Source Code Cross Referenced for ByteArrayAccess.java in  » 6.0-JDK-Modules-sun » security » sun » security » provider » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules sun » security » sun.security.provider 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * Copyright 2006 Sun Microsystems, Inc.  All Rights Reserved.
003:         * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
004:         *
005:         * This code is free software; you can redistribute it and/or modify it
006:         * under the terms of the GNU General Public License version 2 only, as
007:         * published by the Free Software Foundation.  Sun designates this
008:         * particular file as subject to the "Classpath" exception as provided
009:         * by Sun in the LICENSE file that accompanied this code.
010:         *
011:         * This code is distributed in the hope that it will be useful, but WITHOUT
012:         * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
013:         * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
014:         * version 2 for more details (a copy is included in the LICENSE file that
015:         * accompanied this code).
016:         *
017:         * You should have received a copy of the GNU General Public License version
018:         * 2 along with this work; if not, write to the Free Software Foundation,
019:         * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
020:         *
021:         * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
022:         * CA 95054 USA or visit www.sun.com if you need additional information or
023:         * have any questions.
024:         */
025:
026:        package sun.security.provider;
027:
028:        import static java.lang.Integer.reverseBytes;
029:        import static java.lang.Long.reverseBytes;
030:
031:        import java.nio.ByteOrder;
032:
033:        import sun.misc.Unsafe;
034:
035:        /**
036:         * Optimized methods for converting between byte[] and int[]/long[], both for
037:         * big endian and little endian byte orders.
038:         *
039:         * Currently, it includes a default code path plus two optimized code paths.
040:         * One is for little endian architectures that support full speed int/long 
041:         * access at unaligned addresses (i.e. x86/amd64). The second is for big endian
042:         * architectures (that only support correctly aligned access), such as SPARC.
043:         * These are the only platforms we currently support, but other optimized 
044:         * variants could be added as needed.
045:         *
046:         * NOTE that because this code performs unchecked direct memory access, it
047:         * MUST be restricted to trusted code. It is imperative that the caller protects
048:         * against out of bounds memory access by performing the necessary bounds 
049:         * checks before calling methods in this class.
050:         *
051:         * This class may also be helpful in improving the performance of the
052:         * crypto code in the SunJCE provider. However, for now it is only accessible by
053:         * the message digest implementation in the SUN provider.
054:         *
055:         * @since   1.6
056:         * @version 1.7, 05/05/07
057:         * @author  Andreas Sterbenz
058:         */
059:        final class ByteArrayAccess {
060:
061:            private ByteArrayAccess() {
062:                // empty
063:            }
064:
065:            private static final Unsafe unsafe = Unsafe.getUnsafe();
066:
067:            // whether to use the optimized path for little endian platforms that
068:            // support full speed unaligned memory access.    
069:            private static final boolean littleEndianUnaligned;
070:
071:            // whether to use the optimzied path for big endian platforms that
072:            // support only correctly aligned full speed memory access.
073:            // (Note that on SPARC unaligned memory access is possible, but it is
074:            // implemented using a software trap and therefore very slow)
075:            private static final boolean bigEndian;
076:
077:            private final static int byteArrayOfs = unsafe
078:                    .arrayBaseOffset(byte[].class);
079:
080:            static {
081:                boolean scaleOK = ((unsafe.arrayIndexScale(byte[].class) == 1)
082:                        && (unsafe.arrayIndexScale(int[].class) == 4)
083:                        && (unsafe.arrayIndexScale(long[].class) == 8) && ((byteArrayOfs & 3) == 0));
084:
085:                ByteOrder byteOrder = ByteOrder.nativeOrder();
086:                littleEndianUnaligned = scaleOK && unaligned()
087:                        && (byteOrder == ByteOrder.LITTLE_ENDIAN);
088:                bigEndian = scaleOK && (byteOrder == ByteOrder.BIG_ENDIAN);
089:            }
090:
091:            // Return whether this platform supports full speed int/long memory access
092:            // at unaligned addresses.
093:            // This code was copied from java.nio.Bits because there is no equivalent
094:            // public API.
095:            private static boolean unaligned() {
096:                String arch = java.security.AccessController
097:                        .doPrivileged(new sun.security.action.GetPropertyAction(
098:                                "os.arch", ""));
099:                return arch.equals("i386") || arch.equals("x86")
100:                        || arch.equals("amd64");
101:            }
102:
103:            /**
104:             * byte[] to int[] conversion, little endian byte order.
105:             */
106:            static void b2iLittle(byte[] in, int inOfs, int[] out, int outOfs,
107:                    int len) {
108:                if (littleEndianUnaligned) {
109:                    inOfs += byteArrayOfs;
110:                    len += inOfs;
111:                    while (inOfs < len) {
112:                        out[outOfs++] = unsafe.getInt(in, (long) inOfs);
113:                        inOfs += 4;
114:                    }
115:                } else if (bigEndian && ((inOfs & 3) == 0)) {
116:                    inOfs += byteArrayOfs;
117:                    len += inOfs;
118:                    while (inOfs < len) {
119:                        out[outOfs++] = reverseBytes(unsafe.getInt(in,
120:                                (long) inOfs));
121:                        inOfs += 4;
122:                    }
123:                } else {
124:                    len += inOfs;
125:                    while (inOfs < len) {
126:                        out[outOfs++] = ((in[inOfs] & 0xff))
127:                                | ((in[inOfs + 1] & 0xff) << 8)
128:                                | ((in[inOfs + 2] & 0xff) << 16)
129:                                | ((in[inOfs + 3]) << 24);
130:                        inOfs += 4;
131:                    }
132:                }
133:            }
134:
135:            // Special optimization of b2iLittle(in, inOfs, out, 0, 64)
136:            static void b2iLittle64(byte[] in, int inOfs, int[] out) {
137:                if (littleEndianUnaligned) {
138:                    inOfs += byteArrayOfs;
139:                    out[0] = unsafe.getInt(in, (long) (inOfs));
140:                    out[1] = unsafe.getInt(in, (long) (inOfs + 4));
141:                    out[2] = unsafe.getInt(in, (long) (inOfs + 8));
142:                    out[3] = unsafe.getInt(in, (long) (inOfs + 12));
143:                    out[4] = unsafe.getInt(in, (long) (inOfs + 16));
144:                    out[5] = unsafe.getInt(in, (long) (inOfs + 20));
145:                    out[6] = unsafe.getInt(in, (long) (inOfs + 24));
146:                    out[7] = unsafe.getInt(in, (long) (inOfs + 28));
147:                    out[8] = unsafe.getInt(in, (long) (inOfs + 32));
148:                    out[9] = unsafe.getInt(in, (long) (inOfs + 36));
149:                    out[10] = unsafe.getInt(in, (long) (inOfs + 40));
150:                    out[11] = unsafe.getInt(in, (long) (inOfs + 44));
151:                    out[12] = unsafe.getInt(in, (long) (inOfs + 48));
152:                    out[13] = unsafe.getInt(in, (long) (inOfs + 52));
153:                    out[14] = unsafe.getInt(in, (long) (inOfs + 56));
154:                    out[15] = unsafe.getInt(in, (long) (inOfs + 60));
155:                } else if (bigEndian && ((inOfs & 3) == 0)) {
156:                    inOfs += byteArrayOfs;
157:                    out[0] = reverseBytes(unsafe.getInt(in, (long) (inOfs)));
158:                    out[1] = reverseBytes(unsafe.getInt(in, (long) (inOfs + 4)));
159:                    out[2] = reverseBytes(unsafe.getInt(in, (long) (inOfs + 8)));
160:                    out[3] = reverseBytes(unsafe
161:                            .getInt(in, (long) (inOfs + 12)));
162:                    out[4] = reverseBytes(unsafe
163:                            .getInt(in, (long) (inOfs + 16)));
164:                    out[5] = reverseBytes(unsafe
165:                            .getInt(in, (long) (inOfs + 20)));
166:                    out[6] = reverseBytes(unsafe
167:                            .getInt(in, (long) (inOfs + 24)));
168:                    out[7] = reverseBytes(unsafe
169:                            .getInt(in, (long) (inOfs + 28)));
170:                    out[8] = reverseBytes(unsafe
171:                            .getInt(in, (long) (inOfs + 32)));
172:                    out[9] = reverseBytes(unsafe
173:                            .getInt(in, (long) (inOfs + 36)));
174:                    out[10] = reverseBytes(unsafe.getInt(in,
175:                            (long) (inOfs + 40)));
176:                    out[11] = reverseBytes(unsafe.getInt(in,
177:                            (long) (inOfs + 44)));
178:                    out[12] = reverseBytes(unsafe.getInt(in,
179:                            (long) (inOfs + 48)));
180:                    out[13] = reverseBytes(unsafe.getInt(in,
181:                            (long) (inOfs + 52)));
182:                    out[14] = reverseBytes(unsafe.getInt(in,
183:                            (long) (inOfs + 56)));
184:                    out[15] = reverseBytes(unsafe.getInt(in,
185:                            (long) (inOfs + 60)));
186:                } else {
187:                    b2iLittle(in, inOfs, out, 0, 64);
188:                }
189:            }
190:
191:            /**
192:             * int[] to byte[] conversion, little endian byte order.
193:             */
194:            static void i2bLittle(int[] in, int inOfs, byte[] out, int outOfs,
195:                    int len) {
196:                if (littleEndianUnaligned) {
197:                    outOfs += byteArrayOfs;
198:                    len += outOfs;
199:                    while (outOfs < len) {
200:                        unsafe.putInt(out, (long) outOfs, in[inOfs++]);
201:                        outOfs += 4;
202:                    }
203:                } else if (bigEndian && ((outOfs & 3) == 0)) {
204:                    outOfs += byteArrayOfs;
205:                    len += outOfs;
206:                    while (outOfs < len) {
207:                        unsafe.putInt(out, (long) outOfs,
208:                                reverseBytes(in[inOfs++]));
209:                        outOfs += 4;
210:                    }
211:                } else {
212:                    len += outOfs;
213:                    while (outOfs < len) {
214:                        int i = in[inOfs++];
215:                        out[outOfs++] = (byte) (i);
216:                        out[outOfs++] = (byte) (i >> 8);
217:                        out[outOfs++] = (byte) (i >> 16);
218:                        out[outOfs++] = (byte) (i >> 24);
219:                    }
220:                }
221:            }
222:
223:            // Store one 32-bit value into out[outOfs..outOfs+3] in little endian order.
224:            static void i2bLittle4(int val, byte[] out, int outOfs) {
225:                if (littleEndianUnaligned) {
226:                    unsafe.putInt(out, (long) (byteArrayOfs + outOfs), val);
227:                } else if (bigEndian && ((outOfs & 3) == 0)) {
228:                    unsafe.putInt(out, (long) (byteArrayOfs + outOfs),
229:                            reverseBytes(val));
230:                } else {
231:                    out[outOfs] = (byte) (val);
232:                    out[outOfs + 1] = (byte) (val >> 8);
233:                    out[outOfs + 2] = (byte) (val >> 16);
234:                    out[outOfs + 3] = (byte) (val >> 24);
235:                }
236:            }
237:
238:            /**
239:             * byte[] to int[] conversion, big endian byte order.
240:             */
241:            static void b2iBig(byte[] in, int inOfs, int[] out, int outOfs,
242:                    int len) {
243:                if (littleEndianUnaligned) {
244:                    inOfs += byteArrayOfs;
245:                    len += inOfs;
246:                    while (inOfs < len) {
247:                        out[outOfs++] = reverseBytes(unsafe.getInt(in,
248:                                (long) inOfs));
249:                        inOfs += 4;
250:                    }
251:                } else if (bigEndian && ((inOfs & 3) == 0)) {
252:                    inOfs += byteArrayOfs;
253:                    len += inOfs;
254:                    while (inOfs < len) {
255:                        out[outOfs++] = unsafe.getInt(in, (long) inOfs);
256:                        inOfs += 4;
257:                    }
258:                } else {
259:                    len += inOfs;
260:                    while (inOfs < len) {
261:                        out[outOfs++] = ((in[inOfs + 3] & 0xff))
262:                                | ((in[inOfs + 2] & 0xff) << 8)
263:                                | ((in[inOfs + 1] & 0xff) << 16)
264:                                | ((in[inOfs]) << 24);
265:                        inOfs += 4;
266:                    }
267:                }
268:            }
269:
270:            // Special optimization of b2iBig(in, inOfs, out, 0, 64)
271:            static void b2iBig64(byte[] in, int inOfs, int[] out) {
272:                if (littleEndianUnaligned) {
273:                    inOfs += byteArrayOfs;
274:                    out[0] = reverseBytes(unsafe.getInt(in, (long) (inOfs)));
275:                    out[1] = reverseBytes(unsafe.getInt(in, (long) (inOfs + 4)));
276:                    out[2] = reverseBytes(unsafe.getInt(in, (long) (inOfs + 8)));
277:                    out[3] = reverseBytes(unsafe
278:                            .getInt(in, (long) (inOfs + 12)));
279:                    out[4] = reverseBytes(unsafe
280:                            .getInt(in, (long) (inOfs + 16)));
281:                    out[5] = reverseBytes(unsafe
282:                            .getInt(in, (long) (inOfs + 20)));
283:                    out[6] = reverseBytes(unsafe
284:                            .getInt(in, (long) (inOfs + 24)));
285:                    out[7] = reverseBytes(unsafe
286:                            .getInt(in, (long) (inOfs + 28)));
287:                    out[8] = reverseBytes(unsafe
288:                            .getInt(in, (long) (inOfs + 32)));
289:                    out[9] = reverseBytes(unsafe
290:                            .getInt(in, (long) (inOfs + 36)));
291:                    out[10] = reverseBytes(unsafe.getInt(in,
292:                            (long) (inOfs + 40)));
293:                    out[11] = reverseBytes(unsafe.getInt(in,
294:                            (long) (inOfs + 44)));
295:                    out[12] = reverseBytes(unsafe.getInt(in,
296:                            (long) (inOfs + 48)));
297:                    out[13] = reverseBytes(unsafe.getInt(in,
298:                            (long) (inOfs + 52)));
299:                    out[14] = reverseBytes(unsafe.getInt(in,
300:                            (long) (inOfs + 56)));
301:                    out[15] = reverseBytes(unsafe.getInt(in,
302:                            (long) (inOfs + 60)));
303:                } else if (bigEndian && ((inOfs & 3) == 0)) {
304:                    inOfs += byteArrayOfs;
305:                    out[0] = unsafe.getInt(in, (long) (inOfs));
306:                    out[1] = unsafe.getInt(in, (long) (inOfs + 4));
307:                    out[2] = unsafe.getInt(in, (long) (inOfs + 8));
308:                    out[3] = unsafe.getInt(in, (long) (inOfs + 12));
309:                    out[4] = unsafe.getInt(in, (long) (inOfs + 16));
310:                    out[5] = unsafe.getInt(in, (long) (inOfs + 20));
311:                    out[6] = unsafe.getInt(in, (long) (inOfs + 24));
312:                    out[7] = unsafe.getInt(in, (long) (inOfs + 28));
313:                    out[8] = unsafe.getInt(in, (long) (inOfs + 32));
314:                    out[9] = unsafe.getInt(in, (long) (inOfs + 36));
315:                    out[10] = unsafe.getInt(in, (long) (inOfs + 40));
316:                    out[11] = unsafe.getInt(in, (long) (inOfs + 44));
317:                    out[12] = unsafe.getInt(in, (long) (inOfs + 48));
318:                    out[13] = unsafe.getInt(in, (long) (inOfs + 52));
319:                    out[14] = unsafe.getInt(in, (long) (inOfs + 56));
320:                    out[15] = unsafe.getInt(in, (long) (inOfs + 60));
321:                } else {
322:                    b2iBig(in, inOfs, out, 0, 64);
323:                }
324:            }
325:
326:            /**
327:             * int[] to byte[] conversion, big endian byte order.
328:             */
329:            static void i2bBig(int[] in, int inOfs, byte[] out, int outOfs,
330:                    int len) {
331:                if (littleEndianUnaligned) {
332:                    outOfs += byteArrayOfs;
333:                    len += outOfs;
334:                    while (outOfs < len) {
335:                        unsafe.putInt(out, (long) outOfs,
336:                                reverseBytes(in[inOfs++]));
337:                        outOfs += 4;
338:                    }
339:                } else if (bigEndian && ((outOfs & 3) == 0)) {
340:                    outOfs += byteArrayOfs;
341:                    len += outOfs;
342:                    while (outOfs < len) {
343:                        unsafe.putInt(out, (long) outOfs, in[inOfs++]);
344:                        outOfs += 4;
345:                    }
346:                } else {
347:                    len += outOfs;
348:                    while (outOfs < len) {
349:                        int i = in[inOfs++];
350:                        out[outOfs++] = (byte) (i >> 24);
351:                        out[outOfs++] = (byte) (i >> 16);
352:                        out[outOfs++] = (byte) (i >> 8);
353:                        out[outOfs++] = (byte) (i);
354:                    }
355:                }
356:            }
357:
358:            // Store one 32-bit value into out[outOfs..outOfs+3] in big endian order.
359:            static void i2bBig4(int val, byte[] out, int outOfs) {
360:                if (littleEndianUnaligned) {
361:                    unsafe.putInt(out, (long) (byteArrayOfs + outOfs),
362:                            reverseBytes(val));
363:                } else if (bigEndian && ((outOfs & 3) == 0)) {
364:                    unsafe.putInt(out, (long) (byteArrayOfs + outOfs), val);
365:                } else {
366:                    out[outOfs] = (byte) (val >> 24);
367:                    out[outOfs + 1] = (byte) (val >> 16);
368:                    out[outOfs + 2] = (byte) (val >> 8);
369:                    out[outOfs + 3] = (byte) (val);
370:                }
371:            }
372:
373:            /**
374:             * byte[] to long[] conversion, big endian byte order.
375:             */
376:            static void b2lBig(byte[] in, int inOfs, long[] out, int outOfs,
377:                    int len) {
378:                if (littleEndianUnaligned) {
379:                    inOfs += byteArrayOfs;
380:                    len += inOfs;
381:                    while (inOfs < len) {
382:                        out[outOfs++] = reverseBytes(unsafe.getLong(in,
383:                                (long) inOfs));
384:                        inOfs += 8;
385:                    }
386:                } else if (bigEndian && ((inOfs & 3) == 0)) {
387:                    // In the current HotSpot memory layout, the first element of a
388:                    // byte[] is only 32-bit aligned, not 64-bit.
389:                    // That means we could use getLong() only for offset 4, 12, etc.,
390:                    // which would rarely occur in practice. Instead, we use an
391:                    // optimization that uses getInt() so that it works for offset 0.
392:                    inOfs += byteArrayOfs;
393:                    len += inOfs;
394:                    while (inOfs < len) {
395:                        out[outOfs++] = ((long) unsafe.getInt(in, (long) inOfs) << 32)
396:                                | (unsafe.getInt(in, (long) (inOfs + 4)) & 0xffffffffL);
397:                        inOfs += 8;
398:                    }
399:                } else {
400:                    len += inOfs;
401:                    while (inOfs < len) {
402:                        int i1 = ((in[inOfs + 3] & 0xff))
403:                                | ((in[inOfs + 2] & 0xff) << 8)
404:                                | ((in[inOfs + 1] & 0xff) << 16)
405:                                | ((in[inOfs]) << 24);
406:                        inOfs += 4;
407:                        int i2 = ((in[inOfs + 3] & 0xff))
408:                                | ((in[inOfs + 2] & 0xff) << 8)
409:                                | ((in[inOfs + 1] & 0xff) << 16)
410:                                | ((in[inOfs]) << 24);
411:                        out[outOfs++] = ((long) i1 << 32) | (i2 & 0xffffffffL);
412:                        inOfs += 4;
413:                    }
414:                }
415:            }
416:
417:            // Special optimization of b2lBig(in, inOfs, out, 0, 128)
418:            static void b2lBig128(byte[] in, int inOfs, long[] out) {
419:                if (littleEndianUnaligned) {
420:                    inOfs += byteArrayOfs;
421:                    out[0] = reverseBytes(unsafe.getLong(in, (long) (inOfs)));
422:                    out[1] = reverseBytes(unsafe
423:                            .getLong(in, (long) (inOfs + 8)));
424:                    out[2] = reverseBytes(unsafe.getLong(in,
425:                            (long) (inOfs + 16)));
426:                    out[3] = reverseBytes(unsafe.getLong(in,
427:                            (long) (inOfs + 24)));
428:                    out[4] = reverseBytes(unsafe.getLong(in,
429:                            (long) (inOfs + 32)));
430:                    out[5] = reverseBytes(unsafe.getLong(in,
431:                            (long) (inOfs + 40)));
432:                    out[6] = reverseBytes(unsafe.getLong(in,
433:                            (long) (inOfs + 48)));
434:                    out[7] = reverseBytes(unsafe.getLong(in,
435:                            (long) (inOfs + 56)));
436:                    out[8] = reverseBytes(unsafe.getLong(in,
437:                            (long) (inOfs + 64)));
438:                    out[9] = reverseBytes(unsafe.getLong(in,
439:                            (long) (inOfs + 72)));
440:                    out[10] = reverseBytes(unsafe.getLong(in,
441:                            (long) (inOfs + 80)));
442:                    out[11] = reverseBytes(unsafe.getLong(in,
443:                            (long) (inOfs + 88)));
444:                    out[12] = reverseBytes(unsafe.getLong(in,
445:                            (long) (inOfs + 96)));
446:                    out[13] = reverseBytes(unsafe.getLong(in,
447:                            (long) (inOfs + 104)));
448:                    out[14] = reverseBytes(unsafe.getLong(in,
449:                            (long) (inOfs + 112)));
450:                    out[15] = reverseBytes(unsafe.getLong(in,
451:                            (long) (inOfs + 120)));
452:                } else {
453:                    // no optimization for big endian, see comments in b2lBig
454:                    b2lBig(in, inOfs, out, 0, 128);
455:                }
456:            }
457:
458:            /**
459:             * long[] to byte[] conversion, big endian byte order.
460:             */
461:            static void l2bBig(long[] in, int inOfs, byte[] out, int outOfs,
462:                    int len) {
463:                len += outOfs;
464:                while (outOfs < len) {
465:                    long i = in[inOfs++];
466:                    out[outOfs++] = (byte) (i >> 56);
467:                    out[outOfs++] = (byte) (i >> 48);
468:                    out[outOfs++] = (byte) (i >> 40);
469:                    out[outOfs++] = (byte) (i >> 32);
470:                    out[outOfs++] = (byte) (i >> 24);
471:                    out[outOfs++] = (byte) (i >> 16);
472:                    out[outOfs++] = (byte) (i >> 8);
473:                    out[outOfs++] = (byte) (i);
474:                }
475:            }
476:
477:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.