Hash map for counting references to Object keys. : HashMap « Collections Data Structure « Java

Java
1. 2D Graphics GUI
2. 3D
3. Advanced Graphics
4. Ant
5. Apache Common
6. Chart
7. Class
8. Collections Data Structure
9. Data Type
10. Database SQL JDBC
11. Design Pattern
12. Development Class
13. EJB3
14. Email
15. Event
16. File Input Output
17. Game
18. Generics
19. GWT
20. Hibernate
21. I18N
22. J2EE
23. J2ME
24. JDK 6
25. JNDI LDAP
26. JPA
27. JSP
28. JSTL
29. Language Basics
30. Network Protocol
31. PDF RTF
32. Reflection
33. Regular Expressions
34. Scripting
35. Security
36. Servlets
37. Spring
38. Swing Components
39. Swing JFC
40. SWT JFace Eclipse
41. Threads
42. Tiny Application
43. Velocity
44. Web Services SOA
45. XML
Java Tutorial
Java Source Code / Java Documentation
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java » Collections Data Structure » HashMapScreenshots 
Hash map for counting references to Object keys.
   
/*
 * Copyright (c) 2006-2007, Dennis M. Sosnoski. All rights reserved.
 
 * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
 * following conditions are met:
 
 * Redistributions of source code must retain the above copyright notice, this list of conditions and the following
 * disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
 * following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of
 * JiBX nor the names of its contributors may be used to endorse or promote products derived from this software without
 * specific prior written permission.
 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */


import java.util.Iterator;


/**
 * Hash map for counting references to <code>Object</code> keys. The map implementation is not very efficient when
 * resizing, but works well when the size of the map is known in advance or when accesses are substantially more common
 * than adds.
 
 @author Dennis M. Sosnoski
 */
public class ReferenceCountMap
{
    /** Default fill fraction allowed before growing table. */
    private static final double DEFAULT_FILL = 0.3d;
    
    /** Minimum size used for hash table. */
    private static final int MINIMUM_SIZE = 63;
    
    /** Number of entries present in table. */
    private int m_entryCount;
    
    /** Entries allowed before growing table. */
    private int m_entryLimit;
    
    /** Size of array used for keys. */
    private int m_arraySize;
    
    /** Offset added (modulo table size) to slot number on collision. */
    private int m_hitOffset;
    
    /** Array of key table slots. */
    private Object[] m_keyTable;
    
    /** Array of value table slots. */
    private int[] m_valueTable;
    
    /**
     * Constructor with count.
     
     @param count number of values to assume in initial sizing of table
     */
    public ReferenceCountMap(int count) {
        
        // compute initial table size (ensuring odd)
        m_arraySize = Math.max((int)(count / DEFAULT_FILL), MINIMUM_SIZE);
        m_arraySize += (m_arraySize + 12;
        
        // initialize the table information
        m_entryLimit = (int)(m_arraySize * DEFAULT_FILL);
        m_hitOffset = m_arraySize / 2;
        m_keyTable = new Object[m_arraySize];
        m_valueTable = new int[m_arraySize];
    }
    
    /**
     * Default constructor.
     */
    public ReferenceCountMap() {
        this(0);
    }
    
    /**
     * Copy (clone) constructor.
     
     @param base instance being copied
     */
    public ReferenceCountMap(ReferenceCountMap base) {
        
        // copy the basic occupancy information
        m_entryCount = base.m_entryCount;
        m_entryLimit = base.m_entryLimit;
        m_arraySize = base.m_arraySize;
        m_hitOffset = base.m_hitOffset;
        
        // copy table of items
        m_keyTable = new Object[m_arraySize];
        System.arraycopy(base.m_keyTable, 0, m_keyTable, 0, m_arraySize);
        m_valueTable = new int[m_arraySize];
        System.arraycopy(base.m_valueTable, 0, m_valueTable, 0, m_arraySize);
    }
    
    /**
     * Step the slot number for an entry. Adds the collision offset (modulo the table size) to the slot number.
     
     @param slot slot number to be stepped
     @return stepped slot number
     */
    private final int stepSlot(int slot) {
        return (slot + m_hitOffset% m_arraySize;
    }
    
    /**
     * Find free slot number for entry. Starts at the slot based directly on the hashed key value. If this slot is
     * already occupied, it adds the collision offset (modulo the table size) to the slot number and checks that slot,
     * repeating until an unused slot is found.
     
     @param slot initial slot computed from key
     @return slot at which entry was added
     */
    private final int freeSlot(int slot) {
        while (m_keyTable[slot!= null) {
            slot = stepSlot(slot);
        }
        return slot;
    }
    
    /**
     * Standard base slot computation for a key.
     
     @param key key value to be computed
     @return base slot for key
     */
    private final int standardSlot(Object key) {
        return (key.hashCode() & Integer.MAX_VALUE% m_arraySize;
    }
    
    /**
     * Standard find key in table. This method may be used directly for key lookup using either the
     * <code>hashCode()</code> method defined for the key objects or the <code>System.identityHashCode()</code>
     * method, and either the <code>equals()</code> method defined for the key objects or the <code>==</code>
     * operator, as selected by the hash technique constructor parameter. To implement a hash class based on some other
     * methods of hashing and/or equality testing, define a separate method in the subclass with a different name and
     * use that method instead. This avoids the overhead caused by overrides of a very heavily used method.
     
     @param key to be found in table
     @return index of matching key, or <code>-index-1</code> of slot to be used for inserting key in table if not
     * already present (always negative)
     */
    private int standardFind(Object key) {
        
        // find the starting point for searching table
        int slot = standardSlot(key);
        
        // scan through table to find target key
        while (m_keyTable[slot!= null) {
            
            // check if we have a match on target key
            if (m_keyTable[slot].equals(key)) {
                return slot;
            else {
                slot = stepSlot(slot);
            }
            
        }
        return -slot - 1;
    }
    
    /**
     * Reinsert an entry into the hash map. This is used when the table is being directly modified, and does not adjust
     * the count present or check the table capacity.
     
     @param slot position of entry to be reinserted into hash map
     @return <code>true</code> if the slot number used by the entry has has changed, <code>false</code> if not
     */
    private boolean reinsert(int slot) {
        Object key = m_keyTable[slot];
        m_keyTable[slotnull;
        return assignSlot(key, m_valueTable[slot]) != slot;
    }
    
    /**
     * Internal remove pair from the table. Removes the pair from the table by setting the key entry to
     * <code>null</code> and adjusting the count present, then chains through the table to reinsert any other pairs
     * which may have collided with the removed pair. If the associated value is an object reference, it should be set
     * to <code>null</code> before this method is called.
     
     @param slot index number of pair to be removed
     */
    private void internalRemove(int slot) {
        
        // delete pair from table
        m_keyTable[slotnull;
        m_entryCount--;
        while (m_keyTable[(slot = stepSlot(slot))] != null) {
            
            // reinsert current entry in table to fill holes
            reinsert(slot);
            
        }
    }
    
    /**
     * Restructure the table. This is used when the table is increasing or decreasing in size, and works directly with
     * the old table representation arrays. It inserts pairs from the old arrays directly into the table without
     * adjusting the count present or checking the table size.
     
     @param keys array of keys
     @param values array of values
     */
    private void restructure(Object[] keys, int[] values) {
        for (int i = 0; i < keys.length; i++) {
            if (keys[i!= null) {
                assignSlot(keys[i], values[i]);
            }
        }
    }
    
    /**
     * Assign slot for entry. Starts at the slot found by the hashed key value. If this slot is already occupied, it
     * steps the slot number and checks the resulting slot, repeating until an unused slot is found. This method does
     * not check for duplicate keys, so it should only be used for internal reordering of the tables.
     
     @param key to be added to table
     @param value associated value for key
     @return slot at which entry was added
     */
    private int assignSlot(Object key, int value) {
        int offset = freeSlot(standardSlot(key));
        m_keyTable[offset= key;
        m_valueTable[offset= value;
        return offset;
    }
    
    /**
     * Increment a use count in the table. If the key object is already present in the table this adds one to the
     * reference count; if not present, this adds the key with an initial reference count of one.
     
     @param key referenced object (non-<code>null</code>)
     @return incremented use count
     */
    public int incrementCount(Object key) {
        
        // first validate the parameters
        if (key == null) {
            throw new IllegalArgumentException("null key not supported");
        else {
            
            // check space available
            int min = m_entryCount + 1;
            if (min > m_entryLimit) {
                
                // find the array size required
                int size = m_arraySize;
                int limit = m_entryLimit;
                while (limit < min) {
                    size = size * 1;
                    limit = (int)(size * DEFAULT_FILL);
                }
                
                // set parameters for new array size
                m_arraySize = size;
                m_entryLimit = limit;
                m_hitOffset = size / 2;
                
                // restructure for larger arrays
                Object[] keys = m_keyTable;
                m_keyTable = new Object[m_arraySize];
                int[] values = m_valueTable;
                m_valueTable = new int[m_arraySize];
                restructure(keys, values);
            }
            
            // find slot of table
            int offset = standardFind(key);
            if (offset >= 0) {
                
                // replace existing value for key
                return ++m_valueTable[offset];
                
            else {
                
                // add new pair to table
                m_entryCount++;
                offset = -offset - 1;
                m_keyTable[offset= key;
                m_valueTable[offset1;
                return 1;
                
            }
        }
    }
    
    /**
     * Find an entry in the table.
     
     @param key key for entry to be returned
     @return value for key, or zero if key not found
     */
    public final int getCount(Object key) {
        int slot = standardFind(key);
        if (slot >= 0) {
            return m_valueTable[slot];
        else {
            return 0;
        }
    }
    
    /**
     * Get number of entries in map.
     
     @return entry count
     */
    public int size() {
        return m_entryCount;
    }
    
    /**
     * Get iterator for keys in map. The returned iterator is not safe, so the iterator behavior is undefined if the map
     * is modified.
     
     @return iterator
     */
    public Iterator iterator() {
        return SparseArrayIterator.buildIterator(m_keyTable);
    }
    
    /**
     * Get array of keys in map.
     
     @return key array
     */
    public Object[] keyArray() {
        Object[] keys = new Object[m_entryCount];
        int fill = 0;
        for (int i = 0; i < m_arraySize; i++) {
            if (m_keyTable[i!= null) {
                keys[fill++= m_keyTable[i];
            }
        }
        return keys;
    }
    
    /**
     * Construct a copy of the table.
     
     @return shallow copy of table
     */
    public Object clone() {
        return new ReferenceCountMap(this);
    }
    
    /**
     * Clear all keys and counts.
     */
    public void clear() {
        for (int i = 0; i < m_keyTable.length; i++) {
            if (m_keyTable[i!= null) {
                m_keyTable[inull;
                m_valueTable[i0;
            }
        }
    }
}
/*
 * Copyright (c) 2000-2007, Dennis M. Sosnoski. All rights reserved.
 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer. Redistributions in binary
 * form must reproduce the above copyright notice, this list of conditions and
 * the following disclaimer in the documentation and/or other materials provided
 * with the distribution. Neither the name of JiBX nor the names of its
 * contributors may be used to endorse or promote products derived from this
 * software without specific prior written permission.
 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */


/**
 * Iterator class for sparse values in an array. This type of iterator
 * can be used for an object array which has references interspersed with
 * <code>null</code>s.
 *
 @author Dennis M. Sosnoski
 */
 class SparseArrayIterator implements Iterator
{
    /** Empty iterator. */
    public static final SparseArrayIterator EMPTY_ITERATOR =
        new SparseArrayIterator(new Object[0]);
    
    /** Array supplying values for iteration. */
    private Object[] m_array;

    /** Offset of next iteration value. */
    private int m_offset;

    /**
     * Internal constructor.
     *
     @param array array containing values to be iterated
     */
    private SparseArrayIterator(Object[] array) {
        m_array = array;
        m_offset = -1;
        advance();
    }

    /**
     * Advance to next iteration value. This advances the current position in
     * the array to the next non-<code>null</code> value.
     *
     @return <code>true</code> if element available, <code>false</code> if
     * not
     */
    protected boolean advance() {
        while (++m_offset < m_array.length) {
            if (m_array[m_offset!= null) {
                return true;
            }
        }
        return false;
    }

    /**
     * Check for iteration element available.
     *
     @return <code>true</code> if element available, <code>false</code> if
     * not
     */
    public boolean hasNext() {
        return m_offset < m_array.length;
    }

    /**
     * Get next iteration element.
     *
     @return next iteration element
     @exception NoSuchElementException if past end of iteration
     */
    public Object next() {
        if (m_offset < m_array.length) {
            Object result = m_array[m_offset];
            advance();
            return result;
        else {
            throw new RuntimeException("No such method");
        }
    }

    /**
     * Remove element from iteration. This optional operation is not supported
     * and always throws an exception.
     *
     @exception UnsupportedOperationException for unsupported operation
     */
    public void remove() {
        throw new UnsupportedOperationException();
    }

    /**
     * Build iterator.
     *
     @param array array containing values to be iterated (may be
     * <code>null</code>)
     @return constructed iterator
     */
    public static Iterator buildIterator(Object[] array) {
        if (array == null || array.length == 0) {
            return EMPTY_ITERATOR;
        else {
            return new SparseArrayIterator(array);
        }
    }
}

   
    
    
  
Related examples in the same category
1. Iterate through the values of Java HashMap example
2. Get Synchronized Map from Java HashMap example
3. Check if a particular key exists in Java HashMap example
4. Check if a particular value exists in Java HashMap example
5. Get Set view of Keys from Java HashMap example
6. Get Size of Java HashMap
7. Remove all values from Java HashMap example
8. Remove value from Java HashMap
9. Create Java Hashtable from HashMap
10. Sort an HashMap based on the keys
11. For keys of a map
12. For values of a map
13. For both the keys and values of a map
14. Storing Primitive Types in a Collection
15. Creating a Copy of a Collection: the objects are not cloned.
16. Use Iterator to loop through the map key set
17. Generic hashmap with String as key and Integer as valueGeneric hashmap with String as key and Integer as value
18. Get key set and value set from map and use Iterator to loop through them
19. Clones a map
20. Extended Version of java.util.HashMap that provides an extended get method accpeting a default value.
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.