/*
* %Z%%M% %I% %E% %U%
*
* ************************************************************** "Copyright (c)
* 2001 Sun Microsystems, Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* -Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* -Redistribution in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of Sun Microsystems, Inc. or the names of contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* This software is provided "AS IS," without a warranty of any kind. ALL
* EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
* IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
* NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
* LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
* OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
* LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
* INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
* CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
* OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGES.
*
* You acknowledge that Software is not designed,licensed or intended for use in
* the design, construction, operation or maintenance of any nuclear facility."
*
* ***************************************************************************
*/
import java.applet.Applet;
import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.GraphicsConfiguration;
import java.awt.GridBagConstraints;
import java.awt.GridBagLayout;
import java.awt.GridLayout;
import java.awt.Insets;
import java.awt.Point;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.image.BufferedImage;
import java.io.BufferedOutputStream;
import java.io.FileOutputStream;
import java.text.NumberFormat;
import java.util.Enumeration;
import java.util.EventListener;
import java.util.EventObject;
import java.util.Hashtable;
import java.util.Vector;
import javax.media.j3d.Alpha;
import javax.media.j3d.Appearance;
import javax.media.j3d.Background;
import javax.media.j3d.BoundingSphere;
import javax.media.j3d.BranchGroup;
import javax.media.j3d.Canvas3D;
import javax.media.j3d.ColoringAttributes;
import javax.media.j3d.ImageComponent;
import javax.media.j3d.ImageComponent2D;
import javax.media.j3d.LineArray;
import javax.media.j3d.LineAttributes;
import javax.media.j3d.LineStripArray;
import javax.media.j3d.PolygonAttributes;
import javax.media.j3d.RotationInterpolator;
import javax.media.j3d.Screen3D;
import javax.media.j3d.Shape3D;
import javax.media.j3d.Transform3D;
import javax.media.j3d.TransformGroup;
import javax.media.j3d.TriangleFanArray;
import javax.media.j3d.View;
import javax.swing.Box;
import javax.swing.BoxLayout;
import javax.swing.JButton;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import javax.vecmath.AxisAngle4f;
import javax.vecmath.Color3f;
import javax.vecmath.Matrix4d;
import javax.vecmath.Point3d;
import javax.vecmath.Point3f;
import javax.vecmath.Vector3f;
import javax.vecmath.Vector4d;
import com.sun.image.codec.jpeg.JPEGCodec;
import com.sun.image.codec.jpeg.JPEGEncodeParam;
import com.sun.image.codec.jpeg.JPEGImageEncoder;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.geometry.Sphere;
import com.sun.j3d.utils.universe.SimpleUniverse;
import com.sun.j3d.utils.universe.ViewingPlatform;
public class ViewProj extends Applet implements Java3DExplorerConstants {
PolygonAttributes solidPa;
PolygonAttributes wirePa;
JSlider dynamicOffsetSlider;
JSlider staticOffsetSlider;
JLabel dynamicSliderValueLabel;
JLabel staticSliderValueLabel;
float dynamicOffset = 1.0f;
float staticOffset = 1.0f;
float frontClipDist = 1.413f;
float backClipDist = 3.309f;
float backClipRatio = backClipDist / frontClipDist;
View view;
ViewingPlatform viewingPlatform;
float innerScale = 0.94f;
TransformGroup innerTG;
Transform3D scale;
Transform3D projTrans = new Transform3D();
int numClipGridPts;
int maxClipGridPts = 180;
Point3f[] clipGridPtsVW = new Point3f[maxClipGridPts];
Point3f[] clipGridPtsProj = new Point3f[maxClipGridPts];
int numCirclePts = 36;
Point3f[] circlePtsVW = new Point3f[numCirclePts];
Point3f[] circlePtsProj = new Point3f[numCirclePts];
Point3f eyePtVW = new Point3f();
float fov;
float sphereRadius = 0.85f;
BranchGroup urScene;
BranchGroup lrScene;
SimpleUniverse urUniverse;
SimpleUniverse lrUniverse;
boolean isApplication;
Canvas3D canvas;
Canvas3D urCanvas;
Canvas3D lrCanvas;
OffScreenCanvas3D offScreenCanvas;
OffScreenCanvas3D urOffScreenCanvas;
OffScreenCanvas3D lrOffScreenCanvas;
String snapImageString = "Snap Main";
String urSnapImageString = "Snap UR";
String lrSnapImageString = "Snap LR";
String outFileBase = "vproj";
int outFileSeq = 0;
float offScreenScale = 1.0f;
String urOutFileBase = "vprojur";
int urOutFileSeq = 0;
float urOffScreenScale = 1.0f;
String lrOutFileBase = "vprojlr";
int lrOutFileSeq = 0;
float lrOffScreenScale = 1.0f;
NumberFormat nf;
Vector4d projPt = new Vector4d();
public BranchGroup createSceneGraph() {
// Create the root of the branch graph
BranchGroup objRoot = new BranchGroup();
// Create the transform group node and initialize it to the
// identity. Enable the TRANSFORM_WRITE capability so that
// our behavior code can modify it at runtime. Add it to the
// root of the subgraph.
TransformGroup objTrans = new TransformGroup();
objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
objRoot.addChild(objTrans);
// Create a Sphere. We will display this as both wireframe and
// solid to make a hidden line display
// wireframe
Appearance wireApp = new Appearance();
ColoringAttributes ca = new ColoringAttributes(black,
ColoringAttributes.SHADE_FLAT);
wireApp.setColoringAttributes(ca);
wirePa = new PolygonAttributes(PolygonAttributes.POLYGON_LINE,
PolygonAttributes.CULL_BACK, 0.0f);
wireApp.setPolygonAttributes(wirePa);
Sphere outWireSphere = new Sphere(sphereRadius, 0, 10, wireApp);
objTrans.addChild(outWireSphere);
// solid
ColoringAttributes outCa = new ColoringAttributes(red,
ColoringAttributes.SHADE_FLAT);
Appearance outSolid = new Appearance();
outSolid.setColoringAttributes(outCa);
solidPa = new PolygonAttributes(PolygonAttributes.POLYGON_FILL,
PolygonAttributes.CULL_BACK, 0.0f);
solidPa.setPolygonOffsetFactor(dynamicOffset);
solidPa.setPolygonOffset(staticOffset);
solidPa.setCapability(PolygonAttributes.ALLOW_OFFSET_WRITE);
outSolid.setPolygonAttributes(solidPa);
Sphere outSolidSphere = new Sphere(sphereRadius, 0, 10, outSolid);
objTrans.addChild(outSolidSphere);
innerTG = new TransformGroup();
innerTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
scale = new Transform3D();
updateInnerScale();
objTrans.addChild(innerTG);
// Create a smaller sphere to go inside. This sphere has a different
// tesselation and color
Sphere inWireSphere = new Sphere(sphereRadius, 0, 15, wireApp);
innerTG.addChild(inWireSphere);
// inside solid
ColoringAttributes inCa = new ColoringAttributes(blue,
ColoringAttributes.SHADE_FLAT);
Appearance inSolid = new Appearance();
inSolid.setColoringAttributes(inCa);
inSolid.setPolygonAttributes(solidPa);
Sphere inSolidSphere = new Sphere(sphereRadius, 0, 15, inSolid);
innerTG.addChild(inSolidSphere);
// Create a new Behavior object that will perform the desired
// operation on the specified transform object and add it into
// the scene graph.
AxisAngle4f axisAngle = new AxisAngle4f(0.0f, 0.0f, 1.0f,
-(float) Math.PI / 2.0f);
Transform3D yAxis = new Transform3D();
Alpha rotationAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0,
80000, 0, 0, 0, 0, 0);
RotationInterpolator rotator = new RotationInterpolator(rotationAlpha,
objTrans, yAxis, 0.0f, (float) Math.PI * 2.0f);
BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0),
100.0);
rotator.setSchedulingBounds(bounds);
//objTrans.addChild(rotator);
Background bgWhite = new Background(white);
bgWhite.setApplicationBounds(bounds);
objTrans.addChild(bgWhite);
// Have Java 3D perform optimizations on this scene graph.
objRoot.compile();
return objRoot;
}
void updateInnerScale() {
scale.set(innerScale);
innerTG.setTransform(scale);
}
public BranchGroup createVWorldViewSG() {
// Create the root of the branch graph
BranchGroup objRoot = new BranchGroup();
objRoot.setCapability(BranchGroup.ALLOW_DETACH);
// setup a transform group to hold the scaled scene
TransformGroup objTrans = new TransformGroup();
objRoot.addChild(objTrans);
// get the eye point, field of view and clip distances
float fov = (float) view.getFieldOfView();
// figure out the angle factors to find points along the edges
// of the FOV
// X = fovSpreadX * (Y - eyeVW.y) + eyeVW.x;
float fovSpreadX = (float) Math.tan(fov / 2);
// Z = fovSpreadZ * (X - eyeVW.x) + eyeVW.z;
float fovSpreadZ = 1.0f / fovSpreadX;
//System.out.println("fovSpreadX = " + fovSpreadX);
//System.out.println("fovSpreadZ = " + fovSpreadZ);
Transform3D vpTransform = new Transform3D();
viewingPlatform.getViewPlatformTransform().getTransform(vpTransform);
Vector3f vpTranslation = new Vector3f();
vpTransform.get(vpTranslation);
eyePtVW.set(vpTranslation);
eyePtVW.negate();
// get the eye point in our 2D coord system.
Point3f eyePt = new Point3f(0.0f, eyePtVW.z, 0.1f);
float frontClipDist = (float) view.getFrontClipDistance();
float backClipDist = (float) view.getBackClipDistance();
// set up the clip plane lines
Point3f[] cpPoints = new Point3f[5];
cpPoints[0] = new Point3f(frontClipDist * fovSpreadX, eyePtVW.z
+ frontClipDist, 0.1f);
cpPoints[1] = new Point3f(cpPoints[0]);
cpPoints[1].x *= -1;
Point3f backLeft = new Point3f(-backClipDist * fovSpreadX, eyePtVW.z
+ backClipDist, 0.1f);
cpPoints[2] = backLeft;
Point3f backRight = new Point3f(backLeft);
backRight.x *= -1;
cpPoints[3] = backRight;
cpPoints[4] = cpPoints[0];
//for (int i = 0; i < 4; i++) {
// System.out.println("cpPoints[" + i + "] = " + cpPoints[i]);
//}
int[] cpLength = new int[1];
cpLength[0] = 5;
LineStripArray cpLines = new LineStripArray(5, LineArray.COORDINATES,
cpLength);
cpLines.setCoordinates(0, cpPoints);
Appearance cpApp = new Appearance();
ColoringAttributes cpCa = new ColoringAttributes(blue,
ColoringAttributes.SHADE_FLAT);
cpApp.setColoringAttributes(cpCa);
Shape3D cpShape = new Shape3D(cpLines, cpApp);
objTrans.addChild(cpShape);
// get the limits of the space
float minY = eyePt.y;
float maxY = backLeft.y;
float minX = backLeft.x;
float maxX = backRight.x;
// figure out the X and Y extents and offsets
float deltaX = maxX - minX;
float deltaY = maxY - minY;
float offsetX = -(maxX + minX) / 2.0f;
float offsetY = -(maxY + minY) / 2.0f;
float gridSize = Math.max(deltaX, deltaY);
// scale the grid slightly to give a border around the edge
gridSize *= 1.1f;
//System.out.println("offsetX = " + offsetX);
//System.out.println("offsetY = " + offsetY);
// Scale the view to fit -1 to 1
Transform3D trans = new Transform3D();
trans.set(new Vector3f(offsetX, offsetY, 0.0f), 2.0f / gridSize);
objTrans.setTransform(trans);
// figure out a grid step that is a multiple of 10 which keeps the
// number of steps less than 30.
float gridStep = 1.0f;
while ((gridSize / gridStep) > 30.0) {
gridStep *= 10;
}
int gridNumSteps = (int) Math.ceil(gridSize / gridStep) + 1;
// allocate the grid points array, four points for each step (x and y)
// with a couple extra points for the extra grid points added
// below
int gridNumPoints = 4 * (gridNumSteps + 4);
Point3f[] gridPts = new Point3f[gridNumPoints];
for (int i = 0; i < gridNumPoints; i++) {
gridPts[i] = new Point3f();
}
// find the grid limits. Add a step on each side to make sure
// the grid is larger than the view
float gridMinY = gridStepFloor(minY, gridStep) - gridStep;
float gridMaxY = gridStepCeil(maxY, gridStep) + gridStep;
float gridMinX = gridStepFloor(minX, gridStep) - gridStep;
float gridMaxX = gridStepCeil(maxX, gridStep) + gridStep;
//System.out.println("gridMinY = " + gridMinY);
//System.out.println("gridMaxY = " + gridMaxY);
//System.out.println("gridMinX = " + gridMinX);
//System.out.println("gridMaxX = " + gridMaxX);
// set up the background grid
Appearance bgApp = new Appearance();
ColoringAttributes bgCa = new ColoringAttributes();
bgCa.setColor(grey);
LineAttributes bgLa = new LineAttributes();
bgApp.setColoringAttributes(bgCa);
// clear out the clip grid point list
numClipGridPts = 0;
// set up the vertical lines
int numPts = 0;
for (float x = gridMinX; x <= gridMaxX; x += gridStep) {
gridPts[numPts].x = x;
gridPts[numPts].y = gridMinY;
gridPts[numPts].z = -0.2f;
gridPts[numPts + 1].x = x;
gridPts[numPts + 1].y = gridMaxY;
gridPts[numPts + 1].z = -0.2f;
numPts += 2;
// try to add a line to the clipped grid
// find the intersection of the clipped line with the FOV sides
// this is a distance relative to the eye
float clipZ = fovSpreadZ * Math.abs(x - eyePtVW.x);
if (clipZ < frontClipDist) { // clip to front clip plane
clipZ = frontClipDist;
}
if (clipZ < backClipDist) { // clip to back clip plane
// line is not clipped
clipGridPtsVW[numClipGridPts].x = x;
clipGridPtsVW[numClipGridPts].y = clipZ + eyePtVW.z;
clipGridPtsVW[numClipGridPts].z = -0.1f;
clipGridPtsVW[numClipGridPts + 1].x = x;
clipGridPtsVW[numClipGridPts + 1].y = backClipDist + eyePtVW.z;
clipGridPtsVW[numClipGridPts + 1].z = -0.1f;
numClipGridPts += 2;
}
}
LineArray vertLa = new LineArray(numPts, LineArray.COORDINATES);
vertLa.setCoordinates(0, gridPts, 0, numPts);
Shape3D vertShape = new Shape3D(vertLa, bgApp);
objTrans.addChild(vertShape);
// set up the horizontal lines
numPts = 0;
for (float y = gridMinY; y <= gridMaxY; y += gridStep) {
gridPts[numPts].x = gridMinX;
gridPts[numPts].y = y;
gridPts[numPts++].z = -0.2f;
gridPts[numPts].x = gridMaxX;
gridPts[numPts].y = y;
gridPts[numPts++].z = -0.2f;
// try to add a line to the clipped grid
// find the intersection of the clipped line with the FOV sides
// this is a distance relative to the eye
float clipDist = (y - eyePtVW.z);
if ((clipDist > frontClipDist) && (clipDist < backClipDist)) {
float clipX = fovSpreadX * clipDist;
clipGridPtsVW[numClipGridPts].x = -clipX;
clipGridPtsVW[numClipGridPts].y = y;
clipGridPtsVW[numClipGridPts].z = -0.1f;
clipGridPtsVW[numClipGridPts + 1].x = clipX;
clipGridPtsVW[numClipGridPts + 1].y = y;
clipGridPtsVW[numClipGridPts + 1].z = -0.1f;
numClipGridPts += 2;
}
}
LineArray horizLa = new LineArray(numPts, LineArray.COORDINATES);
horizLa.setCoordinates(0, gridPts, 0, numPts);
Shape3D horizShape = new Shape3D(horizLa, bgApp);
objTrans.addChild(horizShape);
// draw the clipped grid.
if (numClipGridPts > 0) {
LineArray clipLa = new LineArray(numClipGridPts,
LineArray.COORDINATES);
clipLa.setCoordinates(0, clipGridPtsVW, 0, numClipGridPts);
Appearance clipGridApp = new Appearance();
ColoringAttributes clipCa = new ColoringAttributes(black,
ColoringAttributes.SHADE_FLAT);
clipGridApp.setColoringAttributes(clipCa);
LineAttributes clipGridLa = new LineAttributes();
Shape3D clipShape = new Shape3D(clipLa, clipGridApp);
objTrans.addChild(clipShape);
}
// set up the coordinate system
Appearance coordSysApp = new Appearance();
LineAttributes coordSysLa = new LineAttributes();
coordSysLa.setLineWidth(3.0f);
coordSysApp.setLineAttributes(coordSysLa);
ColoringAttributes coordSysCa = new ColoringAttributes(grey,
ColoringAttributes.SHADE_FLAT);
coordSysApp.setColoringAttributes(coordSysCa);
Point3f[] coordSysPts = new Point3f[4];
coordSysPts[0] = new Point3f(gridMinX, 0, -0.5f);
coordSysPts[1] = new Point3f(gridMaxX, 0, -0.5f);
coordSysPts[2] = new Point3f(0, gridMinY, -0.5f);
coordSysPts[3] = new Point3f(0, gridMaxY, -0.5f);
LineArray coordSysLines = new LineArray(4, LineArray.COORDINATES);
coordSysLines.setCoordinates(0, coordSysPts);
Shape3D coordSysShape = new Shape3D(coordSysLines, coordSysApp);
objTrans.addChild(coordSysShape);
// set up the circle
Appearance circleApp = new Appearance();
ColoringAttributes circleCa = new ColoringAttributes();
circleCa.setColor(red);
circleApp.setColoringAttributes(circleCa);
PolygonAttributes pa = new PolygonAttributes();
pa.setCullFace(PolygonAttributes.CULL_NONE);
circleApp.setPolygonAttributes(pa);
int step = 360 / (numCirclePts - 1);
for (int deg = 0; deg < 360; deg += step) {
double angle = Math.toRadians(deg);
circlePtsVW[deg / 10].x = sphereRadius * (float) Math.sin(angle);
circlePtsVW[deg / 10].y = sphereRadius * (float) Math.cos(angle);
circlePtsVW[deg / 10].z = -0.3f;
}
circlePtsVW[numCirclePts - 1].set(circlePtsVW[0]);
int[] lineStripLength = new int[1];
lineStripLength[0] = numCirclePts;
//LineStripArray circleLineStrip = new LineStripArray(numCirclePts,
// LineArray.COORDINATES, lineStripLength);
TriangleFanArray circleLineStrip = new TriangleFanArray(numCirclePts,
LineArray.COORDINATES, lineStripLength);
circleLineStrip.setCoordinates(0, circlePtsVW);
Shape3D circleShape = new Shape3D(circleLineStrip, circleApp);
objTrans.addChild(circleShape);
return objRoot;
}
// return the closest multiple of step less than value
float gridStepFloor(float value, float step) {
return (float) (step * (Math.floor(value / step)));
}
// return the closest multiple of step greater than value
float gridStepCeil(float value, float step) {
return (float) (step * (Math.ceil(value / step)));
}
public BranchGroup createProjViewSG() {
// Create the root of the branch graph
BranchGroup objRoot = new BranchGroup();
objRoot.setCapability(BranchGroup.ALLOW_DETACH);
// setup a transform group to hold the scaled scene
TransformGroup objTrans = new TransformGroup();
Transform3D scale = new Transform3D();
scale.set(0.9);
objTrans.setTransform(scale);
objRoot.addChild(objTrans);
// create the clip limits line
Point3f[] cpPoints = new Point3f[5];
cpPoints[0] = new Point3f(-1, -1, 0.1f);
cpPoints[1] = new Point3f(1, -1, 0.1f);
cpPoints[2] = new Point3f(1, 1, 0.1f);
cpPoints[3] = new Point3f(-1, 1, 0.1f);
cpPoints[4] = cpPoints[0];
int[] cpLength = new int[1];
cpLength[0] = 5;
LineStripArray cpLines = new LineStripArray(5, LineArray.COORDINATES,
cpLength);
cpLines.setCoordinates(0, cpPoints);
Appearance cpApp = new Appearance();
ColoringAttributes cpCa = new ColoringAttributes(blue,
ColoringAttributes.SHADE_FLAT);
cpApp.setColoringAttributes(cpCa);
LineAttributes cpLa = new LineAttributes();
Shape3D cpShape = new Shape3D(cpLines, cpApp);
objTrans.addChild(cpShape);
// transform and render the clip grid points
updateProjTrans();
if (numClipGridPts > 0) {
// transform the clipGridPts
for (int i = 0; i < numClipGridPts; i++) {
projectPoint(clipGridPtsVW[i], clipGridPtsProj[i]);
}
LineArray clipLn = new LineArray(numClipGridPts,
LineArray.COORDINATES);
clipLn.setCoordinates(0, clipGridPtsProj, 0, numClipGridPts);
Appearance clipGridApp = new Appearance();
ColoringAttributes clipCa = new ColoringAttributes(black,
ColoringAttributes.SHADE_FLAT);
clipGridApp.setColoringAttributes(clipCa);
LineAttributes clipLa = new LineAttributes();
Shape3D clipShape = new Shape3D(clipLn, clipGridApp);
objTrans.addChild(clipShape);
}
// set up the circle
Appearance circleApp = new Appearance();
ColoringAttributes circleCa = new ColoringAttributes();
circleCa.setColor(red);
circleApp.setColoringAttributes(circleCa);
PolygonAttributes pa = new PolygonAttributes();
pa.setCullFace(PolygonAttributes.CULL_NONE);
circleApp.setPolygonAttributes(pa);
// transform the circlePts
for (int i = 0; i < numCirclePts; i++) {
projectPoint(circlePtsVW[i], circlePtsProj[i]);
}
int[] lineStripLength = new int[1];
lineStripLength[0] = numCirclePts;
//LineStripArray circleLineStrip = new LineStripArray(numCirclePts,
// LineArray.COORDINATES, lineStripLength);
TriangleFanArray circleLineStrip = new TriangleFanArray(numCirclePts,
LineArray.COORDINATES, lineStripLength);
circleLineStrip.setCoordinates(0, circlePtsProj);
Shape3D circleShape = new Shape3D(circleLineStrip, circleApp);
objTrans.addChild(circleShape);
return objRoot;
}
void projectPoint(Point3f ptVW, Point3f ptProj) {
// handle the VW having y and z switched
// TODO: fix viewpoint for views
projPt.x = ptVW.x;
projPt.y = ptVW.z;
projPt.z = -ptVW.y;
projPt.w = 1.0f;
projPt.z += eyePtVW.z; // TODO: move to projTrans
//System.out.println("projPtVW = (" +
// projPt.x + ", " +
// projPt.y + ", " +
// projPt.z + ")");
projTrans.transform(projPt);
projPt.x /= projPt.w;
projPt.y /= projPt.w;
projPt.z /= projPt.w;
//System.out.println("projPt = (" +
// projPt.x + ", " +
// projPt.y + ", " +
// projPt.z + ")");
ptProj.x = (float) projPt.x;
ptProj.y = (float) projPt.z;
ptProj.z = (float) projPt.y;
}
/**
* Calculates the projection transform specified by the field of view and
* clip distances specified by the view.
*/
public void updateProjTrans() {
int projType = view.getProjectionPolicy();
if (projType == View.PARALLEL_PROJECTION) {
//System.out.println("PARALLEL_PROJECTION");
projTrans.setIdentity();
return;
}
//System.out.println("PERSPECTIVE_PROJECTION");
// figure out the perspective transform from the view
double fov = view.getFieldOfView();
// n = near clip
double n = frontClipDist;
// f = far clip
double f = backClipDist;
//System.out.println("n = " + nf.format(n) + " f = " + nf.format(f));
// Create a matrix using coefficents derived from the OpenGL
// glFrustum() man page. This assumes the eye point is a 0,0,0,
// the front clip plane is a z = -n, the back clip plane is at
// z = -f and that the front clip plane intersects the FOV so that
// -1 <= X,Y <= 1 at the front plane (the last assumption may not
// be true, so we'll scale later).
Matrix4d matrix = new Matrix4d();
matrix.m00 = n;
matrix.m11 = n;
matrix.m22 = -(f + n) / (f - n);
matrix.m23 = -2 * f * n / (f - n);
matrix.m32 = -1;
//System.out.println("matrix = " + matrix);
// This is the distance where the FOV maps to a -1 to 1 area in X and Y
double d = 1 / Math.tan(fov / 2);
//System.out.println("n = " + nf.format(n) + " f = " + nf.format(f) +
// " d = " + nf.format(d));
// this is a scaling ratio to make the OpenGL glFrustum() matrix
// elements work with with the J3D matrix. It compensates for the
// front clip plane not being at the FOV distance (the OpenGL
// matrix expects n == d).
double scale = n / d;
//System.out.println("scale = " + nf.format(scale));
// scale the elements of the matrix
//matrix.m00 *= 1.0/scale;
//matrix.m11 *= 1.0/scale;
matrix.m22 *= scale;
matrix.m23 *= scale;
matrix.m32 *= scale;
// set the Transform3D
projTrans.set(matrix);
//System.out.println("projTrans = " + projTrans);
}
/* TODO: use a behavior post to avoid the flicker when these change */
void updateViewWindows() {
BranchGroup newUlScene = createVWorldViewSG();
urScene.detach();
urUniverse.addBranchGraph(newUlScene);
urScene = newUlScene;
BranchGroup newLlScene = createProjViewSG();
lrScene.detach();
lrUniverse.addBranchGraph(newLlScene);
lrScene = newLlScene;
}
public ViewProj() {
this(true);
}
public ViewProj(boolean isApplication) {
this.isApplication = isApplication;
}
public void init() {
setLayout(new BorderLayout());
nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits(3);
GraphicsConfiguration config = SimpleUniverse
.getPreferredConfiguration();
JPanel canvasPanel = new JPanel();
GridBagLayout gridbag = new GridBagLayout();
canvasPanel.setLayout(gridbag);
canvas = new Canvas3D(config);
canvas.setSize(400, 400);
GridBagConstraints constraints = new GridBagConstraints();
constraints.gridx = 0;
constraints.gridy = 0;
constraints.gridwidth = 2;
constraints.gridheight = 2;
constraints.insets = new Insets(5, 5, 5, 5);
constraints.fill = GridBagConstraints.BOTH;
gridbag.setConstraints(canvas, constraints);
canvasPanel.add(canvas);
constraints.fill = GridBagConstraints.REMAINDER;
constraints.gridwidth = 1;
constraints.gridheight = 1;
constraints.gridx = 2;
constraints.gridy = 0;
urCanvas = new Canvas3D(config);
urCanvas.setSize(200, 200);
gridbag.setConstraints(urCanvas, constraints);
canvasPanel.add(urCanvas);
constraints.gridx = 2;
constraints.gridy = 1;
lrCanvas = new Canvas3D(config);
lrCanvas.setSize(200, 200);
gridbag.setConstraints(lrCanvas, constraints);
canvasPanel.add(lrCanvas);
add(canvasPanel, BorderLayout.NORTH);
SimpleUniverse u = new SimpleUniverse(canvas);
urUniverse = new SimpleUniverse(urCanvas);
lrUniverse = new SimpleUniverse(lrCanvas);
if (isApplication) {
offScreenCanvas = new OffScreenCanvas3D(config, true);
// set the size of the off-screen canvas based on a scale
// of the on-screen size
Screen3D sOn = canvas.getScreen3D();
Screen3D sOff = offScreenCanvas.getScreen3D();
Dimension dim = sOn.getSize();
dim.width *= offScreenScale;
dim.height *= offScreenScale;
sOff.setSize(dim);
sOff.setPhysicalScreenWidth(sOn.getPhysicalScreenWidth()
* offScreenScale);
sOff.setPhysicalScreenHeight(sOn.getPhysicalScreenHeight()
* offScreenScale);
// attach the offscreen canvas to the view
u.getViewer().getView().addCanvas3D(offScreenCanvas);
urOffScreenCanvas = new OffScreenCanvas3D(config, true);
// set the size of the off-screen canvas based on a scale
// of the on-screen size
sOn = urCanvas.getScreen3D();
sOff = urOffScreenCanvas.getScreen3D();
dim = sOn.getSize();
dim.width *= urOffScreenScale;
dim.height *= urOffScreenScale;
sOff.setSize(dim);
sOff.setPhysicalScreenWidth(sOn.getPhysicalScreenWidth()
* urOffScreenScale);
sOff.setPhysicalScreenHeight(sOn.getPhysicalScreenHeight()
* urOffScreenScale);
// attach the offscreen canvas to the view
urUniverse.getViewer().getView().addCanvas3D(urOffScreenCanvas);
lrOffScreenCanvas = new OffScreenCanvas3D(config, true);
// set the size of the off-screen canvas based on a scale
// of the on-screen size
sOn = lrCanvas.getScreen3D();
sOff = lrOffScreenCanvas.getScreen3D();
dim = sOn.getSize();
dim.width *= lrOffScreenScale;
dim.height *= lrOffScreenScale;
sOff.setSize(dim);
sOff.setPhysicalScreenWidth(sOn.getPhysicalScreenWidth()
* lrOffScreenScale);
sOff.setPhysicalScreenHeight(sOn.getPhysicalScreenHeight()
* lrOffScreenScale);
// attach the offscreen canvas to the view
lrUniverse.getViewer().getView().addCanvas3D(lrOffScreenCanvas);
}
// Create a simple scene and attach it to the virtual universe
BranchGroup scene = createSceneGraph();
// This will move the ViewPlatform back a bit so the
// objects in the scene can be viewed.
viewingPlatform = u.getViewingPlatform();
viewingPlatform.setNominalViewingTransform();
view = u.getViewer().getView();
view.setFrontClipPolicy(View.VIRTUAL_EYE);
view.setBackClipPolicy(View.VIRTUAL_EYE);
view.setFrontClipDistance(frontClipDist);
view.setBackClipDistance(backClipDist);
u.addBranchGraph(scene);
// init the clipGridPts arrays
for (int i = 0; i < maxClipGridPts; i++) {
clipGridPtsVW[i] = new Point3f();
clipGridPtsProj[i] = new Point3f();
}
// init the circlePts arrays
for (int i = 0; i < numCirclePts; i++) {
circlePtsVW[i] = new Point3f();
circlePtsProj[i] = new Point3f();
}
// setup the ur canvas
urScene = createVWorldViewSG();
// This will move the ViewPlatform back a bit so the
// objects in the scene can be viewed.
urUniverse.getViewingPlatform().setNominalViewingTransform();
View urView = urUniverse.getViewer().getView();
urView.setProjectionPolicy(View.PARALLEL_PROJECTION);
urUniverse.addBranchGraph(urScene);
// set up the background on a separate BG so that it can stay there
// when we replace the scene SG
Background urBgWhite = new Background(white);
urBgWhite.setApplicationBounds(infiniteBounds);
BranchGroup urBackBG = new BranchGroup();
urBackBG.addChild(urBgWhite);
urUniverse.addBranchGraph(urBackBG);
// setup the lr canvas
lrScene = createProjViewSG();
// This will move the ViewPlatform back a bit so the
// objects in the scene can be viewed.
lrUniverse.getViewingPlatform().setNominalViewingTransform();
View lrView = lrUniverse.getViewer().getView();
lrView.setProjectionPolicy(View.PARALLEL_PROJECTION);
lrUniverse.addBranchGraph(lrScene);
// set up the background on a separate BG so that it can stay there
// when we replace the scene SG
Background lrBgWhite = new Background(white);
lrBgWhite.setApplicationBounds(infiniteBounds);
BranchGroup lrBackBG = new BranchGroup();
lrBackBG.addChild(lrBgWhite);
lrUniverse.addBranchGraph(lrBackBG);
// set up the sliders
JPanel guiPanel = new JPanel();
guiPanel.setLayout(new GridLayout(0, 2));
FloatLabelJSlider dynamicSlider = new FloatLabelJSlider(
"Dynamic Offset", 0.1f, 0.0f, 2.0f, dynamicOffset);
dynamicSlider.addFloatListener(new FloatListener() {
public void floatChanged(FloatEvent e) {
dynamicOffset = e.getValue();
solidPa.setPolygonOffsetFactor(dynamicOffset);
}
});
guiPanel.add(dynamicSlider);
LogFloatLabelJSlider staticSlider = new LogFloatLabelJSlider(
"Static Offset", 0.1f, 10000.0f, staticOffset);
staticSlider.addFloatListener(new FloatListener() {
public void floatChanged(FloatEvent e) {
staticOffset = e.getValue();
solidPa.setPolygonOffset(staticOffset);
}
});
guiPanel.add(staticSlider);
// These are declared final here so they can be changed by the
// listener routines below.
LogFloatLabelJSlider frontClipSlider = new LogFloatLabelJSlider(
"Front Clip Distance", 0.001f, 10.0f, frontClipDist);
final LogFloatLabelJSlider backClipSlider = new LogFloatLabelJSlider(
"Back Clip Distance", 1.0f, 10000.0f, backClipDist);
final LogFloatLabelJSlider backClipRatioSlider = new LogFloatLabelJSlider(
"Back Clip Ratio", 1.0f, 10000.0f, backClipRatio);
frontClipSlider.addFloatListener(new FloatListener() {
public void floatChanged(FloatEvent e) {
frontClipDist = e.getValue();
view.setFrontClipDistance(frontClipDist);
backClipRatio = backClipDist / frontClipDist;
backClipRatioSlider.setValue(backClipRatio);
updateViewWindows();
}
});
guiPanel.add(frontClipSlider);
backClipSlider.addFloatListener(new FloatListener() {
public void floatChanged(FloatEvent e) {
backClipDist = e.getValue();
backClipRatio = backClipDist / frontClipDist;
backClipRatioSlider.setValue(backClipRatio);
view.setBackClipDistance(backClipDist);
updateViewWindows();
}
});
guiPanel.add(backClipSlider);
backClipRatioSlider.addFloatListener(new FloatListener() {
public void floatChanged(FloatEvent e) {
backClipRatio = e.getValue();
backClipDist = backClipRatio * frontClipDist;
backClipSlider.setValue(backClipDist);
updateViewWindows();
}
});
guiPanel.add(backClipRatioSlider);
FloatLabelJSlider innerSphereSlider = new FloatLabelJSlider(
"Inner Sphere Scale", 0.001f, 0.90f, 1.0f, innerScale);
innerSphereSlider.addFloatListener(new FloatListener() {
public void floatChanged(FloatEvent e) {
innerScale = e.getValue();
updateInnerScale();
}
});
guiPanel.add(innerSphereSlider);
JButton mainSnap = new JButton(snapImageString);
mainSnap.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
Point loc = canvas.getLocationOnScreen();
offScreenCanvas.setOffScreenLocation(loc);
Dimension dim = canvas.getSize();
dim.width *= offScreenScale;
dim.height *= offScreenScale;
nf.setMinimumIntegerDigits(3);
offScreenCanvas.snapImageFile(outFileBase
+ nf.format(outFileSeq++), dim.width, dim.height);
nf.setMinimumIntegerDigits(0);
}
});
guiPanel.add(mainSnap);
JButton urSnap = new JButton(urSnapImageString);
urSnap.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.out.println("Snap UR");
Point loc = urCanvas.getLocationOnScreen();
urOffScreenCanvas.setOffScreenLocation(loc);
Dimension dim = urCanvas.getSize();
dim.width *= urOffScreenScale;
dim.height *= urOffScreenScale;
nf.setMinimumIntegerDigits(3);
urOffScreenCanvas.snapImageFile(urOutFileBase
+ nf.format(urOutFileSeq++), dim.width, dim.height);
nf.setMinimumIntegerDigits(0);
}
});
guiPanel.add(urSnap);
JButton lrSnap = new JButton(lrSnapImageString);
lrSnap.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.out.println("Snap LR");
Point loc = lrCanvas.getLocationOnScreen();
lrOffScreenCanvas.setOffScreenLocation(loc);
Dimension dim = lrCanvas.getSize();
dim.width *= lrOffScreenScale;
dim.height *= lrOffScreenScale;
nf.setMinimumIntegerDigits(3);
lrOffScreenCanvas.snapImageFile(lrOutFileBase
+ nf.format(lrOutFileSeq++), dim.width, dim.height);
nf.setMinimumIntegerDigits(0);
}
});
guiPanel.add(lrSnap);
add(guiPanel, BorderLayout.SOUTH);
}
//
// The following allows ViewProj to be run as an application
// as well as an applet
//
public static void main(String[] args) {
new MainFrame(new ViewProj(true), 700, 600);
}
}
interface Java3DExplorerConstants {
// colors
static Color3f black = new Color3f(0.0f, 0.0f, 0.0f);
static Color3f red = new Color3f(1.0f, 0.0f, 0.0f);
static Color3f green = new Color3f(0.0f, 1.0f, 0.0f);
static Color3f blue = new Color3f(0.0f, 0.0f, 1.0f);
static Color3f skyBlue = new Color3f(0.6f, 0.7f, 0.9f);
static Color3f cyan = new Color3f(0.0f, 1.0f, 1.0f);
static Color3f magenta = new Color3f(1.0f, 0.0f, 1.0f);
static Color3f yellow = new Color3f(1.0f, 1.0f, 0.0f);
static Color3f brightWhite = new Color3f(1.0f, 1.5f, 1.5f);
static Color3f white = new Color3f(1.0f, 1.0f, 1.0f);
static Color3f darkGrey = new Color3f(0.15f, 0.15f, 0.15f);
static Color3f medGrey = new Color3f(0.3f, 0.3f, 0.3f);
static Color3f grey = new Color3f(0.5f, 0.5f, 0.5f);
static Color3f lightGrey = new Color3f(0.75f, 0.75f, 0.75f);
// infinite bounding region, used to make env nodes active everywhere
BoundingSphere infiniteBounds = new BoundingSphere(new Point3d(),
Double.MAX_VALUE);
// common values
static final String nicestString = "NICEST";
static final String fastestString = "FASTEST";
static final String antiAliasString = "Anti-Aliasing";
static final String noneString = "NONE";
// light type constants
static int LIGHT_AMBIENT = 1;
static int LIGHT_DIRECTIONAL = 2;
static int LIGHT_POSITIONAL = 3;
static int LIGHT_SPOT = 4;
// screen capture constants
static final int USE_COLOR = 1;
static final int USE_BLACK_AND_WHITE = 2;
// number formatter
NumberFormat nf = NumberFormat.getInstance();
}
class OffScreenCanvas3D extends Canvas3D {
OffScreenCanvas3D(GraphicsConfiguration graphicsConfiguration,
boolean offScreen) {
super(graphicsConfiguration, offScreen);
}
private BufferedImage doRender(int width, int height) {
BufferedImage bImage = new BufferedImage(width, height,
BufferedImage.TYPE_INT_RGB);
ImageComponent2D buffer = new ImageComponent2D(
ImageComponent.FORMAT_RGB, bImage);
//buffer.setYUp(true);
setOffScreenBuffer(buffer);
renderOffScreenBuffer();
waitForOffScreenRendering();
bImage = getOffScreenBuffer().getImage();
return bImage;
}
void snapImageFile(String filename, int width, int height) {
BufferedImage bImage = doRender(width, height);
/*
* JAI: RenderedImage fImage = JAI.create("format", bImage,
* DataBuffer.TYPE_BYTE); JAI.create("filestore", fImage, filename +
* ".tif", "tiff", null);
*/
/* No JAI: */
try {
FileOutputStream fos = new FileOutputStream(filename + ".jpg");
BufferedOutputStream bos = new BufferedOutputStream(fos);
JPEGImageEncoder jie = JPEGCodec.createJPEGEncoder(bos);
JPEGEncodeParam param = jie.getDefaultJPEGEncodeParam(bImage);
param.setQuality(1.0f, true);
jie.setJPEGEncodeParam(param);
jie.encode(bImage);
bos.flush();
fos.close();
} catch (Exception e) {
System.out.println(e);
}
}
}
class FloatLabelJSlider extends JPanel implements ChangeListener,
Java3DExplorerConstants {
JSlider slider;
JLabel valueLabel;
Vector listeners = new Vector();
float min, max, resolution, current, scale;
int minInt, maxInt, curInt;;
int intDigits, fractDigits;
float minResolution = 0.001f;
// default slider with name, resolution = 0.1, min = 0.0, max = 1.0 inital
// 0.5
FloatLabelJSlider(String name) {
this(name, 0.1f, 0.0f, 1.0f, 0.5f);
}
FloatLabelJSlider(String name, float resolution, float min, float max,
float current) {
this.resolution = resolution;
this.min = min;
this.max = max;
this.current = current;
if (resolution < minResolution) {
resolution = minResolution;
}
// round scale to nearest integer fraction. i.e. 0.3 => 1/3 = 0.33
scale = (float) Math.round(1.0f / resolution);
resolution = 1.0f / scale;
// get the integer versions of max, min, current
minInt = Math.round(min * scale);
maxInt = Math.round(max * scale);
curInt = Math.round(current * scale);
// sliders use integers, so scale our floating point value by "scale"
// to make each slider "notch" be "resolution". We will scale the
// value down by "scale" when we get the event.
slider = new JSlider(JSlider.HORIZONTAL, minInt, maxInt, curInt);
slider.addChangeListener(this);
valueLabel = new JLabel(" ");
// set the initial value label
setLabelString();
// add min and max labels to the slider
Hashtable labelTable = new Hashtable();
labelTable.put(new Integer(minInt), new JLabel(nf.format(min)));
labelTable.put(new Integer(maxInt), new JLabel(nf.format(max)));
slider.setLabelTable(labelTable);
slider.setPaintLabels(true);
/* layout to align left */
setLayout(new BorderLayout());
Box box = new Box(BoxLayout.X_AXIS);
add(box, BorderLayout.WEST);
box.add(new JLabel(name));
box.add(slider);
box.add(valueLabel);
}
public void setMinorTickSpacing(float spacing) {
int intSpacing = Math.round(spacing * scale);
slider.setMinorTickSpacing(intSpacing);
}
public void setMajorTickSpacing(float spacing) {
int intSpacing = Math.round(spacing * scale);
slider.setMajorTickSpacing(intSpacing);
}
public void setPaintTicks(boolean paint) {
slider.setPaintTicks(paint);
}
public void addFloatListener(FloatListener listener) {
listeners.add(listener);
}
public void removeFloatListener(FloatListener listener) {
listeners.remove(listener);
}
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
// get the event type, set the corresponding value.
// Sliders use integers, handle floating point values by scaling the
// values by "scale" to allow settings at "resolution" intervals.
// Divide by "scale" to get back to the real value.
curInt = source.getValue();
current = curInt / scale;
valueChanged();
}
public void setValue(float newValue) {
boolean changed = (newValue != current);
current = newValue;
if (changed) {
valueChanged();
}
}
private void valueChanged() {
// update the label
setLabelString();
// notify the listeners
FloatEvent event = new FloatEvent(this, current);
for (Enumeration e = listeners.elements(); e.hasMoreElements();) {
FloatListener listener = (FloatListener) e.nextElement();
listener.floatChanged(event);
}
}
void setLabelString() {
// Need to muck around to try to make sure that the width of the label
// is wide enough for the largest value. Pad the string
// be large enough to hold the largest value.
int pad = 5; // fudge to make up for variable width fonts
float maxVal = Math.max(Math.abs(min), Math.abs(max));
intDigits = Math.round((float) (Math.log(maxVal) / Math.log(10))) + pad;
if (min < 0) {
intDigits++; // add one for the '-'
}
// fractDigits is num digits of resolution for fraction. Use base 10 log
// of scale, rounded up, + 2.
fractDigits = (int) Math.ceil((Math.log(scale) / Math.log(10)));
nf.setMinimumFractionDigits(fractDigits);
nf.setMaximumFractionDigits(fractDigits);
String value = nf.format(current);
while (value.length() < (intDigits + fractDigits)) {
value = value + " ";
}
valueLabel.setText(value);
}
}
class FloatEvent extends EventObject {
float value;
FloatEvent(Object source, float newValue) {
super(source);
value = newValue;
}
float getValue() {
return value;
}
}
interface FloatListener extends EventListener {
void floatChanged(FloatEvent e);
}
class LogFloatLabelJSlider extends JPanel implements ChangeListener,
Java3DExplorerConstants {
JSlider slider;
JLabel valueLabel;
Vector listeners = new Vector();
float min, max, resolution, current, scale;
double minLog, maxLog, curLog;
int minInt, maxInt, curInt;;
int intDigits, fractDigits;
NumberFormat nf = NumberFormat.getInstance();
float minResolution = 0.001f;
double logBase = Math.log(10);
// default slider with name, resolution = 0.1, min = 0.0, max = 1.0 inital
// 0.5
LogFloatLabelJSlider(String name) {
this(name, 0.1f, 100.0f, 10.0f);
}
LogFloatLabelJSlider(String name, float min, float max, float current) {
this.resolution = resolution;
this.min = min;
this.max = max;
this.current = current;
if (resolution < minResolution) {
resolution = minResolution;
}
minLog = log10(min);
maxLog = log10(max);
curLog = log10(current);
// resolution is 100 steps from min to max
scale = 100.0f;
resolution = 1.0f / scale;
// get the integer versions of max, min, current
minInt = (int) Math.round(minLog * scale);
maxInt = (int) Math.round(maxLog * scale);
curInt = (int) Math.round(curLog * scale);
slider = new JSlider(JSlider.HORIZONTAL, minInt, maxInt, curInt);
slider.addChangeListener(this);
valueLabel = new JLabel(" ");
// Need to muck around to make sure that the width of the label
// is wide enough for the largest value. Pad the initial string
// be large enough to hold the largest value.
int pad = 5; // fudge to make up for variable width fonts
intDigits = (int) Math.ceil(maxLog) + pad;
if (min < 0) {
intDigits++; // add one for the '-'
}
if (minLog < 0) {
fractDigits = (int) Math.ceil(-minLog);
} else {
fractDigits = 0;
}
nf.setMinimumFractionDigits(fractDigits);
nf.setMaximumFractionDigits(fractDigits);
String value = nf.format(current);
while (value.length() < (intDigits + fractDigits)) {
value = value + " ";
}
valueLabel.setText(value);
// add min and max labels to the slider
Hashtable labelTable = new Hashtable();
labelTable.put(new Integer(minInt), new JLabel(nf.format(min)));
labelTable.put(new Integer(maxInt), new JLabel(nf.format(max)));
slider.setLabelTable(labelTable);
slider.setPaintLabels(true);
// layout to align left
setLayout(new BorderLayout());
Box box = new Box(BoxLayout.X_AXIS);
add(box, BorderLayout.WEST);
box.add(new JLabel(name));
box.add(slider);
box.add(valueLabel);
}
public void setMinorTickSpacing(float spacing) {
int intSpacing = Math.round(spacing * scale);
slider.setMinorTickSpacing(intSpacing);
}
public void setMajorTickSpacing(float spacing) {
int intSpacing = Math.round(spacing * scale);
slider.setMajorTickSpacing(intSpacing);
}
public void setPaintTicks(boolean paint) {
slider.setPaintTicks(paint);
}
public void addFloatListener(FloatListener listener) {
listeners.add(listener);
}
public void removeFloatListener(FloatListener listener) {
listeners.remove(listener);
}
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
curInt = source.getValue();
curLog = curInt / scale;
current = (float) exp10(curLog);
valueChanged();
}
public void setValue(float newValue) {
boolean changed = (newValue != current);
current = newValue;
if (changed) {
valueChanged();
}
}
private void valueChanged() {
String value = nf.format(current);
valueLabel.setText(value);
// notify the listeners
FloatEvent event = new FloatEvent(this, current);
for (Enumeration e = listeners.elements(); e.hasMoreElements();) {
FloatListener listener = (FloatListener) e.nextElement();
listener.floatChanged(event);
}
}
double log10(double value) {
return Math.log(value) / logBase;
}
double exp10(double value) {
return Math.exp(value * logBase);
}
}
|