Source Code Cross Referenced for PolyWarpSolver.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » com » sun » media » jai » util » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » com.sun.media.jai.util 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: PolyWarpSolver.java,v $
003:         *
004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Use is subject to license terms.
007:         *
008:         * $Revision: 1.2 $
009:         * $Date: 2007/08/29 23:08:09 $
010:         * $State: Exp $
011:         */
012:        package com.sun.media.jai.util;
013:
014:        import java.util.Random;
015:
016:        /**
017:         * A utility class to fit a polynomial to a set of corresponding
018:         * points in the source and destination images of a warp.  The core is
019:         * based on a public-domain Fortran utility routine for singular-value
020:         * decomposition.
021:         *
022:         * @since EA2
023:         *
024:         */
025:        public class PolyWarpSolver {
026:
027:            private static double sign(double a, double b) {
028:                a = Math.abs(a);
029:                if (b >= 0.0F) {
030:                    return a;
031:                } else {
032:                    return -a;
033:                }
034:            }
035:
036:            private static final double square(double x) {
037:                return x * x;
038:            }
039:
040:            private static final double sqrt(double x) {
041:                return (double) Math.sqrt(x);
042:            }
043:
044:            private static final double hypot(double x, double y) {
045:                double xabs = Math.abs(x);
046:                double yabs = Math.abs(y);
047:
048:                if (xabs > yabs) {
049:                    return xabs * sqrt(square(yabs / xabs) + 1.0F);
050:                } else if (yabs != 0.0F) {
051:                    return yabs * sqrt(square(xabs / yabs) + 1.0F);
052:                } else {
053:                    return xabs;
054:                }
055:            }
056:
057:            /* Multiply A * B^T */
058:            public static double[][] matmul_t(double[][] A, double[][] B) {
059:                int rowsA = A.length;
060:                int colsA = A[0].length;
061:
062:                int rowsB = B[0].length;
063:                int colsB = B.length;
064:
065:                // Must have colsA == rowsB
066:
067:                double[][] out = new double[rowsA][colsB];
068:
069:                for (int i = 0; i < rowsA; i++) {
070:                    double[] outi = out[i];
071:                    double[] Ai = A[i];
072:
073:                    for (int j = 0; j < colsB; j++) {
074:                        double tmp = 0.0F;
075:                        for (int k = 0; k < colsA; k++) {
076:                            tmp += Ai[k] * B[j][k];
077:                        }
078:                        outi[j] = tmp;
079:                    }
080:                }
081:
082:                return out;
083:            }
084:
085:            /**
086:             * Performs Singular-Value Decomposition on a given matrix.  The
087:             * number of rows of the matrix must be greater than or equal to
088:             * the number of columns.
089:             *
090:             * <p> When the routine completes, the product U*diag(W)*V^T
091:             * will be equal to the input matrix A.  U will be column-orthogonal
092:             * and V will be fully orthogonal.  The elements of W will be positive
093:             * or zero.
094:             *
095:             * <p> From the comments in the original Fortran version contained
096:             * in the Eispack library:
097:             *
098:             * <pre>
099:             * c     this subroutine is a translation of the algol procedure svd,
100:             * c     num. math. 14, 403-420(1970) by golub and reinsch.
101:             * c     handbook for auto. comp., vol ii-linear algebra, 134-151(1971).
102:             * c     Questions and comments should be directed to Alan K. Cline,
103:             * c     Pleasant Valley Software, 8603 Altus Cove, Austin, TX 78759.
104:             * c     Electronic mail to cline@cs.utexas.edu.
105:             * c
106:             * c     this version dated january 1989. (for the IBM 3090vf)
107:             * </pre>
108:             *
109:             * @param a the input matrix to be decomposed of size m x n.
110:             * @param w an empty vector of length n to be filled in.
111:             * @param u an empty matrix of size m x n to be filled in.
112:             * @param v an empty matrix of size n x n to be filled in.
113:             * @return true if convergence is acheived within 30 iterations.
114:             */
115:            private static boolean SVD(double[][] a, double[] w, double[][] u,
116:                    double[][] v) {
117:                int i, j, k, l, m, n, i1, k1, l1, mn, its;
118:                double c, f, g, h, s, x, y, z, tst1, tst2, scale;
119:                double fabs, gabs, habs;
120:
121:                l = 0;
122:                l1 = 0;
123:                m = a.length;
124:                n = a[0].length;
125:
126:                double[] rv1 = new double[n];
127:
128:                for (i = 0; i < m; i++) {
129:                    for (j = 0; j < n; j++) {
130:                        u[i][j] = a[i][j];
131:                    }
132:                }
133:
134:                g = 0.0F;
135:                scale = 0.0F;
136:                x = 0.0F;
137:
138:                for (i = 0; i < n; i++) {
139:                    l = i + 1;
140:                    rv1[i] = scale * g;
141:                    g = 0.0F;
142:                    s = 0.0F;
143:                    scale = 0.0F;
144:
145:                    if (i < m) {
146:                        for (k = i; k < m; k++) {
147:                            scale += Math.abs(u[k][i]);
148:                        }
149:
150:                        if (scale != 0.0F) {
151:                            for (k = i; k < m; k++) {
152:                                u[k][i] /= scale;
153:                                s += square(u[k][i]);
154:                            }
155:
156:                            f = u[i][i];
157:                            g = -sign(sqrt(s), f);
158:                            h = f * g - s;
159:                            u[i][i] = f - g;
160:
161:                            for (j = l; j < n; j++) {
162:                                s = 0.0F;
163:
164:                                for (k = i; k < m; k++) {
165:                                    s += u[k][i] * u[k][j];
166:                                }
167:                                f = s / h;
168:                                for (k = i; k < m; k++) {
169:                                    u[k][j] += f * u[k][i];
170:                                }
171:                            }
172:
173:                            for (k = i; k < m; k++) {
174:                                u[k][i] *= scale;
175:                            }
176:                        }
177:                    }
178:
179:                    w[i] = scale * g;
180:                    g = 0.0F;
181:                    s = 0.0F;
182:                    scale = 0.0F;
183:
184:                    if ((i < m) && (i != n - 1)) {
185:                        for (k = l; k < n; k++) {
186:                            scale += Math.abs(u[i][k]);
187:                        }
188:
189:                        if (scale != 0.0F) {
190:                            for (k = l; k < n; k++) {
191:                                u[i][k] /= scale;
192:                                s += square(u[i][k]);
193:                            }
194:
195:                            f = u[i][l];
196:                            g = -sign(sqrt(s), f);
197:                            h = f * g - s;
198:                            u[i][l] = f - g;
199:
200:                            for (k = l; k < n; k++) {
201:                                rv1[k] = u[i][k] / h;
202:                            }
203:
204:                            for (j = l; j < m; j++) {
205:                                s = 0.0F;
206:
207:                                for (k = l; k < n; k++) {
208:                                    s += u[j][k] * u[i][k];
209:                                }
210:
211:                                for (k = l; k < n; k++) {
212:                                    u[j][k] += s * rv1[k];
213:                                }
214:                            }
215:
216:                            for (k = l; k < n; k++) {
217:                                u[i][k] *= scale;
218:                            }
219:
220:                        }
221:                    }
222:
223:                    x = Math.max(x, Math.abs(w[i]) + Math.abs(rv1[i]));
224:                }
225:
226:                for (i = n - 1; i >= 0; i--) {
227:                    if (i != n - 1) {
228:                        if (g != 0.0F) {
229:                            for (j = l; j < n; j++) {
230:                                v[j][i] = (u[i][j] / u[i][l]) / g;
231:                            }
232:
233:                            for (j = l; j < n; j++) {
234:                                s = 0.0F;
235:                                for (k = l; k < n; k++) {
236:                                    s += u[i][k] * v[k][j];
237:                                }
238:                                for (k = l; k < n; k++) {
239:                                    v[k][j] += s * v[k][i];
240:                                }
241:                            }
242:                        }
243:
244:                        for (j = l; j < n; j++) {
245:                            v[i][j] = v[j][i] = 0.0F;
246:                        }
247:                    }
248:
249:                    v[i][i] = 1.0F;
250:                    g = rv1[i];
251:                    l = i;
252:                }
253:
254:                mn = Math.min(m, n);
255:
256:                for (i = mn - 1; i >= 0; i--) {
257:                    l = i + 1;
258:                    g = w[i];
259:
260:                    if (i != n - 1) {
261:                        for (j = l; j < n; j++) {
262:                            u[i][j] = 0.0F;
263:                        }
264:                    }
265:
266:                    if (g != 0.0F) {
267:                        if (i != mn - 1) {
268:                            for (j = l; j < n; j++) {
269:                                s = 0.0F;
270:
271:                                for (k = l; k < m; k++) {
272:                                    s += u[k][i] * u[k][j];
273:                                } // 440
274:                                f = (s / u[i][i]) / g;
275:                                for (k = i; k < m; k++) {
276:                                    u[k][j] += f * u[k][i];
277:                                }
278:                            }
279:                        }
280:
281:                        for (j = i; j < m; j++) {
282:                            u[j][i] /= g;
283:                        }
284:                    } else {
285:                        for (j = i; j < m; j++) {
286:                            u[j][i] = 0.0F;
287:                        }
288:                    }
289:                    u[i][i] += 1.0F;
290:                }
291:
292:                tst1 = x;
293:
294:                for (k = n - 1; k >= 0; k--) {
295:                    k1 = k - 1;
296:                    its = 0;
297:
298:                    while (true) {
299:                        boolean flag = true;
300:
301:                        for (l = k; l >= 0; l--) {
302:                            l1 = l - 1;
303:                            tst2 = tst1 + Math.abs(rv1[l]);
304:                            if (tst2 == tst1) {
305:                                flag = false;
306:                                break;
307:                            }
308:
309:                            tst2 = tst1 + Math.abs(w[l1]);
310:                            if (tst2 == tst1) {
311:                                flag = true;
312:                                break;
313:                            }
314:                        }
315:
316:                        if (flag) {
317:                            c = 0.0F;
318:                            s = 1.0F;
319:
320:                            for (i = l; i < k + 1; i++) {
321:                                f = s * rv1[i];
322:                                rv1[i] *= c;
323:
324:                                tst2 = tst1 + Math.abs(f);
325:                                if (tst2 != tst1) {
326:                                    g = w[i];
327:
328:                                    h = hypot(f, g);
329:                                    w[i] = h;
330:                                    c = g / h;
331:                                    s = -f / h;
332:
333:                                    for (j = 0; j < m; j++) {
334:                                        y = u[j][l1];
335:                                        z = u[j][i];
336:                                        u[j][l1] = y * c + z * s;
337:                                        u[j][i] = -y * s + z * c;
338:                                    }
339:                                }
340:                            }
341:                        }
342:
343:                        z = w[k];
344:
345:                        if (l == k) {
346:                            if (z < 0.0F) {
347:                                w[k] = -z;
348:                                for (j = 0; j < n; j++) {
349:                                    v[j][k] = -v[j][k];
350:                                }
351:                            }
352:                            break;
353:                        }
354:
355:                        if (its == 30) {
356:                            return false;
357:                        }
358:
359:                        ++its;
360:
361:                        x = w[l];
362:                        y = w[k1];
363:                        g = rv1[k1];
364:                        h = rv1[k];
365:                        f = 0.5F * (((g + z) / h) * ((g - z) / y) + y / h - h
366:                                / y);
367:
368:                        g = hypot(f, 1.0F);
369:                        f = x - (z / x) * z + (h / x)
370:                                * (y / (f + sign(g, f)) - h);
371:
372:                        c = 1.0F;
373:                        s = 1.0F;
374:
375:                        for (i1 = l; i1 <= k1; i1++) {
376:                            i = i1 + 1;
377:                            g = rv1[i];
378:                            y = w[i];
379:                            h = s * g;
380:                            g = c * g;
381:
382:                            z = hypot(f, h);
383:                            rv1[i1] = z;
384:                            c = f / z;
385:                            s = h / z;
386:                            f = x * c + g * s;
387:                            g = -x * s + g * c;
388:                            h = y * s;
389:                            y = y * c;
390:
391:                            for (j = 0; j < n; j++) {
392:                                x = v[j][i1];
393:                                z = v[j][i];
394:                                v[j][i1] = x * c + z * s;
395:                                v[j][i] = -x * s + z * c;
396:                            }
397:
398:                            z = hypot(f, h);
399:                            w[i1] = z;
400:
401:                            if (z != 0.0F) {
402:                                c = f / z;
403:                                s = h / z;
404:                            }
405:
406:                            f = c * g + s * y;
407:                            x = -s * g + c * y;
408:
409:                            for (j = 0; j < m; j++) {
410:                                y = u[j][i1];
411:                                z = u[j][i];
412:                                u[j][i1] = y * c + z * s;
413:                                u[j][i] = -y * s + z * c;
414:                            }
415:                        }
416:
417:                        rv1[l] = 0.0F;
418:                        rv1[k] = f;
419:                        w[k] = x;
420:                    }
421:                }
422:
423:                return true;
424:            }
425:
426:            /**
427:             *
428:             * @param sourceCoords a double array containing the source coordinates
429:             *        x_0, y_0, x_1, y_1, ...
430:             * @param destCoords a double array containing the source coordinates
431:             *        x_0, y_0, x_1, y_1, ...
432:             * @return the best-fit coefficients for a bivariate polynomial of the
433:             *         given degree mapping the destination points into the source
434:             *         points.  The coefficients for the X polynomial are returned
435:             *         first, followed by those for the Y polynomial.
436:             */
437:            public static float[] getCoeffs(float[] sourceCoords,
438:                    int sourceOffset, float[] destCoords, int destOffset,
439:                    int numCoords, float preScaleX, float preScaleY,
440:                    float postScaleX, float postScaleY, int degree) {
441:                int i, j, k;
442:
443:                int equations = numCoords / 2;
444:
445:                /*
446:                for (i = 0; i < numCoords; i++) {
447:                    System.out.println("sourceCoords[" + i + "] = " +
448:                                       sourceCoords[i + sourceOffset]);
449:                    System.out.println("destCoords[" + i + "] = " +
450:                                       destCoords[i + destOffset]);
451:                }
452:                 */
453:
454:                // Number of unknowns
455:                int unknowns = (degree + 1) * (degree + 2) / 2;
456:                float[] out = new float[2 * unknowns];
457:
458:                // Special case for 3-point affine mapping
459:                if ((degree == 1) && (numCoords == 3)) {
460:                    double x0, x1, x2, y0, y1, y2;
461:                    double u0, u1, u2, v0, v1, v2;
462:
463:                    x0 = sourceCoords[0] / postScaleX;
464:                    y0 = sourceCoords[1] / postScaleY;
465:                    x1 = sourceCoords[2] / postScaleX;
466:                    y1 = sourceCoords[3] / postScaleY;
467:                    x2 = sourceCoords[4] / postScaleX;
468:                    y2 = sourceCoords[5] / postScaleY;
469:
470:                    u0 = destCoords[0] * preScaleX;
471:                    v0 = destCoords[1] * preScaleY;
472:                    u1 = destCoords[2] * preScaleX;
473:                    v1 = destCoords[3] * preScaleY;
474:                    u2 = destCoords[4] * preScaleX;
475:                    v2 = destCoords[5] * preScaleY;
476:
477:                    double v0mv1 = v0 - v1;
478:                    double v1mv2 = v1 - v2;
479:                    double v2mv0 = v2 - v0;
480:                    double u1mu0 = u1 - u0;
481:                    double u2mu1 = u2 - u1;
482:                    double u0mu2 = u0 - u2;
483:                    double u1v2mu2v1 = u1 * v2 - u2 * v1;
484:                    double u2v0mu0v2 = u2 * v0 - u0 * v2;
485:                    double u0v1mu1v0 = u0 * v1 - u1 * v0;
486:                    double invdet = 1.0F / (u0 * (v1mv2) + v0 * (u2mu1) + (u1v2mu2v1));
487:
488:                    out[0] = (float) (((v1mv2) * x0 + (v2mv0) * x1 + (v0mv1)
489:                            * x2) * invdet);
490:                    out[1] = (float) (((u2mu1) * x0 + (u0mu2) * x1 + (u1mu0)
491:                            * x2) * invdet);
492:                    out[2] = (float) (((u1v2mu2v1) * x0 + (u2v0mu0v2) * x1 + (u0v1mu1v0)
493:                            * x2) * invdet);
494:                    out[3] = (float) (((v1mv2) * y0 + (v2mv0) * y1 + (v0mv1)
495:                            * y2) * invdet);
496:                    out[4] = (float) (((u2mu1) * y0 + (u0mu2) * y1 + (u1mu0)
497:                            * y2) * invdet);
498:                    out[5] = (float) (((u1v2mu2v1) * y0 + (u2v0mu0v2) * y1 + (u0v1mu1v0)
499:                            * y2) * invdet);
500:
501:                    return out;
502:                }
503:
504:                double[][] A = new double[equations][unknowns];
505:
506:                /*
507:                  Fill in A with:
508:                  
509:                  1  x_0      y_0      ...  x_0*y_0^(n-1)          y_0^n
510:                  1  x_1      y_1      ...  x_1*y_1^(n-1)          y_1^n
511:                  ...
512:                  1  x_(k-1)  y_(k-1)  ...  x_(k-1)*y_(k-1)^(n-1)  y_(k-1)^n
513:
514:                  The height of the matrix is equal to the number of equations
515:                  The width of the matrix is equal to the number of unknowns
516:                 */
517:
518:                double[] xpow = new double[degree + 1];
519:                double[] ypow = new double[degree + 1];
520:
521:                for (i = 0; i < equations; i++) {
522:                    double[] Ai = A[i];
523:                    double x = destCoords[2 * i + destOffset] * preScaleX;
524:                    double y = destCoords[2 * i + 1 + destOffset] * preScaleY;
525:
526:                    double xtmp = 1.0F;
527:                    double ytmp = 1.0F;
528:                    for (int d = 0; d <= degree; d++) {
529:                        xpow[d] = xtmp;
530:                        ypow[d] = ytmp;
531:                        xtmp *= x;
532:                        ytmp *= y;
533:                    }
534:
535:                    int index = 0;
536:                    for (int deg = 0; deg <= degree; deg++) {
537:                        for (int ydeg = 0; ydeg <= deg; ydeg++) {
538:                            Ai[index++] = xpow[deg - ydeg] * ypow[ydeg];
539:                        }
540:                    }
541:                }
542:
543:                double[][] V = new double[unknowns][unknowns];
544:                double[] W = new double[unknowns];
545:                double[][] U = new double[equations][unknowns];
546:                SVD(A, W, U, V);
547:
548:                // Multiply the columns of V by the inverted diagonal entries of W
549:                for (j = 0; j < unknowns; j++) {
550:                    double winv = W[j];
551:                    if (winv != 0.0) {
552:                        winv = 1.0F / winv;
553:                    }
554:                    for (i = 0; i < unknowns; i++) {
555:                        V[i][j] *= winv;
556:                    }
557:                }
558:
559:                // Multiply V by U^T
560:                double[][] VWINVUT = matmul_t(V, U); // unknowns x equations
561:
562:                // Multiply VWINVUT by source coords to yield output coefficients
563:                for (i = 0; i < unknowns; i++) {
564:                    double tmp0 = 0;
565:                    double tmp1 = 0;
566:                    for (j = 0; j < equations; j++) {
567:                        double val = VWINVUT[i][j];
568:                        tmp0 += val * sourceCoords[2 * j + sourceOffset]
569:                                / postScaleX;
570:                        tmp1 += val * sourceCoords[2 * j + 1 + sourceOffset]
571:                                / postScaleY;
572:                    }
573:                    out[i] = (float) tmp0;
574:                    out[i + unknowns] = (float) tmp1;
575:                }
576:
577:                return out;
578:            }
579:
580:            /* Code for unit test */
581:
582:            private static Random myRandom = new Random(0);
583:            private static double c0[] = new double[6];
584:            private static double c1[] = new double[6];
585:            private static double preScaleX;
586:            private static double preScaleY;
587:            private static double postScaleX;
588:            private static double postScaleY;
589:            private static double noise = 0.0F;
590:
591:            private static float xpoly(float x, float y) {
592:                x *= (float) preScaleX;
593:                y *= (float) preScaleY;
594:                return (float) (postScaleX * (c0[0] + c0[1] * x + c0[2] * y
595:                        + c0[3] * x * x + c0[4] * x * y + c0[5] * y * y + myRandom
596:                        .nextDouble()
597:                        * noise));
598:            }
599:
600:            private static float ypoly(float x, float y) {
601:                x *= (float) preScaleX;
602:                y *= (float) preScaleY;
603:                return (float) (postScaleY * (c1[0] + c1[1] * x + c1[2] * y
604:                        + c1[3] * x * x + c1[4] * x * y + c1[5] * y * y + myRandom
605:                        .nextDouble()
606:                        * noise));
607:            }
608:
609:            private static void doTest(int equations, boolean print) {
610:                // Make up a pair of random polynomials
611:                for (int i = 0; i < 6; i++) {
612:                    c0[i] = myRandom.nextDouble() * 100.0F;
613:                    c1[i] = myRandom.nextDouble() * 100.0F;
614:                }
615:
616:                // Make up random pre- and postScales:
617:                preScaleX = myRandom.nextDouble() + 2.0; // Value between 2 and 3
618:                preScaleY = myRandom.nextDouble() + 3.0; // Value between 3 and 4
619:                postScaleX = myRandom.nextDouble() + 4.0; // Value between 4 and 5
620:                postScaleY = myRandom.nextDouble() + 5.0; // Value between 5 and 6
621:
622:                // Make up random destination coordinates
623:                float[] destCoords = new float[2 * equations];
624:                for (int i = 0; i < 2 * equations; i++) {
625:                    destCoords[i] = myRandom.nextFloat() * 100.0F;
626:                }
627:
628:                // Compute corresponding source coordinates
629:                float[] sourceCoords = new float[2 * equations];
630:                for (int i = 0; i < equations; i++) {
631:                    sourceCoords[2 * i] = xpoly(destCoords[2 * i],
632:                            destCoords[2 * i + 1]);
633:                    sourceCoords[2 * i + 1] = ypoly(destCoords[2 * i],
634:                            destCoords[2 * i + 1]);
635:                }
636:
637:                // Recover the polynomials using the SVD algorithm
638:                float[] coeffs = getCoeffs(sourceCoords, 0, destCoords, 0,
639:                        sourceCoords.length, (float) preScaleX,
640:                        (float) preScaleY, (float) postScaleX,
641:                        (float) postScaleY, 2);
642:
643:                // Print the results
644:                if (print) {
645:                    System.out.println("Using " + equations + " equations:");
646:                    for (int i = 0; i < 6; i++) {
647:                        System.out.println("c0[" + i + "] = " + c0[i]
648:                                + ", recovered as " + coeffs[i] + " (ratio = "
649:                                + (c0[i] / coeffs[i]) + ")");
650:                        System.out.println("c1[" + i + "] = " + c1[i]
651:                                + ", recovered as " + coeffs[i + 6]
652:                                + " (ratio = " + (c1[i] / coeffs[i + 6]) + ")");
653:                    }
654:                }
655:            }
656:
657:            public static void main(String[] args) {
658:                for (int times = 0; times < 3; times++) {
659:                    doTest(6 + 50 * times, true);
660:                    System.out.println();
661:                }
662:
663:                int trials = 10000;
664:                int points = 6;
665:
666:                long startTime = System.currentTimeMillis();
667:                for (int times = 0; times < trials; times++) {
668:                    doTest(points, false);
669:                }
670:                long endTime = System.currentTimeMillis();
671:                System.out.println("Did " + trials + " " + points
672:                        + "-point solutions in "
673:                        + ((endTime - startTime) / 1000.0F) + " seconds.");
674:                System.out.println("Rate = "
675:                        + (trials * 1000.F / (endTime - startTime))
676:                        + " trials/second");
677:            }
678:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.