_threading_local.py :  » Web-Frameworks » Django » django » utils » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Web Frameworks » Django 
Django » django » utils » _threading_local.py
"""Thread-local objects

(Note that this module provides a Python version of thread
 threading.local class.  Depending on the version of Python you're
 using, there may be a faster one available.  You should always import
 the local class from threading.)

Thread-local objects support the management of thread-local data.
If you have data that you want to be local to a thread, simply create
a thread-local object and use its attributes:

  >>> mydata = local()
  >>> mydata.number = 42
  >>> mydata.number
  42

You can also access the local-object's dictionary:

  >>> mydata.__dict__
  {'number': 42}
  >>> mydata.__dict__.setdefault('widgets', [])
  []
  >>> mydata.widgets
  []

What's important about thread-local objects is that their data are
local to a thread. If we access the data in a different thread:

  >>> log = []
  >>> def f():
  ...     items = mydata.__dict__.items()
  ...     items.sort()
  ...     log.append(items)
  ...     mydata.number = 11
  ...     log.append(mydata.number)

  >>> import threading
  >>> thread = threading.Thread(target=f)
  >>> thread.start()
  >>> thread.join()
  >>> log
  [[], 11]

we get different data.  Furthermore, changes made in the other thread
don't affect data seen in this thread:

  >>> mydata.number
  42

Of course, values you get from a local object, including a __dict__
attribute, are for whatever thread was current at the time the
attribute was read.  For that reason, you generally don't want to save
these values across threads, as they apply only to the thread they
came from.

You can create custom local objects by subclassing the local class:

  >>> class MyLocal(local):
  ...     number = 2
  ...     initialized = False
  ...     def __init__(self, **kw):
  ...         if self.initialized:
  ...             raise SystemError('__init__ called too many times')
  ...         self.initialized = True
  ...         self.__dict__.update(kw)
  ...     def squared(self):
  ...         return self.number ** 2

This can be useful to support default values, methods and
initialization.  Note that if you define an __init__ method, it will be
called each time the local object is used in a separate thread.  This
is necessary to initialize each thread's dictionary.

Now if we create a local object:

  >>> mydata = MyLocal(color='red')

Now we have a default number:

  >>> mydata.number
  2

an initial color:

  >>> mydata.color
  'red'
  >>> del mydata.color

And a method that operates on the data:

  >>> mydata.squared()
  4

As before, we can access the data in a separate thread:

  >>> log = []
  >>> thread = threading.Thread(target=f)
  >>> thread.start()
  >>> thread.join()
  >>> log
  [[('color', 'red'), ('initialized', True)], 11]

without affecting this thread's data:

  >>> mydata.number
  2
  >>> mydata.color
  Traceback (most recent call last):
  ...
  AttributeError: 'MyLocal' object has no attribute 'color'

Note that subclasses can define slots, but they are not thread
local. They are shared across threads:

  >>> class MyLocal(local):
  ...     __slots__ = 'number'

  >>> mydata = MyLocal()
  >>> mydata.number = 42
  >>> mydata.color = 'red'

So, the separate thread:

  >>> thread = threading.Thread(target=f)
  >>> thread.start()
  >>> thread.join()

affects what we see:

  >>> mydata.number
  11

>>> del mydata
"""

# Threading import is at end

class _localbase(object):
    __slots__ = '_local__key', '_local__args', '_local__lock'

    def __new__(cls, *args, **kw):
        self = object.__new__(cls)
        key = '_local__key', 'thread.local.' + str(id(self))
        object.__setattr__(self, '_local__key', key)
        object.__setattr__(self, '_local__args', (args, kw))
        object.__setattr__(self, '_local__lock', RLock())

        if (args or kw) and (cls.__init__ is object.__init__):
            raise TypeError("Initialization arguments are not supported")

        # We need to create the thread dict in anticipation of
        # __init__ being called, to make sure we don't call it
        # again ourselves.
        dict = object.__getattribute__(self, '__dict__')
        currentThread().__dict__[key] = dict

        return self

def _patch(self):
    key = object.__getattribute__(self, '_local__key')
    d = currentThread().__dict__.get(key)
    if d is None:
        d = {}
        currentThread().__dict__[key] = d
        object.__setattr__(self, '__dict__', d)

        # we have a new instance dict, so call out __init__ if we have
        # one
        cls = type(self)
        if cls.__init__ is not object.__init__:
            args, kw = object.__getattribute__(self, '_local__args')
            cls.__init__(self, *args, **kw)
    else:
        object.__setattr__(self, '__dict__', d)

class local(_localbase):

    def __getattribute__(self, name):
        lock = object.__getattribute__(self, '_local__lock')
        lock.acquire()
        try:
            _patch(self)
            return object.__getattribute__(self, name)
        finally:
            lock.release()

    def __setattr__(self, name, value):
        lock = object.__getattribute__(self, '_local__lock')
        lock.acquire()
        try:
            _patch(self)
            return object.__setattr__(self, name, value)
        finally:
            lock.release()

    def __delattr__(self, name):
        lock = object.__getattribute__(self, '_local__lock')
        lock.acquire()
        try:
            _patch(self)
            return object.__delattr__(self, name)
        finally:
            lock.release()


    def __del__():
        threading_enumerate = enumerate
        __getattribute__ = object.__getattribute__

        def __del__(self):
            key = __getattribute__(self, '_local__key')

            try:
                threads = list(threading_enumerate())
            except:
                # if enumerate fails, as it seems to do during
                # shutdown, we'll skip cleanup under the assumption
                # that there is nothing to clean up
                return

            for thread in threads:
                try:
                    __dict__ = thread.__dict__
                except AttributeError:
                    # Thread is dying, rest in peace
                    continue

                if key in __dict__:
                    try:
                        del __dict__[key]
                    except KeyError:
                        pass # didn't have anything in this thread

        return __del__
    __del__ = __del__()

try:
    from threading import currentThread,enumerate,RLock
except ImportError:
    from dummy_threading import currentThread,enumerate,RLock
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.