##############################################################################
#
# Copyright (c) 2001 Zope Corporation and Contributors. All Rights Reserved.
#
# This software is subject to the provisions of the Zope Public License,
# Version 2.0 (ZPL). A copy of the ZPL should accompany this distribution.
# THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
# WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
# FOR A PARTICULAR PURPOSE
#
##############################################################################
"""Encapsulation of date/time values"""
__version__='$Revision: 1.79.6.1 $'[11:-2]
import re,sys, os, math, DateTimeZone
from time import time,gmtime,localtime,asctime
from time import daylight,timezone,altzone,strftime
from types import InstanceType,IntType,FloatType,StringType,UnicodeType
try: from time import tzname
except: tzname=('UNKNOWN','UNKNOWN')
# To control rounding errors, we round system time to the nearest
# millisecond. Then delicate calculations can rely on that the
# maximum precision that needs to be preserved is known.
_system_time = time
def time():
return round(_system_time(), 3)
# Determine machine epoch
tm=((0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334),
(0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335))
yr,mo,dy,hr,mn,sc=gmtime(0)[:6]
i=int(yr-1)
to_year =int(i*365+i/4-i/100+i/400-693960.0)
to_month=tm[yr%4==0 and (yr%100!=0 or yr%400==0)][mo]
EPOCH =(to_year+to_month+dy+(hr/24.0+mn/1440.0+sc/86400.0))*86400
jd1901 =2415385L
numericTimeZoneMatch=re.compile(r'[+-][0-9][0-9][0-9][0-9]').match #TS
class _timezone:
def __init__(self,data):
self.name,self.timect,self.typect, \
self.ttrans,self.tindex,self.tinfo,self.az=data
def default_index(self):
if self.timect == 0: return 0
for i in range(self.typect):
if self.tinfo[i][1] == 0: return i
return 0
def index(self,t=None):
t=t or time()
if self.timect==0: idx=(0, 0, 0)
elif t < self.ttrans[0]:
i=self.default_index()
idx=(i, ord(self.tindex[0]),i)
elif t >= self.ttrans[-1]:
if self.timect > 1:
idx=(ord(self.tindex[-1]),ord(self.tindex[-1]),
ord(self.tindex[-2]))
else:
idx=(ord(self.tindex[-1]),ord(self.tindex[-1]),
self.default_index())
else:
for i in range(self.timect-1):
if t < self.ttrans[i+1]:
if i==0: idx=(ord(self.tindex[0]),ord(self.tindex[1]),
self.default_index())
else: idx=(ord(self.tindex[i]),ord(self.tindex[i+1]),
ord(self.tindex[i-1]))
break
return idx
def info(self,t=None):
idx=self.index(t)[0]
zs =self.az[self.tinfo[idx][2]:]
return self.tinfo[idx][0],self.tinfo[idx][1],zs[:zs.find('\000')]
class _cache:
_zlst=['Brazil/Acre','Brazil/DeNoronha','Brazil/East',
'Brazil/West','Canada/Atlantic','Canada/Central',
'Canada/Eastern','Canada/East-Saskatchewan',
'Canada/Mountain','Canada/Newfoundland',
'Canada/Pacific','Canada/Yukon',
'Chile/Continental','Chile/EasterIsland','CST','Cuba',
'Egypt','EST','GB-Eire','Greenwich','Hongkong','Iceland',
'Iran','Israel','Jamaica','Japan','Mexico/BajaNorte',
'Mexico/BajaSur','Mexico/General','MST','Poland','PST',
'Singapore','Turkey','Universal','US/Alaska','US/Aleutian',
'US/Arizona','US/Central','US/Eastern','US/East-Indiana',
'US/Hawaii','US/Indiana-Starke','US/Michigan',
'US/Mountain','US/Pacific','US/Samoa','UTC','UCT','GMT',
'GMT+0100','GMT+0200','GMT+0300','GMT+0400','GMT+0500',
'GMT+0600','GMT+0700','GMT+0800','GMT+0900','GMT+1000',
'GMT+1100','GMT+1200','GMT+1300','GMT-0100','GMT-0200',
'GMT-0300','GMT-0400','GMT-0500','GMT-0600','GMT-0700',
'GMT-0800','GMT-0900','GMT-1000','GMT-1100','GMT-1200',
'GMT+1',
'GMT+0130', 'GMT+0230', 'GMT+0330', 'GMT+0430', 'GMT+0530',
'GMT+0630', 'GMT+0730', 'GMT+0830', 'GMT+0930', 'GMT+1030',
'GMT+1130', 'GMT+1230',
'GMT-0130', 'GMT-0230', 'GMT-0330', 'GMT-0430', 'GMT-0530',
'GMT-0630', 'GMT-0730', 'GMT-0830', 'GMT-0930', 'GMT-1030',
'GMT-1130', 'GMT-1230',
'UT','BST','MEST','SST','FST','WADT','EADT','NZDT',
'WET','WAT','AT','AST','NT','IDLW','CET','MET',
'MEWT','SWT','FWT','EET','EEST','BT','ZP4','ZP5','ZP6',
'WAST','CCT','JST','EAST','GST','NZT','NZST','IDLE']
_zmap={'aest':'GMT+1000', 'aedt':'GMT+1100',
'aus eastern standard time':'GMT+1000',
'sydney standard time':'GMT+1000',
'tasmania standard time':'GMT+1000',
'e. australia standard time':'GMT+1000',
'aus central standard time':'GMT+0930',
'cen. australia standard time':'GMT+0930',
'w. australia standard time':'GMT+0800',
'brazil/acre':'Brazil/Acre',
'brazil/denoronha':'Brazil/Denoronha',
'brazil/east':'Brazil/East','brazil/west':'Brazil/West',
'canada/atlantic':'Canada/Atlantic',
'canada/central':'Canada/Central',
'canada/eastern':'Canada/Eastern',
'canada/east-saskatchewan':'Canada/East-Saskatchewan',
'canada/mountain':'Canada/Mountain',
'canada/newfoundland':'Canada/Newfoundland',
'canada/pacific':'Canada/Pacific','canada/yukon':'Canada/Yukon',
'central europe standard time':'GMT+0100',
'chile/continental':'Chile/Continental',
'chile/easterisland':'Chile/EasterIsland',
'cst':'US/Central','cuba':'Cuba','est':'US/Eastern','egypt':'Egypt',
'eastern standard time':'US/Eastern',
'us eastern standard time':'US/Eastern',
'central standard time':'US/Central',
'mountain standard time':'US/Mountain',
'pacific standard time':'US/Pacific',
'gb-eire':'GB-Eire','gmt':'GMT',
'gmt+0000':'GMT+0', 'gmt+0':'GMT+0',
'gmt+0100':'GMT+1', 'gmt+0200':'GMT+2', 'gmt+0300':'GMT+3',
'gmt+0400':'GMT+4', 'gmt+0500':'GMT+5', 'gmt+0600':'GMT+6',
'gmt+0700':'GMT+7', 'gmt+0800':'GMT+8', 'gmt+0900':'GMT+9',
'gmt+1000':'GMT+10','gmt+1100':'GMT+11','gmt+1200':'GMT+12',
'gmt+1300':'GMT+13',
'gmt-0100':'GMT-1', 'gmt-0200':'GMT-2', 'gmt-0300':'GMT-3',
'gmt-0400':'GMT-4', 'gmt-0500':'GMT-5', 'gmt-0600':'GMT-6',
'gmt-0700':'GMT-7', 'gmt-0800':'GMT-8', 'gmt-0900':'GMT-9',
'gmt-1000':'GMT-10','gmt-1100':'GMT-11','gmt-1200':'GMT-12',
'gmt+1': 'GMT+1', 'gmt+2': 'GMT+2', 'gmt+3': 'GMT+3',
'gmt+4': 'GMT+4', 'gmt+5': 'GMT+5', 'gmt+6': 'GMT+6',
'gmt+7': 'GMT+7', 'gmt+8': 'GMT+8', 'gmt+9': 'GMT+9',
'gmt+10':'GMT+10','gmt+11':'GMT+11','gmt+12':'GMT+12',
'gmt+13':'GMT+13',
'gmt-1': 'GMT-1', 'gmt-2': 'GMT-2', 'gmt-3': 'GMT-3',
'gmt-4': 'GMT-4', 'gmt-5': 'GMT-5', 'gmt-6': 'GMT-6',
'gmt-7': 'GMT-7', 'gmt-8': 'GMT-8', 'gmt-9': 'GMT-9',
'gmt-10':'GMT-10','gmt-11':'GMT-11','gmt-12':'GMT-12',
'gmt+130':'GMT+0130', 'gmt+0130':'GMT+0130',
'gmt+230':'GMT+0230', 'gmt+0230':'GMT+0230',
'gmt+330':'GMT+0330', 'gmt+0330':'GMT+0330',
'gmt+430':'GMT+0430', 'gmt+0430':'GMT+0430',
'gmt+530':'GMT+0530', 'gmt+0530':'GMT+0530',
'gmt+630':'GMT+0630', 'gmt+0630':'GMT+0630',
'gmt+730':'GMT+0730', 'gmt+0730':'GMT+0730',
'gmt+830':'GMT+0830', 'gmt+0830':'GMT+0830',
'gmt+930':'GMT+0930', 'gmt+0930':'GMT+0930',
'gmt+1030':'GMT+1030',
'gmt+1130':'GMT+1130',
'gmt+1230':'GMT+1230',
'gmt-130':'GMT-0130', 'gmt-0130':'GMT-0130',
'gmt-230':'GMT-0230', 'gmt-0230':'GMT-0230',
'gmt-330':'GMT-0330', 'gmt-0330':'GMT-0330',
'gmt-430':'GMT-0430', 'gmt-0430':'GMT-0430',
'gmt-530':'GMT-0530', 'gmt-0530':'GMT-0530',
'gmt-630':'GMT-0630', 'gmt-0630':'GMT-0630',
'gmt-730':'GMT-0730', 'gmt-0730':'GMT-0730',
'gmt-830':'GMT-0830', 'gmt-0830':'GMT-0830',
'gmt-930':'GMT-0930', 'gmt-0930':'GMT-0930',
'gmt-1030':'GMT-1030',
'gmt-1130':'GMT-1130',
'gmt-1230':'GMT-1230',
'greenwich':'Greenwich','hongkong':'Hongkong',
'iceland':'Iceland','iran':'Iran','israel':'Israel',
'jamaica':'Jamaica','japan':'Japan',
'mexico/bajanorte':'Mexico/BajaNorte',
'mexico/bajasur':'Mexico/BajaSur','mexico/general':'Mexico/General',
'mst':'US/Mountain','pst':'US/Pacific','poland':'Poland',
'singapore':'Singapore','turkey':'Turkey','universal':'Universal',
'utc':'Universal','uct':'Universal','us/alaska':'US/Alaska',
'us/aleutian':'US/Aleutian','us/arizona':'US/Arizona',
'us/central':'US/Central','us/eastern':'US/Eastern',
'us/east-indiana':'US/East-Indiana','us/hawaii':'US/Hawaii',
'us/indiana-starke':'US/Indiana-Starke','us/michigan':'US/Michigan',
'us/mountain':'US/Mountain','us/pacific':'US/Pacific',
'us/samoa':'US/Samoa',
'ut':'Universal',
'bst':'GMT+1', 'mest':'GMT+2', 'sst':'GMT+2',
'fst':'GMT+2', 'wadt':'GMT+8', 'eadt':'GMT+11', 'nzdt':'GMT+13',
'wet':'GMT', 'wat':'GMT-1', 'at':'GMT-2', 'ast':'GMT-4',
'nt':'GMT-11', 'idlw':'GMT-12', 'cet':'GMT+1', 'cest':'GMT+2',
'met':'GMT+1',
'mewt':'GMT+1', 'swt':'GMT+1', 'fwt':'GMT+1', 'eet':'GMT+2',
'eest':'GMT+3',
'bt':'GMT+3', 'zp4':'GMT+4', 'zp5':'GMT+5', 'zp6':'GMT+6',
'wast':'GMT+7', 'cct':'GMT+8', 'jst':'GMT+9', 'east':'GMT+10',
'gst':'GMT+10', 'nzt':'GMT+12', 'nzst':'GMT+12', 'idle':'GMT+12',
'ret':'GMT+4'
}
def __init__(self):
self._db=DateTimeZone._data
self._d,self._zidx={},self._zmap.keys()
def __getitem__(self,k):
try: n=self._zmap[k.lower()]
except KeyError:
if numericTimeZoneMatch(k) == None:
raise 'DateTimeError','Unrecognized timezone: %s' % k
return k
try: return self._d[n]
except KeyError:
z=self._d[n]=_timezone(self._db[n])
return z
def _findLocalTimeZoneName(isDST):
if not daylight:
# Daylight savings does not occur in this time zone.
isDST = 0
try:
# Get the name of the current time zone depending
# on DST.
_localzone = _cache._zmap[tzname[isDST].lower()]
except:
try:
# Generate a GMT-offset zone name.
if isDST:
localzone = altzone
else:
localzone = timezone
offset=(-localzone/(60*60))
majorOffset=int(offset)
if majorOffset != 0 :
minorOffset=abs(int((offset % majorOffset) * 60.0))
else: minorOffset = 0
m=majorOffset >= 0 and '+' or ''
lz='%s%0.02d%0.02d' % (m, majorOffset, minorOffset)
_localzone = _cache._zmap[('GMT%s' % lz).lower()]
except:
_localzone = ''
return _localzone
# Some utility functions for calculating dates:
def _calcSD(t):
# Returns timezone-independent days since epoch and the fractional
# part of the days.
dd = t + EPOCH - 86400.0
d = dd / 86400.0
s = d - math.floor(d)
return s, d
def _calcDependentSecond(tz, t):
# Calculates the timezone-dependent second (integer part only)
# from the timezone-independent second.
fset = _tzoffset(tz, t)
return fset + long(math.floor(t)) + long(EPOCH) - 86400L
def _calcDependentSecond2(yr,mo,dy,hr,mn,sc):
# Calculates the timezone-dependent second (integer part only)
# from the date given.
ss = int(hr) * 3600 + int(mn) * 60 + int(sc)
x = long(_julianday(yr,mo,dy)-jd1901) * 86400 + ss
return x
def _calcIndependentSecondEtc(tz, x, ms):
# Derive the timezone-independent second from the timezone
# dependent second.
fsetAtEpoch = _tzoffset(tz, 0.0)
nearTime = x - fsetAtEpoch - long(EPOCH) + 86400L + ms
# nearTime is now within an hour of being correct.
# Recalculate t according to DST.
fset = long(_tzoffset(tz, nearTime))
x_adjusted = x - fset + ms
d = x_adjusted / 86400.0
t = x_adjusted - long(EPOCH) + 86400L
millis = (x + 86400 - fset) * 1000 + \
long(round(ms * 1000.0)) - long(EPOCH * 1000.0)
s = d - math.floor(d)
return s,d,t,millis
def _calcHMS(x, ms):
# hours, minutes, seconds from integer and float.
hr = x / 3600
x = x - hr * 3600
mn = x / 60
sc = x - mn * 60 + ms
return hr,mn,sc
def _calcYMDHMS(x, ms):
# x is a timezone-dependent integer of seconds.
# Produces yr,mo,dy,hr,mn,sc.
yr,mo,dy=_calendarday(x / 86400 + jd1901)
x = int(x - (x / 86400) * 86400)
hr = x / 3600
x = x - hr * 3600
mn = x / 60
sc = x - mn * 60 + ms
return yr,mo,dy,hr,mn,sc
def _julianday(yr,mo,dy):
y,m,d=long(yr),long(mo),long(dy)
if m > 12L:
y=y+m/12L
m=m%12L
elif m < 1L:
m=-m
y=y-m/12L-1L
m=12L-m%12L
if y > 0L: yr_correct=0L
else: yr_correct=3L
if m < 3L: y, m=y-1L,m+12L
if y*10000L+m*100L+d > 15821014L: b=2L-y/100L+y/400L
else: b=0L
return (1461L*y-yr_correct)/4L+306001L*(m+1L)/10000L+d+1720994L+b
def _calendarday(j):
j=long(j)
if(j < 2299160L):
b=j+1525L
else:
a=(4L*j-7468861L)/146097L
b=j+1526L+a-a/4L
c=(20L*b-2442L)/7305L
d=1461L*c/4L
e=10000L*(b-d)/306001L
dy=int(b-d-306001L*e/10000L)
mo=(e < 14L) and int(e-1L) or int(e-13L)
yr=(mo > 2) and (c-4716L) or (c-4715L)
return int(yr),int(mo),int(dy)
def _tzoffset(tz, t):
try:
return DateTime._tzinfo[tz].info(t)[0]
except:
if numericTimeZoneMatch(tz) is not None:
return -int(tz[1:3])*3600-int(tz[3:5])*60
else:
return 0 # ??
def _correctYear(year):
# Y2K patch.
if year >= 0 and year < 100:
# 00-69 means 2000-2069, 70-99 means 1970-1999.
if year < 70:
year = 2000 + year
else:
year = 1900 + year
return year
def safegmtime(t):
'''gmtime with a safety zone.'''
try:
t_int = int(t)
return gmtime(t_int)
except (IOError, OverflowError):
raise 'TimeError', 'The time %f is beyond the range ' \
'of this Python implementation.' % float(t)
def safelocaltime(t):
'''localtime with a safety zone.'''
try:
t_int = int(t)
except OverflowError:
raise 'TimeError', 'The time %f is beyond the range ' \
'of this Python implementation.' % float(t)
rval = localtime(t_int)
return rval
def _tzoffset2rfc822zone(seconds):
return "%+03d%02d" % divmod( (-seconds/60), 60)
class DateTime:
"""DateTime objects represent instants in time and provide
interfaces for controlling its representation without
affecting the absolute value of the object.
DateTime objects may be created from a wide variety of string
or numeric data, or may be computed from other DateTime objects.
DateTimes support the ability to convert their representations
to many major timezones, as well as the ablility to create a
DateTime object in the context of a given timezone.
DateTime objects provide partial numerical behavior:
- Two date-time objects can be subtracted to obtain a time,
in days between the two.
- A date-time object and a positive or negative number may
be added to obtain a new date-time object that is the given
number of days later than the input date-time object.
- A positive or negative number and a date-time object may
be added to obtain a new date-time object that is the given
number of days later than the input date-time object.
- A positive or negative number may be subtracted from a
date-time object to obtain a new date-time object that is
the given number of days earlier than the input date-time
object.
DateTime objects may be converted to integer, long, or float
numbers of days since January 1, 1901, using the standard int,
long, and float functions (Compatibility Note: int, long and
float return the number of days since 1901 in GMT rather than
local machine timezone). DateTime objects also provide access
to their value in a float format usable with the python time
module, provided that the value of the object falls in the
range of the epoch-based time module.
A DateTime object should be considered immutable; all conversion
and numeric operations return a new DateTime object rather than
modify the current object."""
# For security machinery:
__roles__=None
__allow_access_to_unprotected_subobjects__=1
def __init__(self,*args):
"""Return a new date-time object
A DateTime object always maintains its value as an absolute
UTC time, and is represented in the context of some timezone
based on the arguments used to create the object. A DateTime
object's methods return values based on the timezone context.
Note that in all cases the local machine timezone is used for
representation if no timezone is specified.
DateTimes may be created with from zero to seven arguments.
- If the function is called with no arguments, then the
current date/time is returned, represented in the
timezone of the local machine.
- If the function is invoked with a single string argument
which is a recognized timezone name, an object representing
the current time is returned, represented in the specified
timezone.
- If the function is invoked with a single string argument
representing a valid date/time, an object representing
that date/time will be returned.
As a general rule, any date-time representation that is
recognized and unambigous to a resident of North America is
acceptable.(The reason for this qualification is that
in North America, a date like: 2/1/1994 is interpreted
as February 1, 1994, while in some parts of the world,
it is interpreted as January 2, 1994.) A date/time
string consists of two components, a date component and
an optional time component, separated by one or more
spaces. If the time component is omited, 12:00am is
assumed. Any recognized timezone name specified as the
final element of the date/time string will be used for
computing the date/time value. (If you create a DateTime
with the string 'Mar 9, 1997 1:45pm US/Pacific', the
value will essentially be the same as if you had captured
time.time() at the specified date and time on a machine in
that timezone)
<PRE>
e=DateTime('US/Eastern')
# returns current date/time, represented in US/Eastern.
x=DateTime('1997/3/9 1:45pm')
# returns specified time, represented in local machine zone.
y=DateTime('Mar 9, 1997 13:45:00')
# y is equal to x
</PRE>
New in Zope 2.4:
The DateTime constructor automatically detects and handles
ISO8601 compliant dates (YYYY-MM-DDThh:ss:mmTZD).
See http://www.w3.org/TR/NOTE-datetime for full specs.
The date component consists of year, month, and day
values. The year value must be a one-, two-, or
four-digit integer. If a one- or two-digit year is
used, the year is assumed to be in the twentieth
century. The month may an integer, from 1 to 12, a
month name, or a month abreviation, where a period may
optionally follow the abreviation. The day must be an
integer from 1 to the number of days in the month. The
year, month, and day values may be separated by
periods, hyphens, forward, shashes, or spaces. Extra
spaces are permitted around the delimiters. Year,
month, and day values may be given in any order as long
as it is possible to distinguish the components. If all
three components are numbers that are less than 13,
then a a month-day-year ordering is assumed.
The time component consists of hour, minute, and second
values separated by colons. The hour value must be an
integer between 0 and 23 inclusively. The minute value
must be an integer between 0 and 59 inclusively. The
second value may be an integer value between 0 and
59.999 inclusively. The second value or both the minute
and second values may be ommitted. The time may be
followed by am or pm in upper or lower case, in which
case a 12-hour clock is assumed.
- If the DateTime function is invoked with a single
Numeric argument, the number is assumed to be
a floating point value such as that returned by
time.time().
A DateTime object is returned that represents
the gmt value of the time.time() float represented in
the local machine's timezone.
- If the function is invoked with two numeric arguments,
then the first is taken to be an integer year and the
second argument is taken to be an offset in days from
the beginning of the year, in the context of the local
machine timezone.
The date-time value returned is the given offset number of
days from the beginning of the given year, represented in
the timezone of the local machine. The offset may be positive
or negative.
Two-digit years are assumed to be in the twentieth
century.
- If the function is invoked with two arguments, the first
a float representing a number of seconds past the epoch
in gmt (such as those returned by time.time()) and the
second a string naming a recognized timezone, a DateTime
with a value of that gmt time will be returned, represented
in the given timezone.
<PRE>
import time
t=time.time()
now_east=DateTime(t,'US/Eastern')
# Time t represented as US/Eastern
now_west=DateTime(t,'US/Pacific')
# Time t represented as US/Pacific
# now_east == now_west
# only their representations are different
</PRE>
- If the function is invoked with three or more numeric
arguments, then the first is taken to be an integer
year, the second is taken to be an integer month, and
the third is taken to be an integer day. If the
combination of values is not valid, then a
DateError is raised. Two-digit years are assumed
to be in the twentieth century. The fourth, fifth, and
sixth arguments specify a time in hours, minutes, and
seconds; hours and minutes should be positive integers
and seconds is a positive floating point value, all of
these default to zero if not given. An optional string may
be given as the final argument to indicate timezone (the
effect of this is as if you had taken the value of time.time()
at that time on a machine in the specified timezone).
In any case that a floating point number of seconds is given
or derived, it's rounded to the nearest millisecond.
If a string argument passed to the DateTime constructor cannot be
parsed, it will raise DateTime.SyntaxError. Invalid date components
will raise a DateError, while invalid time or timezone components
will raise a DateTimeError.
The module function Timezones() will return a list of the
timezones recognized by the DateTime module. Recognition of
timezone names is case-insensitive.""" #'
d=t=s=None
ac=len(args)
millisecs = None
if ac and args[0]==None: return
elif ac==10:
# Internal format called only by DateTime
yr,mo,dy,hr,mn,sc,tz,t,d,s=args
elif ac == 11:
# Internal format that includes milliseconds.
yr,mo,dy,hr,mn,sc,tz,t,d,s,millisecs=args
elif not args:
# Current time, to be displayed in local timezone
t = time()
lt = safelocaltime(t)
tz = self.localZone(lt)
ms = (t - math.floor(t))
s,d = _calcSD(t)
yr,mo,dy,hr,mn,sc=lt[:6]
sc=sc+ms
elif ac==1:
arg=args[0]
if arg=='':
raise self.SyntaxError, arg
if type(arg) in [StringType,UnicodeType] and arg.lower() in self._tzinfo._zidx:
# Current time, to be displayed in specified timezone
t,tz=time(),self._tzinfo._zmap[arg.lower()]
ms=(t-math.floor(t))
# Use integer arithmetic as much as possible.
s,d = _calcSD(t)
x = _calcDependentSecond(tz, t)
yr,mo,dy,hr,mn,sc = _calcYMDHMS(x, ms)
elif type(arg) in [StringType,UnicodeType]:
# Date/time string
if arg.find(' ')==-1 and arg[4]=='-':
yr,mo,dy,hr,mn,sc,tz=self._parse_iso8601(arg)
else:
yr,mo,dy,hr,mn,sc,tz=self._parse(arg)
if not self._validDate(yr,mo,dy):
raise self.DateTimeError, 'Invalid date: %s' % arg
if not self._validTime(hr,mn,int(sc)):
raise self.DateTimeError, 'Invalid time: %s' % arg
ms = sc - math.floor(sc)
x = _calcDependentSecond2(yr,mo,dy,hr,mn,sc)
if tz:
try: tz=self._tzinfo._zmap[tz.lower()]
except KeyError:
if numericTimeZoneMatch(tz) is None:
raise self.DateTimeError, \
'Unknown time zone in date: %s' % arg
else:
tz = self._calcTimezoneName(x, ms)
s,d,t,millisecs = _calcIndependentSecondEtc(tz, x, ms)
else:
# Seconds from epoch, gmt
t = arg
lt = safelocaltime(t)
tz = self.localZone(lt)
ms=(t-math.floor(t))
s,d = _calcSD(t)
yr,mo,dy,hr,mn,sc=lt[:6]
sc=sc+ms
elif ac==2:
if type(args[1])==StringType:
# Seconds from epoch (gmt) and timezone
t,tz=args
ms = (t - math.floor(t))
tz=self._tzinfo._zmap[tz.lower()]
# Use integer arithmetic as much as possible.
s,d = _calcSD(t)
x = _calcDependentSecond(tz, t)
yr,mo,dy,hr,mn,sc = _calcYMDHMS(x, ms)
else:
# Year, julian expressed in local zone
t = time()
lt = safelocaltime(t)
tz = self.localZone(lt)
yr,jul=args
yr = _correctYear(yr)
d=(_julianday(yr,1,0)-jd1901)+jul
x_float = d * 86400.0
x_floor = math.floor(x_float)
ms = x_float - x_floor
x = long(x_floor)
yr,mo,dy,hr,mn,sc = _calcYMDHMS(x, ms)
s,d,t,millisecs = _calcIndependentSecondEtc(tz, x, ms)
else:
# Explicit format
yr,mo,dy=args[:3]
hr,mn,sc,tz=0,0,0,0
yr = _correctYear(yr)
if not self._validDate(yr,mo,dy):
raise self.DateTimeError, 'Invalid date: %s' % (args,)
args=args[3:]
if args:
hr,args=args[0],args[1:]
if args:
mn,args=args[0],args[1:]
if args:
sc,args=args[0],args[1:]
if args:
tz,args=args[0],args[1:]
if args:
raise self.DateTimeError,'Too many arguments'
if not self._validTime(hr,mn,sc):
raise self.DateTimeError, 'Invalid time: %s' % `args`
leap = (yr % 4 == 0) and (yr % 100 != 0 or yr % 400 == 0)
x = _calcDependentSecond2(yr,mo,dy,hr,mn,sc)
ms = sc - math.floor(sc)
if tz:
try: tz=self._tzinfo._zmap[tz.lower()]
except KeyError:
if numericTimeZoneMatch(tz) is None:
raise self.DateTimeError, \
'Unknown time zone: %s' % tz
else:
# Get local time zone name
tz = self._calcTimezoneName(x, ms)
s,d,t,millisecs = _calcIndependentSecondEtc(tz, x, ms)
if hr>12:
self._pmhour=hr-12
self._pm='pm'
else:
self._pmhour=hr or 12
self._pm= (hr==12) and 'pm' or 'am'
self._dayoffset=dx=int((_julianday(yr,mo,dy)+2L)%7)
self._fmon,self._amon,self._pmon= \
self._months[mo],self._months_a[mo],self._months_p[mo]
self._fday,self._aday,self._pday= \
self._days[dx],self._days_a[dx],self._days_p[dx]
# Round to nearest millisecond in platform-independent way. You
# cannot rely on C sprintf (Python '%') formatting to round
# consistently; doing it ourselves ensures that all but truly
# horrid C sprintf implementations will yield the same result
# x-platform, provided the format asks for exactly 3 digits after
# the decimal point.
sc = round(sc, 3)
if sc >= 60.0: # can happen if, e.g., orig sc was 59.9999
sc = 59.999
self._nearsec=math.floor(sc)
self._year,self._month,self._day =yr,mo,dy
self._hour,self._minute,self._second =hr,mn,sc
self.time,self._d,self._t,self._tz =s,d,t,tz
if millisecs is None:
millisecs = long(math.floor(t * 1000.0))
self._millis = millisecs
# self._millis is the time since the epoch
# in long integer milliseconds.
DateTimeError='DateTimeError'
SyntaxError ='Invalid Date-Time String'
DateError ='Invalid Date Components'
int_pattern =re.compile(r'([0-9]+)') #AJ
flt_pattern =re.compile(r':([0-9]+\.[0-9]+)') #AJ
name_pattern =re.compile(r'([a-zA-Z]+)', re.I) #AJ
space_chars =' \t\n'
delimiters ='-/.:,+'
_month_len =((0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31),
(0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31))
_until_month=((0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334),
(0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335))
_months =['','January','February','March','April','May','June','July',
'August', 'September', 'October', 'November', 'December']
_months_a =['','Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
_months_p =['','Jan.', 'Feb.', 'Mar.', 'Apr.', 'May', 'June',
'July', 'Aug.', 'Sep.', 'Oct.', 'Nov.', 'Dec.']
_monthmap ={'january': 1, 'jan': 1,
'february': 2, 'feb': 2,
'march': 3, 'mar': 3,
'april': 4, 'apr': 4,
'may': 5,
'june': 6, 'jun': 6,
'july': 7, 'jul': 7,
'august': 8, 'aug': 8,
'september': 9, 'sep': 9, 'sept': 9,
'october': 10, 'oct': 10,
'november': 11, 'nov': 11,
'december': 12, 'dec': 12}
_days =['Sunday','Monday','Tuesday','Wednesday',
'Thursday','Friday','Saturday']
_days_a =['Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat' ]
_days_p =['Sun.', 'Mon.', 'Tue.', 'Wed.', 'Thu.', 'Fri.', 'Sat.']
_daymap ={'sunday': 1, 'sun': 1,
'monday': 2, 'mon': 2,
'tuesday': 3, 'tues': 3, 'tue': 3,
'wednesday': 4, 'wed': 4,
'thursday': 5, 'thurs': 5, 'thur': 5, 'thu': 5,
'friday': 6, 'fri': 6,
'saturday': 7, 'sat': 7}
_localzone0 = _findLocalTimeZoneName(0)
_localzone1 = _findLocalTimeZoneName(1)
_multipleZones = (_localzone0 != _localzone1)
# For backward compatibility only:
_isDST = localtime(time())[8]
_localzone = _isDST and _localzone1 or _localzone0
_tzinfo = _cache()
def localZone(self, ltm=None):
'''Returns the time zone on the given date. The time zone
can change according to daylight savings.'''
if not DateTime._multipleZones:
return DateTime._localzone0
if ltm == None:
ltm = localtime(time())
isDST = ltm[8]
lz = isDST and DateTime._localzone1 or DateTime._localzone0
return lz
def _calcTimezoneName(self, x, ms):
# Derive the name of the local time zone at the given
# timezone-dependent second.
if not DateTime._multipleZones:
return DateTime._localzone0
fsetAtEpoch = _tzoffset(DateTime._localzone0, 0.0)
nearTime = x - fsetAtEpoch - long(EPOCH) + 86400L + ms
# nearTime is within an hour of being correct.
try:
ltm = safelocaltime(nearTime)
except:
# We are beyond the range of Python's date support.
# Hopefully we can assume that daylight savings schedules
# repeat every 28 years. Calculate the name of the
# time zone using a supported range of years.
yr,mo,dy,hr,mn,sc = _calcYMDHMS(x, 0)
yr = ((yr - 1970) % 28) + 1970
x = _calcDependentSecond2(yr,mo,dy,hr,mn,sc)
nearTime = x - fsetAtEpoch - long(EPOCH) + 86400L + ms
ltm = safelocaltime(nearTime)
tz = self.localZone(ltm)
return tz
def _parse(self,st):
# Parse date-time components from a string
month=year=tz=tm=None
spaces =self.space_chars
intpat =self.int_pattern
fltpat =self.flt_pattern
wordpat =self.name_pattern
delimiters =self.delimiters
MonthNumbers =self._monthmap
DayOfWeekNames=self._daymap
ValidZones =self._tzinfo._zidx
TimeModifiers =['am','pm']
# Find timezone first, since it should always be the last
# element, and may contain a slash, confusing the parser.
st= st.strip()
sp=st.split()
tz=sp[-1]
if tz and (tz.lower() in ValidZones): st=' '.join(sp[:-1])
else: tz = None # Decide later, since the default time zone
# could depend on the date.
ints,dels=[],[]
i,l=0,len(st)
while i < l:
while i < l and st[i] in spaces : i=i+1
if i < l and st[i] in delimiters:
d=st[i]
i=i+1
else: d=''
while i < l and st[i] in spaces : i=i+1
# The float pattern needs to look back 1 character, because it
# actually looks for a preceding colon like ':33.33'. This is
# needed to avoid accidentally matching the date part of a
# dot-separated date string such as '1999.12.31'.
if i > 0: b=i-1
else: b=i
ts_results = fltpat.match(st, b)
if ts_results:
s=ts_results.group(1)
i=i+len(s)
ints.append(float(s))
continue
#AJ
ts_results = intpat.match(st, i)
if ts_results:
s=ts_results.group(0)
ls=len(s)
i=i+ls
if (ls==4 and d and d in '+-' and
(len(ints) + (not not month) >= 3)):
tz='%s%s' % (d,s)
else:
v=int(s)
ints.append(v)
continue
ts_results = wordpat.match(st, i)
if ts_results:
o,s=ts_results.group(0),ts_results.group(0).lower()
i=i+len(s)
if i < l and st[i]=='.': i=i+1
# Check for month name:
if MonthNumbers.has_key(s):
v=MonthNumbers[s]
if month is None: month=v
else: raise self.SyntaxError, st
continue
# Check for time modifier:
if s in TimeModifiers:
if tm is None: tm=s
else: raise self.SyntaxError, st
continue
# Check for and skip day of week:
if DayOfWeekNames.has_key(s):
continue
raise self.SyntaxError, st
day=None
if ints[-1] > 60 and d not in ['.',':'] and len(ints) > 2:
year=ints[-1]
del ints[-1]
if month:
day=ints[0]
del ints[:1]
else:
month=ints[0]
day=ints[1]
del ints[:2]
elif month:
if len(ints) > 1:
if ints[0] > 31:
year=ints[0]
day=ints[1]
else:
year=ints[1]
day=ints[0]
del ints[:2]
elif len(ints) > 2:
if ints[0] > 31:
year=ints[0]
if ints[1] > 12:
day=ints[1]
month=ints[2]
else:
day=ints[2]
month=ints[1]
if ints[1] > 31:
year=ints[1]
if ints[0] > 12 and ints[2] <= 12:
day=ints[0]
month=ints[2]
elif ints[2] > 12 and ints[0] <= 12:
day=ints[2]
month=ints[0]
elif ints[2] > 31:
year=ints[2]
if ints[0] > 12:
day=ints[0]
month=ints[1]
else:
day=ints[1]
month=ints[0]
elif ints[0] <= 12:
month=ints[0]
day=ints[1]
year=ints[2]
del ints[:3]
if day is None:
# Use today's date.
year,month,day = localtime(time())[:3]
year = _correctYear(year)
if year < 1000: raise self.SyntaxError, st
leap = year%4==0 and (year%100!=0 or year%400==0)
try:
if not day or day > self._month_len[leap][month]:
raise self.DateError, st
except IndexError:
raise self.DateError, st
tod=0
if ints:
i=ints[0]
# Modify hour to reflect am/pm
if tm and (tm=='pm') and i<12: i=i+12
if tm and (tm=='am') and i==12: i=0
if i > 24: raise self.DateTimeError, st
tod = tod + int(i) * 3600
del ints[0]
if ints:
i=ints[0]
if i > 60: raise self.DateTimeError, st
tod = tod + int(i) * 60
del ints[0]
if ints:
i=ints[0]
if i > 60: raise self.DateTimeError, st
tod = tod + i
del ints[0]
if ints: raise self.SyntaxError,st
tod_int = int(math.floor(tod))
ms = tod - tod_int
hr,mn,sc = _calcHMS(tod_int, ms)
if not tz:
# Figure out what time zone it is in the local area
# on the given date.
x = _calcDependentSecond2(year,month,day,hr,mn,sc)
tz = self._calcTimezoneName(x, ms)
return year,month,day,hr,mn,sc,tz
# Internal methods
def __getinitargs__(self): return (None,)
def _validDate(self,y,m,d):
if m<1 or m>12 or y<0 or d<1 or d>31: return 0
return d<=self._month_len[(y%4==0 and (y%100!=0 or y%400==0))][m]
def _validTime(self,h,m,s):
return h>=0 and h<=23 and m>=0 and m<=59 and s>=0 and s < 60
def __getattr__(self, name):
if '%' in name: return strftimeFormatter(self, name)
raise AttributeError, name
# Conversion and comparison methods
def timeTime(self):
"""Return the date/time as a floating-point number in UTC,
in the format used by the python time module.
Note that it is possible to create date/time values
with DateTime that have no meaningful value to the
time module."""
return self._t
def toZone(self, z):
"""Return a DateTime with the value as the current
object, represented in the indicated timezone."""
t,tz=self._t,self._tzinfo._zmap[z.lower()]
millis = self.millis()
#if (t>0 and ((t/86400.0) < 24837)):
try:
# Try to use time module for speed.
yr,mo,dy,hr,mn,sc=safegmtime(t+_tzoffset(tz, t))[:6]
sc=self._second
return self.__class__(yr,mo,dy,hr,mn,sc,tz,t,
self._d,self.time,millis)
except: # gmtime can't perform the calculation in the given range.
# Calculate the difference between the two time zones.
tzdiff = _tzoffset(tz, t) - _tzoffset(self._tz, t)
if tzdiff == 0:
return self
sc = self._second
ms = sc - math.floor(sc)
x = _calcDependentSecond2(self._year, self._month, self._day,
self._hour, self._minute, sc)
x_new = x + tzdiff
yr,mo,dy,hr,mn,sc = _calcYMDHMS(x_new, ms)
return self.__class__(yr,mo,dy,hr,mn,sc,tz,t,
self._d,self.time,millis)
def isFuture(self):
"""Return true if this object represents a date/time
later than the time of the call"""
return (self._t > time())
def isPast(self):
"""Return true if this object represents a date/time
earlier than the time of the call"""
return (self._t < time())
def isCurrentYear(self):
"""Return true if this object represents a date/time
that falls within the current year, in the context
of this object\'s timezone representation"""
t=time()
return safegmtime(t+_tzoffset(self._tz, t))[0]==self._year
def isCurrentMonth(self):
"""Return true if this object represents a date/time
that falls within the current month, in the context
of this object\'s timezone representation"""
t=time()
gmt=safegmtime(t+_tzoffset(self._tz, t))
return gmt[0]==self._year and gmt[1]==self._month
def isCurrentDay(self):
"""Return true if this object represents a date/time
that falls within the current day, in the context
of this object\'s timezone representation"""
t=time()
gmt=safegmtime(t+_tzoffset(self._tz, t))
return gmt[0]==self._year and gmt[1]==self._month and gmt[2]==self._day
def isCurrentHour(self):
"""Return true if this object represents a date/time
that falls within the current hour, in the context
of this object\'s timezone representation"""
t=time()
gmt=safegmtime(t+_tzoffset(self._tz, t))
return (gmt[0]==self._year and gmt[1]==self._month and
gmt[2]==self._day and gmt[3]==self._hour)
def isCurrentMinute(self):
"""Return true if this object represents a date/time
that falls within the current minute, in the context
of this object\'s timezone representation"""
t=time()
gmt=safegmtime(t+_tzoffset(self._tz, t))
return (gmt[0]==self._year and gmt[1]==self._month and
gmt[2]==self._day and gmt[3]==self._hour and
gmt[4]==self._minute)
def earliestTime(self):
"""Return a new DateTime object that represents the earliest
possible time (in whole seconds) that still falls within
the current object\'s day, in the object\'s timezone context"""
return self.__class__(self._year,self._month,self._day,0,0,0,self._tz)
def latestTime(self):
"""Return a new DateTime object that represents the latest
possible time (in whole seconds) that still falls within
the current object\'s day, in the object\'s timezone context"""
return self.__class__(self._year,self._month,self._day,
23,59,59,self._tz)
def greaterThan(self,t):
"""Compare this DateTime object to another DateTime object
OR a floating point number such as that which is returned
by the python time module. Returns true if the object
represents a date/time greater than the specified DateTime
or time module style time.
Revised to give more correct results through comparison of
long integer milliseconds.
"""
# Optimized for sorting speed
try:
return (self._millis > t._millis)
except AttributeError:
try: self._millis
except AttributeError: self._upgrade_old()
return (self._t > t)
__gt__ = greaterThan
def greaterThanEqualTo(self,t):
"""Compare this DateTime object to another DateTime object
OR a floating point number such as that which is returned
by the python time module. Returns true if the object
represents a date/time greater than or equal to the
specified DateTime or time module style time.
Revised to give more correct results through comparison of
long integer milliseconds.
"""
# Optimized for sorting speed
try:
return (self._millis >= t._millis)
except AttributeError:
try: self._millis
except AttributeError: self._upgrade_old()
return (self._t >= t)
__ge__ = greaterThanEqualTo
def equalTo(self,t):
"""Compare this DateTime object to another DateTime object
OR a floating point number such as that which is returned
by the python time module. Returns true if the object
represents a date/time equal to the specified DateTime
or time module style time.
Revised to give more correct results through comparison of
long integer milliseconds.
"""
# Optimized for sorting speed
try:
return (self._millis == t._millis)
except AttributeError:
try: self._millis
except AttributeError: self._upgrade_old()
return (self._t == t)
__eq__ = equalTo
def notEqualTo(self,t):
"""Compare this DateTime object to another DateTime object
OR a floating point number such as that which is returned
by the python time module. Returns true if the object
represents a date/time not equal to the specified DateTime
or time module style time.
Revised to give more correct results through comparison of
long integer milliseconds.
"""
# Optimized for sorting speed
try:
return (self._millis != t._millis)
except AttributeError:
try: self._millis
except AttributeError: self._upgrade_old()
return (self._t != t)
__ne__ = notEqualTo
def lessThan(self,t):
"""Compare this DateTime object to another DateTime object
OR a floating point number such as that which is returned
by the python time module. Returns true if the object
represents a date/time less than the specified DateTime
or time module style time.
Revised to give more correct results through comparison of
long integer milliseconds.
"""
# Optimized for sorting speed
try:
return (self._millis < t._millis)
except AttributeError:
try: self._millis
except AttributeError: self._upgrade_old()
return (self._t < t)
__lt__ = lessThan
def lessThanEqualTo(self,t):
"""Compare this DateTime object to another DateTime object
OR a floating point number such as that which is returned
by the python time module. Returns true if the object
represents a date/time less than or equal to the specified
DateTime or time module style time.
Revised to give more correct results through comparison of
long integer milliseconds.
"""
# Optimized for sorting speed
try:
return (self._millis <= t._millis)
except AttributeError:
try: self._millis
except AttributeError: self._upgrade_old()
return (self._t <= t)
__le__ = lessThanEqualTo
def isLeapYear(self):
"""Return true if the current year (in the context of the object\'s
timezone) is a leap year"""
return self._year%4==0 and (self._year%100!=0 or self._year%400==0)
def dayOfYear(self):
"""Return the day of the year, in context of
the timezone representation of the object"""
d=int(self._d+(_tzoffset(self._tz, self._t)/86400.0))
return int((d+jd1901)-_julianday(self._year,1,0))
# Component access
def parts(self):
"""Return a tuple containing the calendar year, month,
day, hour, minute second and timezone of the object"""
return self._year, self._month, self._day, self._hour, \
self._minute, self._second, self._tz
def timezone(self):
"""Return the timezone in which the object is represented."""
return self._tz
def year(self):
"""Return the calendar year of the object"""
return self._year
def month(self):
"""Return the month of the object as an integer"""
return self._month
def Month(self):
"""Return the full month name"""
return self._fmon
def aMonth(self):
"""Return the abreviated month name."""
return self._amon
def Mon(self):
"""Compatibility: see aMonth"""
return self._amon
def pMonth(self):
"""Return the abreviated (with period) month name."""
return self._pmon
def Mon_(self):
"""Compatibility: see pMonth"""
return self._pmon
def day(self):
"""Return the integer day"""
return self._day
def Day(self):
"""Return the full name of the day of the week"""
return self._fday
def DayOfWeek(self):
"""Compatibility: see Day"""
return self._fday
def aDay(self):
"""Return the abreviated name of the day of the week"""
return self._aday
def pDay(self):
"""Return the abreviated (with period) name of the day of the week"""
return self._pday
def Day_(self):
"""Compatibility: see pDay"""
return self._pday
def dow(self):
"""Return the integer day of the week, where sunday is 0"""
return self._dayoffset
def dow_1(self):
"""Return the integer day of the week, where sunday is 1"""
return self._dayoffset+1
def h_12(self):
"""Return the 12-hour clock representation of the hour"""
return self._pmhour
def h_24(self):
"""Return the 24-hour clock representation of the hour"""
return self._hour
def ampm(self):
"""Return the appropriate time modifier (am or pm)"""
return self._pm
def hour(self):
"""Return the 24-hour clock representation of the hour"""
return self._hour
def minute(self):
"""Return the minute"""
return self._minute
def second(self):
"""Return the second"""
return self._second
def millis(self):
"""Return the millisecond since the epoch in GMT."""
try:
return self._millis
except AttributeError:
return self._upgrade_old()
def _upgrade_old(self):
"""Upgrades a previously pickled DateTime object."""
millis = long(math.floor(self._t * 1000.0))
self._millis = millis
return millis
def strftime(self, format):
# Format the date/time using the *current timezone representation*.
diff = _tzoffset(self._tz, self._t)
format = re.sub('(^\|[^%])%z',
'\\1%+05d' % (diff / 36),
format)
return strftime(format, safegmtime(self.timeTime() + diff))
# General formats from previous DateTime
def Date(self):
"""Return the date string for the object."""
return "%s/%2.2d/%2.2d" % (self._year, self._month, self._day)
def Time(self):
"""Return the time string for an object to the nearest second."""
return '%2.2d:%2.2d:%2.2d' % (self._hour,self._minute,self._nearsec)
def TimeMinutes(self):
"""Return the time string for an object not showing seconds."""
return '%2.2d:%2.2d' % (self._hour,self._minute)
def AMPM(self):
"""Return the time string for an object to the nearest second."""
return '%2.2d:%2.2d:%2.2d %s' % (
self._pmhour,self._minute,self._nearsec,self._pm)
def AMPMMinutes(self):
"""Return the time string for an object not showing seconds."""
return '%2.2d:%2.2d %s' % (self._pmhour,self._minute,self._pm)
def PreciseTime(self):
"""Return the time string for the object."""
return '%2.2d:%2.2d:%06.3f' % (self._hour,self._minute,self._second)
def PreciseAMPM(self):
"""Return the time string for the object."""
return '%2.2d:%2.2d:%06.3f %s' % (
self._pmhour,self._minute,self._second,self._pm)
def yy(self):
"""Return calendar year as a 2 digit string"""
return str(self._year)[-2:]
def mm(self):
"""Return month as a 2 digit string"""
return '%02d' % self._month
def dd(self):
"""Return day as a 2 digit string"""
return '%02d' % self._day
def rfc822(self):
"""Return the date in RFC 822 format"""
if self._tz == self._localzone0: #Use local standard time
tzoffset = _tzoffset2rfc822zone(localzone)
elif self._tz == self._localzone1: # Use local daylight saving time
tzoffset = _tzoffset2rfc822zone(altzone)
else:
tzoffset = '-0000' # unknown time zone offset
return '%s, %2.2d %s %d %2.2d:%2.2d:%2.2d %s' % (
self._aday,self._day,self._amon,self._year,
self._hour,self._minute,self._nearsec,tzoffset)
# New formats
def fCommon(self):
"""Return a string representing the object\'s value
in the format: March 1, 1997 1:45 pm"""
return '%s %s, %4.4d %s:%2.2d %s' % (
self._fmon,self._day,self._year,self._pmhour,
self._minute,self._pm)
def fCommonZ(self):
"""Return a string representing the object\'s value
in the format: March 1, 1997 1:45 pm US/Eastern"""
return '%s %s, %4.4d %d:%2.2d %s %s' % (
self._fmon,self._day,self._year,self._pmhour,
self._minute,self._pm,self._tz)
def aCommon(self):
"""Return a string representing the object\'s value
in the format: Mar 1, 1997 1:45 pm"""
return '%s %s, %4.4d %s:%2.2d %s' % (
self._amon,self._day,self._year,self._pmhour,
self._minute,self._pm)
def aCommonZ(self):
"""Return a string representing the object\'s value
in the format: Mar 1, 1997 1:45 pm US/Eastern"""
return '%s %s, %4.4d %d:%2.2d %s %s' % (
self._amon,self._day,self._year,self._pmhour,
self._minute,self._pm,self._tz)
def pCommon(self):
"""Return a string representing the object\'s value
in the format: Mar. 1, 1997 1:45 pm"""
return '%s %s, %4.4d %s:%2.2d %s' % (
self._pmon,self._day,self._year,self._pmhour,
self._minute,self._pm)
def pCommonZ(self):
"""Return a string representing the object\'s value
in the format: Mar. 1, 1997 1:45 pm US/Eastern"""
return '%s %s, %4.4d %d:%2.2d %s %s' % (
self._pmon,self._day,self._year,self._pmhour,
self._minute,self._pm,self._tz)
def ISO(self):
"""Return the object in ISO standard format
Dates are output as: YYYY-MM-DD HH:MM:SS
"""
return "%.4d-%.2d-%.2d %.2d:%.2d:%.2d" % (
self._year, self._month, self._day,
self._hour, self._minute, self._second)
def HTML4(self):
"""Return the object in the format used in the HTML4.0 specification,
one of the standard forms in ISO8601. See
http://www.w3.org/TR/NOTE-datetime
Dates are output as: YYYY-MM-DDTHH:MM:SSZ
T, Z are literal characters.
The time is in UTC.
"""
newdate = self.toZone('UTC')
return "%0.4d-%0.2d-%0.2dT%0.2d:%0.2d:%0.2dZ" % (
newdate._year, newdate._month, newdate._day,
newdate._hour, newdate._minute, newdate._second)
def __add__(self,other):
"""A DateTime may be added to a number and a number may be
added to a DateTime; two DateTimes cannot be added."""
if hasattr(other,'_t'):
raise self.DateTimeError,'Cannot add two DateTimes'
o=float(other)
tz = self._tz
t = (self._t + (o*86400.0))
d = (self._d + o)
s = d - math.floor(d)
ms = t - math.floor(t)
x = _calcDependentSecond(tz, t)
yr,mo,dy,hr,mn,sc = _calcYMDHMS(x, ms)
return self.__class__(yr,mo,dy,hr,mn,sc,self._tz,t,d,s)
__radd__=__add__
def __sub__(self,other):
"""Either a DateTime or a number may be subtracted from a
DateTime, however, a DateTime may not be subtracted from
a number."""
if hasattr(other, '_d'):
if 0: # This logic seems right but is incorrect.
my_t = self._t + _tzoffset(self._tz, self._t)
ob_t = other._t + _tzoffset(other._tz, other._t)
return (my_t - ob_t) / 86400.0
return self._d - other._d
else:
return self.__add__(-(other))
def __repr__(self):
"""Convert a DateTime to a string that
looks like a Python expression."""
return '%s(\'%s\')' % (self.__class__.__name__,str(self))
def __str__(self):
"""Convert a DateTime to a string."""
y,m,d =self._year,self._month,self._day
h,mn,s,t=self._hour,self._minute,self._second,self._tz
if h == mn == s == 0:
# hh:mm:ss all zero -- suppress the time.
return '%4.4d/%2.2d/%2.2d' % (y, m, d)
elif s == int(s):
# A whole number of seconds -- suppress milliseconds.
return '%4.4d/%2.2d/%2.2d %2.2d:%2.2d:%2.2d %s' % (
y, m, d, h, mn, s, t)
else:
# s is already rounded to the nearest millisecond, and
# it's not a whole number of seconds. Be sure to print
# 2 digits before the decimal point.
return '%4.4d/%2.2d/%2.2d %2.2d:%2.2d:%06.3f %s' % (
y, m, d, h, mn, s, t)
def __cmp__(self,obj):
"""Compare a DateTime with another DateTime object, or
a float such as those returned by time.time().
NOTE: __cmp__ support is provided for backward
compatibility only, and mixing DateTimes with
ExtensionClasses could cause __cmp__ to break.
You should use the methods lessThan, greaterThan,
lessThanEqualTo, greaterThanEqualTo, equalTo and
notEqualTo to avoid potential problems later!!"""
# Optimized for sorting speed.
try:
return cmp(self._millis, obj._millis)
except AttributeError:
try: self._millis
except AttributeError: self._upgrade_old()
return cmp(self._t,obj)
def __hash__(self):
"""Compute a hash value for a DateTime"""
return int(((self._year%100*12+self._month)*31+
self._day+self.time)*100)
def __int__(self):
"""Convert to an integer number of seconds since the epoch (gmt)"""
return int(self.millis() / 1000)
def __long__(self):
"""Convert to a long-int number of seconds since the epoch (gmt)"""
return long(self.millis() / 1000)
def __float__(self):
"""Convert to floating-point number of seconds since the epoch (gmt)"""
return float(self._t)
def _parse_iso8601(self,s):
try:
return self.__parse_iso8601(s)
except IndexError:
raise self.DateError,'Not an ISO 8601 compliant date string: "%s"' % s
def __parse_iso8601(self,s):
""" parse an ISO 8601 compliant date """
year=0
month=day=1
hour=minute=seconds=hour_off=min_off=0
datereg = re.compile('([0-9]{4})(-([0-9][0-9]))?(-([0-9][0-9]))?')
timereg = re.compile('([0-9]{2})(:([0-9][0-9]))?(:([0-9][0-9]))?(\.[0-9]{1,20})?')
# Date part
fields = datereg.split(s.strip())
if fields[1]: year = int(fields[1])
if fields[3]: month = int(fields[3])
if fields[5]: day = int(fields[5])
if s.find('T')>-1:
fields = timereg.split(s[s.find('T')+1:])
if fields[1]: hour = int(fields[1])
if fields[3]: minute = int(fields[3])
if fields[5]: seconds = int(fields[5])
if fields[6]: seconds = seconds+float(fields[6])
if s.find('Z')>-1:
pass
if s[-3]==':' and s[-6] in ['+','-']:
hour_off = int(s[-6:-3])
min_off = int(s[-2:])
return year,month,day,hour,minute,seconds,'GMT%+03d%02d' % (hour_off,min_off)
def JulianDay(self):
"""
Return the Julian day according to
http://www.tondering.dk/claus/cal/node3.html#sec-calcjd
"""
a = (14 - self._month)/12 #integer division, discard remainder
y = self._year + 4800 - a
m = self._month + (12*a) - 3
return self._day + (153*m+2)/5 + 365*y + y/4 - y/100 + y/400 - 32045
def week(self):
"""
Return the week number according to ISO
see http://www.tondering.dk/claus/cal/node6.html#SECTION00670000000000000000
"""
J = self.JulianDay()
d4 = (J + 31741 - (J % 7)) % 146097 % 36524 % 1461
L = d4/1460
d1 = (( d4 - L) % 365) + L
return d1/7 + 1
class strftimeFormatter:
def __init__(self, dt, format):
self._dt=dt
self._f=format
def __call__(self): return self._dt.strftime(self._f)
# Module methods
def Timezones():
"""Return the list of recognized timezone names"""
return _cache._zlst
|