Rank, Percent_Rank, and Cume_Dist : CUME_DIST « Analytical Functions « Oracle PL / SQL

Oracle PL / SQL
1. Aggregate Functions
2. Analytical Functions
3. Char Functions
4. Constraints
5. Conversion Functions
6. Cursor
7. Data Type
8. Date Timezone
9. Hierarchical Query
10. Index
11. Insert Delete Update
12. Large Objects
13. Numeric Math Functions
14. Object Oriented Database
15. PL SQL
16. Regular Expressions
17. Report Column Page
18. Result Set
19. Select Query
20. Sequence
21. SQL Plus
22. Stored Procedure Function
23. Subquery
24. System Packages
25. System Tables Views
26. Table
27. Table Joins
28. Trigger
29. User Previliege
30. View
31. XML
Java
Java Tutorial
Java Source Code / Java Documentation
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Oracle PL / SQL » Analytical Functions » CUME_DIST 
Rank, Percent_Rank, and Cume_Dist
 


SQL>
SQL> -- create demo table
SQL> create table Employee(
  2    empno              Number(3)  NOT NULL, -- Employee ID
  3    ename              VARCHAR2(10 BYTE),   -- Employee Name
  4    hireDate          DATE,                -- Date Employee Hired
  5    orig_salary        Number(8,2),         -- Orignal Salary
  6    curr_salary        Number(8,2),         -- Current Salary
  7    region             VARCHAR2(BYTE)     -- Region where employeed
  8  )
  9  /

Table created.

SQL>
SQL>
SQL> -- prepare data for employee table
SQL> insert into Employee(empno,  ename,  hireDate,                   orig_salary, curr_salary, region)
  2                values(122,'Alison',to_date('19960321','YYYYMMDD'), 45000,       NULL,       'E')
  3  /

row created.

SQL> insert into Employee(empno,  ename,  hireDate,                       orig_salary, curr_salary, region)
  2                values(123'James',to_date('19781212','YYYYMMDD'), 23000,       32000,       'W')
  3  /

row created.

SQL> insert into Employee(empno,  ename,  hireDate,                       orig_salary, curr_salary, region)
  2                values(104,'Celia',to_date('19821024','YYYYMMDD'), NULL,       58000,        'E')
  3  /

row created.

SQL> insert into Employee(empno,  ename,  hireDate,                       orig_salary, curr_salary, region)
  2                values(105,'Robert',to_date('19840115','YYYYMMDD'), 31000,      NULL,        'W')
  3  /

row created.

SQL> insert into Employee(empno,  ename,  hireDate,                       orig_salary, curr_salary, region)
  2                values(116,'Linda', to_date('19870730','YYYYMMDD'), NULL,       53000,       'E')
  3  /

row created.

SQL> insert into Employee(empno,  ename,  hireDate,                       orig_salary, curr_salary, region)
  2                values(117,'David', to_date('19901231','YYYYMMDD'), 78000,       NULL,       'W')
  3  /

row created.

SQL> insert into Employee(empno,  ename,  hireDate,                       orig_salary, curr_salary, region)
  2                values(108,'Jode',  to_date('19960917','YYYYMMDD'), 21000,       29000,       'E')
  3  /

row created.

SQL>
SQL> -- display data in the table
SQL> select from Employee
  2  /

     EMPNO ENAME      HIREDATE  ORIG_SALARY CURR_SALARY R
---------- ---------- --------- ----------- ----------- -
       122 Alison     21-MAR-96       45000             E
       123 James      12-DEC-78       23000       32000 W
       104 Celia      24-OCT-82                   58000 E
       105 Robert     15-JAN-84       31000             W
       116 Linda      30-JUL-87                   53000 E
       117 David      31-DEC-90       78000             W
       108 Jode       17-SEP-96       21000       29000 E

rows selected.

SQL>
SQL>
SQL>
SQL> --The use of NTILE with a small amount of data like we have done here is poor statistics, but a reasonable database demonstration. To truly deal with NTILE in a statistical sense, we'd have to use a lot more data.
SQL>
SQL> --What about nulls with the NTILE function? Here is an example using the same query on our Employee table with nulls (Empwnulls):
SQL>
SQL> SELECT ename, curr_salary sal,
  2    ntile(2OVER(ORDER BY curr_salary descn2,
  3    ntile(3OVER(ORDER BY curr_salary descn3,
  4    ntile(4OVER(ORDER BY curr_salary descn4,
  5    ntile(5OVER(ORDER BY curr_salary descn5,
  6    ntile(6OVER(ORDER BY curr_salary descn6,
  7    ntile(8OVER(ORDER BY curr_salary descn8
  8  FROM employee;

ENAME             SAL         N2         N3         N4         N5         N6         N8
---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
Alison                         1          1          1          1          1          1
Robert                         1          1          1          1          1          2
David                          1          1          2          2          2          3
Celia           58000          1          2          2          2          3          4
Linda           53000          2          2          3          3          4          5
James           32000          2          3          3          4          5          6
Jode            29000          2          3          4          5          6          7

rows selected.

SQL>
SQL>
SQL>
SQL> -- clean the table
SQL> drop table Employee;

Table dropped.

SQL>
SQL>
           
         
  
Related examples in the same category
1. CUME_DIST(): calculate the position of a specified value relative to a group of values
2. cume_dist over
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.