Source Code Cross Referenced for InterpolationBilinear.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » javax » media » jai » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » javax.media.jai 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: InterpolationBilinear.java,v $
003:         *
004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Use is subject to license terms.
007:         *
008:         * $Revision: 1.1 $
009:         * $Date: 2005/02/11 04:57:10 $
010:         * $State: Exp $
011:         */
012:        package javax.media.jai;
013:
014:        /**
015:         * A class representing bilinear interpolation.  The class is marked
016:         * 'final' so it may be either automatically or manually inlined.
017:         *
018:         * <p> Bilinear interpolation requires a neighborhood extending one
019:         * pixel to the right and below the central sample.  If the fractional
020:         * subsample position is given by (xfrac, yfrac), the resampled pixel value 
021:         * will be:
022:         *
023:         * <pre>
024:         *    (1 - yfrac) * [(1 - xfrac)*s00 + xfrac*s01] + 
025:         *    yfrac * [(1 - xfrac)*s10 + xfrac*s11]
026:         * </pre>
027:         *
028:         * <p> A neighborhood extending one sample to the right of, and one
029:         * sample below the central sample is required to perform bilinear
030:         * interpolation. This implementation maintains equal subsampleBits in x and y.
031:         *
032:         * <p> The diagrams below illustrate the pixels involved in one-dimensional
033:         * bilinear interpolation. Point s0 is the interpolation kernel key position.
034:         * xfrac and yfrac, indicated by the dots, represent the point of interpolation
035:         * between two pixels. This value lies between 0.0 and 1.0 exclusive for
036:         * floating point and 0 and 2<sup>subsampleBits</sup> exclusive for integer
037:         * interpolations.
038:         *
039:         * <pre>
040:         * <b>
041:         *         Horizontal              Vertical
042:         *
043:         *          s0 .  s1                  s0                             
044:         *             ^                       .< yfrac                      
045:         *            xfrac                   s1                        
046:         * </b>
047:         * </pre>
048:         *
049:         * <p> The diagram below illustrates the pixels involved in
050:         * two-dimensional bilinear interpolation.
051:         *                                                                             
052:         * <pre>
053:         * <b>
054:         *                      s00    s01                                     
055:         *                                                                      
056:         *                          .      < yfrac                      
057:         *                                                                      
058:         *                      s10    s11                                     
059:         *                          ^                                           
060:         *                         xfrac                                        
061:         * </b>
062:         * </pre>
063:         *
064:         * <p> The class is marked 'final' so that it may be more easily inlined.
065:         */
066:        public final class InterpolationBilinear extends Interpolation {
067:
068:            /** The value of 1.0 scaled by 2^subsampleBits */
069:            private int one;
070:
071:            /** The value of 0.5 scaled by 2^subsampleBits */
072:            private int round;
073:
074:            /** The number of bits to shift integer pixels to account for
075:             *  subsampleBits 
076:             */
077:            private int shift;
078:
079:            /** Twice the value of 'shift'. Accounts for accumulated
080:             *  scaling shifts in two-axis interpolation
081:             */
082:            private int shift2;
083:
084:            /** The value of 0.5 scaled by 2^shift2 */
085:            private int round2;
086:
087:            static final int DEFAULT_SUBSAMPLE_BITS = 8;
088:
089:            /**
090:             * Constructs an InterpolationBilinear with a given subsample
091:             * precision, in bits. This precision is applied to both axes.
092:             *
093:             * @param subsampleBits the subsample precision.
094:             */
095:            public InterpolationBilinear(int subsampleBits) {
096:
097:                super (2, 2, 0, 1, 0, 1, subsampleBits, subsampleBits);
098:
099:                shift = subsampleBits;
100:                one = 1 << shift;
101:                round = 1 << (shift - 1);
102:
103:                shift2 = 2 * subsampleBits;
104:                round2 = 1 << (shift2 - 1);
105:            }
106:
107:            /**
108:             * Constructs an InterpolationBilinear with the default subsample
109:             * precision 0f 8 bits.
110:             */
111:            public InterpolationBilinear() {
112:                this (DEFAULT_SUBSAMPLE_BITS);
113:            }
114:
115:            /**
116:             * Performs horizontal interpolation on a one-dimensional array of integral samples.
117:             *
118:             * @param samples an array of ints.
119:             * @param xfrac the subsample position, multiplied by 2^(subsampleBits).
120:             * @return the interpolated value as an int.
121:             */
122:            public final int interpolateH(int[] samples, int xfrac) {
123:                return interpolateH(samples[0], samples[1], xfrac);
124:            }
125:
126:            /**
127:             * Performs vertical interpolation on a one-dimensional array of integral samples.
128:             *
129:             * @param samples an array of ints.
130:             * @param yfrac the Y subsample position, multiplied by 2^(subsampleBits).
131:             * @return the interpolated value as an int.
132:             */
133:            public final int interpolateV(int[] samples, int yfrac) {
134:                return interpolateV(samples[0], samples[1], yfrac);
135:            }
136:
137:            /**
138:             * Performs interpolation on a two-dimensional array of integral samples.
139:             *
140:             * @param samples a two-dimensional array of ints.
141:             * @param xfrac the X subsample position, multiplied by 2^(subsampleBits).
142:             * @param yfrac the Y subsample position, multiplied by 2^(subsampleBits).
143:             * @return the interpolated value as an int.
144:             */
145:            public final int interpolate(int[][] samples, int xfrac, int yfrac) {
146:                return interpolate(samples[0][0], samples[0][1], samples[1][0],
147:                        samples[1][1], xfrac, yfrac);
148:            }
149:
150:            /**
151:             * Performs horizontal interpolation on a pair of integral samples.
152:             * This method may be used instead of the array version for speed.
153:             *
154:             * @param s0 the central sample.
155:             * @param s1 the sample to the right of the central sample.
156:             * @param xfrac the subsample position, multiplied by 2^(subsampleBits).
157:             * @return the interpolated value as an int.
158:             */
159:            public final int interpolateH(int s0, int s1, int xfrac) {
160:                return ((s1 - s0) * xfrac + (s0 << shift) + round) >> shift;
161:            }
162:
163:            /**
164:             * Performs vertical interpolation on a pair of integral samples.
165:             * This method may be used instead of the array version for speed.
166:             *
167:             * @param s0 the central sample.
168:             * @param s1 the sample below the central sample.
169:             * @param yfrac the Y subsample position, multiplied by 2^(subsampleBits).
170:             * @return the interpolated value as an int.
171:             */
172:            public final int interpolateV(int s0, int s1, int yfrac) {
173:                return ((s1 - s0) * yfrac + (s0 << shift) + round) >> shift;
174:            }
175:
176:            /**
177:             * Performs horizontal interpolation on a quadruple of integral samples.
178:             * The outlying samples are ignored. 
179:             */
180:            public final int interpolateH(int s_, int s0, int s1, int s2,
181:                    int xfrac) {
182:                return interpolateH(s0, s1, xfrac);
183:            }
184:
185:            /**
186:             * Performs vertical interpolation on a quadruple of integral samples.
187:             * The outlying samples are ignored. 
188:             */
189:            public final int interpolateV(int s_, int s0, int s1, int s2,
190:                    int yfrac) {
191:                return interpolateV(s0, s1, yfrac);
192:            }
193:
194:            /**
195:             * Performs interpolation on a 2x2 grid of integral samples.
196:             *
197:             * @param s00 the central sample.
198:             * @param s01 the sample to the right of the central sample.
199:             * @param s10 the sample below the central sample.
200:             * @param s11 the sample below and to the right of the central sample.
201:             * @param xfrac the X subsample position, multiplied by 2^(subsampleBits).
202:             * @param yfrac the Y subsample position, multiplied by 2^(subsampleBits).
203:             * @return the interpolated value as an int.
204:             */
205:            public final int interpolate(int s00, int s01, int s10, int s11,
206:                    int xfrac, int yfrac) {
207:                int s0 = (s01 - s00) * xfrac + (s00 << shift);
208:                int s1 = (s11 - s10) * xfrac + (s10 << shift);
209:                return ((s1 - s0) * yfrac + (s0 << shift) + round2) >> shift2;
210:            }
211:
212:            /**
213:             * Performs interpolation on a 4x4 grid of integral samples.
214:             * The outlying samples are ignored.
215:             */
216:            public final int interpolate(int s__, int s_0, int s_1, int s_2,
217:                    int s0_, int s00, int s01, int s02, int s1_, int s10,
218:                    int s11, int s12, int s2_, int s20, int s21, int s22,
219:                    int xfrac, int yfrac) {
220:                return interpolate(s00, s01, s10, s11, xfrac, yfrac);
221:            }
222:
223:            /**
224:             * Performs horizontal interpolation on a one-dimensional array of
225:             * floating-point samples.
226:             *
227:             * @param samples an array of floats.
228:             * @param xfrac the X subsample position, in the range [0.0F, 1.0F).
229:             * @return the interpolated value as a float.
230:             */
231:            public final float interpolateH(float[] samples, float xfrac) {
232:                return interpolateH(samples[0], samples[1], xfrac);
233:            }
234:
235:            /**
236:             * Performs vertical interpolation on a one-dimensional array of
237:             * floating-point samples.
238:             *
239:             * @param samples an array of floats.
240:             * @param yfrac the Y subsample position, in the range [0.0F, 1.0F).
241:             * @return the interpolated value as a float.
242:             */
243:            public final float interpolateV(float[] samples, float yfrac) {
244:                return interpolateV(samples[0], samples[1], yfrac);
245:            }
246:
247:            /**
248:             * Performs interpolation on a two-dimensional array of
249:             * floating-point samples.
250:             *
251:             * @param samples an array of floats.
252:             * @param xfrac the X subsample position, in the range [0.0F, 1.0F).
253:             * @param yfrac the Y subsample position, in the range [0.0F, 1.0F).
254:             * @return the interpolated value as a float.
255:             */
256:            public final float interpolate(float[][] samples, float xfrac,
257:                    float yfrac) {
258:                return interpolate(samples[0][0], samples[0][1], samples[1][0],
259:                        samples[1][1], xfrac, yfrac);
260:            }
261:
262:            /**
263:             * Performs horizontal interpolation on a horizontal pair of floating-point
264:             * samples.  This method may be used instead of the array version
265:             * for speed.
266:             *
267:             * @param s0 the central sample.
268:             * @param s1 the sample to the right of the central sample.
269:             * @param xfrac the subsample position, in the range [0.0F, 1.0F).
270:             * @return the interpolated value as a float.
271:             */
272:            public final float interpolateH(float s0, float s1, float xfrac) {
273:                return (s1 - s0) * xfrac + s0;
274:            }
275:
276:            /**
277:             * Performs vertical interpolation on a vertical pair of floating-point
278:             * samples.  This method may be used instead of the array version
279:             * for speed.
280:             *
281:             * @param s0 the central sample.
282:             * @param s1 the sample below the central sample.
283:             * @param yfrac the Y subsample position, in the range [0.0F, 1.0F).
284:             * @return the interpolated value as a float.
285:             */
286:            public final float interpolateV(float s0, float s1, float yfrac) {
287:                return (s1 - s0) * yfrac + s0;
288:            }
289:
290:            /**
291:             * Performs horizontal interpolation on a horizontal quad of floating-point
292:             * samples.  The outlying samples are ignored.
293:             */
294:            public final float interpolateH(float s_, float s0, float s1,
295:                    float s2, float frac) {
296:                return interpolateH(s0, s1, frac);
297:            }
298:
299:            /**
300:             * Performs vertical interpolation on a horizontal quad of floating-point
301:             * samples.  The outlying samples are ignored.
302:             */
303:            public final float interpolateV(float s_, float s0, float s1,
304:                    float s2, float frac) {
305:                return interpolateV(s0, s1, frac);
306:            }
307:
308:            /**
309:             * Performs interpolation on a 2x2 grid of floating-point samples.
310:             *
311:             * @param s00 the central sample.
312:             * @param s01 the sample to the right of the central sample.
313:             * @param s10 the sample below the central sample.
314:             * @param s11 the sample below and to the right of the central sample.
315:             * @param xfrac the X subsample position, in the range [0.0F, 1.0F).
316:             * @param yfrac the Y subsample position, in the range [0.0F, 1.0F).
317:             * @return the interpolated value as a float.
318:             */
319:            public final float interpolate(float s00, float s01, float s10,
320:                    float s11, float xfrac, float yfrac) {
321:                float s0 = (s01 - s00) * xfrac + s00;
322:                float s1 = (s11 - s10) * xfrac + s10;
323:                return (s1 - s0) * yfrac + s0;
324:            }
325:
326:            /**
327:             * Performs interpolation on a 4x4 grid.  The outlying samples
328:             * are ignored.
329:             */
330:            public final float interpolate(float s__, float s_0, float s_1,
331:                    float s_2, float s0_, float s00, float s01, float s02,
332:                    float s1_, float s10, float s11, float s12, float s2_,
333:                    float s20, float s21, float s22, float xfrac, float yfrac) {
334:                return interpolate(s00, s01, s10, s11, xfrac, yfrac);
335:            }
336:
337:            /**
338:             * Performs horizontal interpolation on a one-dimensional array of
339:             * double samples.
340:             *
341:             * @param samples an array of doubles.
342:             * @param xfrac the X subsample position, in the range [0.0F, 1.0F).
343:             * @return the interpolated value as a double.
344:             */
345:            public final double interpolateH(double[] samples, float xfrac) {
346:                return interpolateH(samples[0], samples[1], xfrac);
347:            }
348:
349:            /**
350:             * Performs vertical interpolation on a one-dimensional array of
351:             * double samples.
352:             *
353:             * @param samples an array of doubles.
354:             * @param yfrac the Y subsample position, in the range [0.0F, 1.0F).
355:             * @return the interpolated value as a double.
356:             */
357:            public final double interpolateV(double[] samples, float yfrac) {
358:                return interpolateV(samples[0], samples[1], yfrac);
359:            }
360:
361:            /**
362:             * Performs interpolation on a two-dimensional array of
363:             * double samples.
364:             *
365:             * @param samples an array of doubles.
366:             * @param xfrac the X subsample position, in the range [0.0F, 1.0F).
367:             * @param yfrac the Y subsample position, in the range [0.0F, 1.0F).
368:             * @return the interpolated value as a double.
369:             */
370:            public final double interpolate(double[][] samples, float xfrac,
371:                    float yfrac) {
372:                return interpolate(samples[0][0], samples[0][1], samples[1][0],
373:                        samples[1][1], xfrac, yfrac);
374:            }
375:
376:            /**
377:             * Performs horizontal interpolation on a horizontal pair of double
378:             * samples.  This method may be used instead of the array version
379:             * for speed.
380:             *
381:             * @param s0 the central sample.
382:             * @param s1 the sample to the right of the central sample.
383:             * @param xfrac the subsample position, in the range [0.0F, 1.0F).
384:             * @return the interpolated value as a double.
385:             */
386:            public final double interpolateH(double s0, double s1, float xfrac) {
387:                return (s1 - s0) * xfrac + s0;
388:            }
389:
390:            /**
391:             * Performs vertical interpolation on a vertical pair of double
392:             * samples.  This method may be used instead of the array version
393:             * for speed.
394:             *
395:             * @param s0 the central sample.
396:             * @param s1 the sample below the central sample.
397:             * @param yfrac the Y subsample position, in the range [0.0F, 1.0F).
398:             * @return the interpolated value as a double.
399:             */
400:            public final double interpolateV(double s0, double s1, float yfrac) {
401:                return (s1 - s0) * yfrac + s0;
402:            }
403:
404:            /**
405:             * Performs interpolation on a horizontal quad of double
406:             * samples.  The outlying samples are ignored.
407:             */
408:            public final double interpolateH(double s_, double s0, double s1,
409:                    double s2, float xfrac) {
410:                return interpolateH(s0, s1, xfrac);
411:            }
412:
413:            /**
414:             * Performs vertical interpolation on a vertical quad of double
415:             * samples.  The outlying samples are ignored.
416:             */
417:            public final double interpolateV(double s_, double s0, double s1,
418:                    double s2, float yfrac) {
419:                return interpolateV(s0, s1, yfrac);
420:            }
421:
422:            /**
423:             * Performs interpolation on a 2x2 grid of double samples.
424:             *
425:             * @param s00 the central sample.
426:             * @param s01 the sample to the right of the central sample.
427:             * @param s10 the sample below the central sample.
428:             * @param s11 the sample below and to the right of the central sample.
429:             * @param xfrac the X subsample position, in the range [0.0F, 1.0F).
430:             * @param yfrac the Y subsample position, in the range [0.0F, 1.0F).
431:             * @return the interpolated value as a double.
432:             */
433:            public final double interpolate(double s00, double s01, double s10,
434:                    double s11, float xfrac, float yfrac) {
435:                double s0 = (s01 - s00) * xfrac + s00;
436:                double s1 = (s11 - s10) * xfrac + s10;
437:                return (s1 - s0) * yfrac + s0;
438:            }
439:
440:            /**
441:             * Performs interpolation on a 4x4 grid.  The outlying samples
442:             * are ignored.
443:             */
444:            public final double interpolate(double s__, double s_0, double s_1,
445:                    double s_2, double s0_, double s00, double s01, double s02,
446:                    double s1_, double s10, double s11, double s12, double s2_,
447:                    double s20, double s21, double s22, float xfrac, float yfrac) {
448:                return interpolate(s00, s01, s10, s11, xfrac, yfrac);
449:            }
450:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.