(key, len(block)).encrypt(block)

def decrypt(key, block):
    return rijndael(key, len(block)).decrypt(block)

def test():
    def t(kl, bl):
        b = 'b' * bl
        r = rijndael('a' * kl, bl)
        assert r.decrypt(r.encrypt(b)) == b
    t(16, 16)
    t(16, 24)
    t(16, 32)
    t(24, 16)
    t(24, 24)
    t(24, 32)
    t(32, 16)
    t(32, 24)
    t(32, 32)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.