connector.py :  » PDF » PyX » PyX-0.10 » pyx » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » PDF » PyX 
PyX » PyX 0.10 » pyx » connector.py
# -*- coding: ISO-8859-1 -*-
#
#
# Copyright (C) 2003-2006 Michael Schindler <m-schindler@users.sourceforge.net>
#
# This file is part of PyX (http://pyx.sourceforge.net/).
#
# PyX is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PyX is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyX; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA


import math
from math import pi,sin,cos,atan2,tan,hypot,acos,sqrt
import path, unit, mathutils, normpath
try:
    from math import radians,degrees
except ImportError:
    # fallback implementation for Python 2.1 and below
    def radians(x): return x*pi/180
    def degrees(x): return x*180/pi


#########################
##   helpers
#########################

class connector_pt(normpath.normpath):

    def omitends(self, box1, box2):
        """intersects a path with the boxes' paths"""

        # cut off the start of self
        # XXX how can decoration of this box1.path() be handled?
        sp = self.intersect(box1.path())[0]
        if sp:
            self.normsubpaths = self.split(sp[-1:])[1].normsubpaths

        # cut off the end of self
        sp = self.intersect(box2.path())[0]
        if sp:
            self.normsubpaths = self.split(sp[:1])[0].normsubpaths

    def shortenpath(self, dists):
        """shortens a path by the given distances"""

        # XXX later, this should be done by extended boxes instead of intersecting with circles
        # cut off the start of self
        center = self.atbegin_pt()
        cutpath = path.circle_pt(center[0], center[1], dists[0])
        try:
            cutpath = cutpath.normpath()
        except normpath.NormpathException:
            pass
        else:
            sp = self.intersect(cutpath)[0]
            self.normsubpaths = self.split(sp[-1:])[1].normsubpaths

        # cut off the end of self
        center = self.atend_pt()
        cutpath = path.circle_pt(center[0], center[1], dists[1])
        try:
            cutpath = cutpath.normpath()
        except normpath.NormpathException:
            pass
        else:
            sp = self.intersect(cutpath)[0]
            if sp:
                self.normsubpaths = self.split(sp[:1])[0].normsubpaths


################
## classes
################


class line_pt(connector_pt):

    def __init__(self, box1, box2, boxdists=[0,0]):

        self.box1 = box1
        self.box2 = box2

        connector_pt.__init__(self,
            [path.normsubpath([path.normline_pt(self.box1.center[0], self.box1.center[1],
                                                self.box2.center[0], self.box2.center[1])], closed=0)])

        self.omitends(box1, box2)
        self.shortenpath(boxdists)


class arc_pt(connector_pt):

    def __init__(self, box1, box2, relangle=45,
                 absbulge=None, relbulge=None, boxdists=[0,0]):

        # the deviation of arc from the straight line can be specified:
        # 1. By an angle between a straight line and the arc
        #    This angle is measured at the centers of the box.
        # 2. By the largest normal distance between line and arc: absbulge
        #    or, equivalently, by the bulge relative to the length of the
        #    straight line from center to center.
        # Only one can be used.

        self.box1 = box1
        self.box2 = box2

        tangent = (self.box2.center[0] - self.box1.center[0],
                   self.box2.center[1] - self.box1.center[1])
        distance = hypot(*tangent)
        tangent = tangent[0] / distance, tangent[1] / distance

        if relbulge is not None or absbulge is not None:
            # usage of bulge overrides the relangle parameter
            bulge = 0
            if absbulge is not None:
                bulge += absbulge
            if relbulge is not None:
                bulge += relbulge*distance
        else:
            # otherwise use relangle, which should be present
            bulge = 0.5 * distance * math.tan(0.5*radians(relangle))

        if abs(bulge) < normpath._epsilon:
            # fallback solution for too straight arcs
            connector_pt.__init__(self,
                [path.normsubpath([path.normline_pt(*(self.box1.center+self.box2.center))], closed=0)])
        else:
            radius = abs(0.5 * (bulge + 0.25 * distance**2 / bulge))
            centerdist = mathutils.sign(bulge) * (radius - abs(bulge))
            center = (0.5 * (self.box1.center[0] + self.box2.center[0]) + tangent[1]*centerdist,
                      0.5 * (self.box1.center[1] + self.box2.center[1]) - tangent[0]*centerdist)
            angle1 = atan2(self.box1.center[1] - center[1], self.box1.center[0] - center[0])
            angle2 = atan2(self.box2.center[1] - center[1], self.box2.center[0] - center[0])

            if bulge > 0:
                connectorpath = path.path(path.moveto_pt(*self.box1.center),
                                          path.arcn_pt(center[0], center[1], radius, degrees(angle1), degrees(angle2)))
                connector_pt.__init__(self, connectorpath.normpath().normsubpaths)
            else:
                connectorpath = path.path(path.moveto_pt(*self.box1.center),
                                          path.arc_pt(center[0], center[1], radius, degrees(angle1), degrees(angle2)))
                connector_pt.__init__(self, connectorpath.normpath().normsubpaths)

        self.omitends(box1, box2)
        self.shortenpath(boxdists)


class curve_pt(connector_pt):

    def __init__(self, box1, box2,
                 relangle1=45, relangle2=45,
                 absangle1=None, absangle2=None,
                 absbulge=0, relbulge=0.39, boxdists=[0,0]):

        # The deviation of the curve from a straight line can be specified:
        # A. By an angle at each center
        #    These angles are either absolute angles with origin at the positive x-axis
        #    or the relative angle with origin at the straight connection line
        # B. By the (expected) largest normal distance between line and arc: absbulge
        #    and/or by the (expected) bulge relative to the length of the
        #    straight line from center to center.
        # Here, we need both informations.
        #
        # a curve with relbulge=0.39 and relangle1,2=45 leads
        # approximately to the arc with angle=45

        self.box1 = box1
        self.box2 = box2

        rel = (self.box2.center[0] - self.box1.center[0],
               self.box2.center[1] - self.box1.center[1])
        distance = hypot(*rel)
        # absolute angle of the straight connection
        dangle = atan2(rel[1], rel[0])

        # calculate the armlength and absolute angles for the control points:
        # absolute and relative bulges are added
        bulge = abs(distance*relbulge + absbulge)

        if absangle1 is not None:
            angle1 = radians(absangle1)
        else:
            angle1 = dangle + radians(relangle1)
        if absangle2 is not None:
            angle2 = radians(absangle2)
        else:
            angle2 = dangle + radians(relangle2)

        # get the control points
        control1 = (cos(angle1), sin(angle1))
        control2 = (cos(angle2), sin(angle2))
        control1 = (self.box1.center[0] + control1[0] * bulge, self.box1.center[1] + control1[1] * bulge)
        control2 = (self.box2.center[0] - control2[0] * bulge, self.box2.center[1] - control2[1] * bulge)

        connector_pt.__init__(self,
               [path.normsubpath([path.normcurve_pt(*(self.box1.center +
                                                   control1 +
                                                   control2 + self.box2.center))], 0)])

        self.omitends(box1, box2)
        self.shortenpath(boxdists)


class twolines_pt(connector_pt):

    def __init__(self, box1, box2,
                 absangle1=None, absangle2=None,
                 relangle1=None, relangle2=None, relangleM=None,
                 length1=None, length2=None,
                 bezierradius=None, beziersoftness=1,
                 arcradius=None,
                 boxdists=[0,0]):

        # The connection with two lines can be done in the following ways:
        # 1. an angle at each box-center
        # 2. two armlengths (if they are long enough)
        # 3. angle and armlength at the same box
        # 4. angle and armlength at different boxes
        # 5. one armlength and the angle between the arms
        #
        # Angles at the box-centers can be relative or absolute
        # The angle in the middle is always relative
        # lengths are always absolute

        self.box1 = box1
        self.box2 = box2

        begin = self.box1.center
        end = self.box2.center
        rel = (self.box2.center[0] - self.box1.center[0],
               self.box2.center[1] - self.box1.center[1])
        distance = hypot(*rel)
        dangle = atan2(rel[1], rel[0])

        # find out what arguments are given:
        if relangle1 is not None: relangle1 = radians(relangle1)
        if relangle2 is not None: relangle2 = radians(relangle2)
        if relangleM is not None: relangleM = radians(relangleM)
        # absangle has priority over relangle:
        if absangle1 is not None: relangle1 = dangle - radians(absangle1)
        if absangle2 is not None: relangle2 = math.pi - dangle + radians(absangle2)

        # check integrity of arguments
        no_angles, no_lengths=0,0
        for anangle in (relangle1, relangle2, relangleM):
            if anangle is not None: no_angles += 1
        for alength in (length1, length2):
            if alength is not None: no_lengths += 1

        if no_angles + no_lengths != 2:
            raise NotImplementedError, "Please specify exactly two angles or lengths"

        # calculate necessary angles and armlengths
        # always length1 and relangle1

        # the case with two given angles
        # use the "sine-theorem" for calculating length1
        if no_angles == 2:
            if relangle1 is None: relangle1 = math.pi - relangle2 - relangleM
            elif relangle2 is None: relangle2 = math.pi - relangle1 - relangleM
            elif relangleM is None: relangleM = math.pi - relangle1 - relangle2
            length1 = distance * abs(sin(relangle2)/sin(relangleM))
            middle = self._middle_a(begin, dangle, length1, relangle1)
        # the case with two given lengths
        # uses the "cosine-theorem" for calculating length1
        elif no_lengths == 2:
            relangle1 = acos((distance**2 + length1**2 - length2**2) / (2.0*distance*length1))
            middle = self._middle_a(begin, dangle, length1, relangle1)
        # the case with one length and one angle
        else:
            if relangle1 is not None:
                if length1 is not None:
                    middle = self._middle_a(begin, dangle, length1, relangle1)
                elif length2 is not None:
                    length1 = self._missinglength(length2, distance, relangle1)
                    middle = self._middle_a(begin, dangle, length1, relangle1)
            elif relangle2 is not None:
                if length1 is not None:
                    length2 = self._missinglength(length1, distance, relangle2)
                    middle = self._middle_b(end, dangle, length2, relangle2)
                elif length2 is not None:
                    middle = self._middle_b(end, dangle, length2, relangle2)
            elif relangleM is not None:
                if length1 is not None:
                    length2 = self._missinglength(distance, length1, relangleM)
                    relangle1 = acos((distance**2 + length1**2 - length2**2) / (2.0*distance*length1))
                    middle = self._middle_a(begin, dangle, length1, relangle1)
                elif length2 is not None:
                    length1 = self._missinglength(distance, length2, relangleM)
                    relangle1 = acos((distance**2 + length1**2 - length2**2) / (2.0*distance*length1))
                    middle = self._middle_a(begin, dangle, length1, relangle1)
            else:
                raise NotImplementedError, "I found a strange combination of arguments"

        connectorpath = path.path(path.moveto_pt(*self.box1.center),
                                  path.lineto_pt(*middle),
                                  path.lineto_pt(*self.box2.center))
        connector_pt.__init__(self, connectorpath.normpath().normsubpaths)

        self.omitends(box1, box2)
        self.shortenpath(boxdists)

    def _middle_a(self, begin, dangle, length1, angle1):
        a = dangle - angle1
        dir = cos(a), sin(a)
        return begin[0] + length1*dir[0], begin[1] + length1*dir[1]

    def _middle_b(self, end, dangle, length2, angle2):
        # a = -math.pi + dangle + angle2
        return self._middle_a(end, -math.pi+dangle, length2, -angle2)

    def _missinglength(self, lenA, lenB, angleA):
        # calculate lenC, where side A and angleA are opposite
        tmp1 = lenB * cos(angleA)
        tmp2 = sqrt(tmp1**2 - lenB**2 + lenA**2)
        if tmp1 > tmp2: return tmp1 - tmp2
        return tmp1 + tmp2



class line(line_pt):

    """a line is the straight connector between the centers of two boxes"""

    def __init__(self, box1, box2, boxdists=(0,0)):
        line_pt.__init__(self, box1, box2, boxdists=map(unit.topt, boxdists))


class curve(curve_pt):

    """a curve is the curved connector between the centers of two boxes.
    The constructor needs both angle and bulge"""


    def __init__(self, box1, box2,
                 relangle1=45, relangle2=45,
                 absangle1=None, absangle2=None,
                 absbulge=0, relbulge=0.39,
                 boxdists=[0,0]):
        curve_pt.__init__(self, box1, box2,
                          relangle1=relangle1, relangle2=relangle2,
                          absangle1=absangle1, absangle2=absangle2,
                          absbulge=unit.topt(absbulge), relbulge=relbulge,
                          boxdists=map(unit.topt, boxdists))

class arc(arc_pt):

    """an arc is a round connector between the centers of two boxes.
    The constructor gets
         either an angle in (-pi,pi)
         or a bulge parameter in (-distance, distance)
           (relbulge and absbulge are added)"""

    def __init__(self, box1, box2, relangle=45,
                 absbulge=None, relbulge=None, boxdists=[0,0]):
        if absbulge is not None:
            absbulge = unit.topt(absbulge)
        arc_pt.__init__(self, box1, box2,
                        relangle=relangle,
                        absbulge=absbulge, relbulge=relbulge,
                        boxdists=map(unit.topt, boxdists))


class twolines(twolines_pt):

    """a twolines is a connector consisting of two straight lines.
    The construcor takes a combination of angles and lengths:
      either two angles (relative or absolute)
      or two lenghts
      or one length and one angle"""

    def __init__(self, box1, box2,
                 absangle1=None, absangle2=None,
                 relangle1=None, relangle2=None, relangleM=None,
                 length1=None, length2=None,
                 bezierradius=None, beziersoftness=1,
                 arcradius=None,
                 boxdists=[0,0]):
        if length1 is not None:
            length1 = unit.topt(length1)
        if length2 is not None:
            length2 = unit.topt(length2)
        if bezierradius is not None:
            bezierradius = unit.topt(bezierradius)
        if arcradius is not None:
            arcradius = unit.topt(arcradius)
        twolines_pt.__init__(self, box1, box2,
                             absangle1=absangle1, absangle2=absangle2,
                             relangle1=relangle1, relangle2=relangle2,
                             relangleM=relangleM,
                             length1=length1, length2=length2,
                             bezierradius=bezierradius, beziersoftness=1,
                             arcradius=arcradius,
                             boxdists=map(unit.topt, boxdists))



www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.