Source Code Cross Referenced for DeltaBlue.java in  » 6.0-JDK-Modules » j2me » com » sun » labs » kanban » DeltaBlue » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » j2me » com.sun.labs.kanban.DeltaBlue 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


0001:        /*
0002:         * @(#)DeltaBlue.java	1.6 06/10/10
0003:         *
0004:         * Copyright  1990-2006 Sun Microsystems, Inc. All Rights Reserved.  
0005:         * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER  
0006:         *   
0007:         * This program is free software; you can redistribute it and/or  
0008:         * modify it under the terms of the GNU General Public License version  
0009:         * 2 only, as published by the Free Software Foundation.   
0010:         *   
0011:         * This program is distributed in the hope that it will be useful, but  
0012:         * WITHOUT ANY WARRANTY; without even the implied warranty of  
0013:         * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU  
0014:         * General Public License version 2 for more details (a copy is  
0015:         * included at /legal/license.txt).   
0016:         *   
0017:         * You should have received a copy of the GNU General Public License  
0018:         * version 2 along with this work; if not, write to the Free Software  
0019:         * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  
0020:         * 02110-1301 USA   
0021:         *   
0022:         * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa  
0023:         * Clara, CA 95054 or visit www.sun.com if you need additional  
0024:         * information or have any questions. 
0025:         *
0026:         */
0027:        /*
0028:
0029:         This is a Java implemention of the DeltaBlue algorithm described in:
0030:         "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver"
0031:         by Bjorn N. Freeman-Benson and John Maloney
0032:         January 1990 Communications of the ACM,
0033:         also available as University of Washington TR 89-08-06.
0034:
0035:         This implementation by Mario Wolczko, Sun Microsystems, Sep 1996,
0036:         based on the Smalltalk implementation by John Maloney.
0037:
0038:         */
0039:
0040:        package COM.sun.labs.kanban.DeltaBlue;
0041:
0042:        import java.util.Vector;
0043:
0044:        import Benchmark;
0045:
0046:        /* 
0047:         Strengths are used to measure the relative importance of constraints.
0048:         New strengths may be inserted in the strength hierarchy without
0049:         disrupting current constraints.  Strengths cannot be created outside
0050:         this class, so pointer comparison can be used for value comparison.
0051:         */
0052:
0053:        class Strength {
0054:
0055:            private int strengthValue;
0056:            private String name;
0057:
0058:            private Strength(int strengthValue, String name) {
0059:                this .strengthValue = strengthValue;
0060:                this .name = name;
0061:            }
0062:
0063:            public static boolean stronger(Strength s1, Strength s2) {
0064:                return s1.strengthValue < s2.strengthValue;
0065:            }
0066:
0067:            public static boolean weaker(Strength s1, Strength s2) {
0068:                return s1.strengthValue > s2.strengthValue;
0069:            }
0070:
0071:            public static Strength weakestOf(Strength s1, Strength s2) {
0072:                return weaker(s1, s2) ? s1 : s2;
0073:            }
0074:
0075:            public static Strength strongest(Strength s1, Strength s2) {
0076:                return stronger(s1, s2) ? s1 : s2;
0077:            }
0078:
0079:            // for iteration
0080:            public Strength nextWeaker() {
0081:                switch (strengthValue) {
0082:                case 0:
0083:                    return weakest;
0084:                case 1:
0085:                    return weakDefault;
0086:                case 2:
0087:                    return normal;
0088:                case 3:
0089:                    return strongDefault;
0090:                case 4:
0091:                    return preferred;
0092:                case 5:
0093:                    return strongPreferred;
0094:
0095:                case 6:
0096:                default:
0097:                    System.err.println("Invalid call to nextStrength()!");
0098:                    System.exit(1);
0099:                    return null;
0100:                }
0101:            }
0102:
0103:            // Strength constants
0104:            public final static Strength required = new Strength(0, "required");
0105:            public final static Strength strongPreferred = new Strength(1,
0106:                    "strongPreferred");
0107:            public final static Strength preferred = new Strength(2,
0108:                    "preferred");
0109:            public final static Strength strongDefault = new Strength(3,
0110:                    "strongDefault");
0111:            public final static Strength normal = new Strength(4, "normal");
0112:            public final static Strength weakDefault = new Strength(5,
0113:                    "weakDefault");
0114:            public final static Strength weakest = new Strength(6, "weakest");
0115:
0116:            public void print() {
0117:                System.out.print("strength[" + Integer.toString(strengthValue)
0118:                        + "]");
0119:            }
0120:        }
0121:
0122:        //------------------------------ variables ------------------------------
0123:
0124:        // I represent a constrained variable. In addition to my value, I
0125:        // maintain the structure of the constraint graph, the current
0126:        // dataflow graph, and various parameters of interest to the DeltaBlue
0127:        // incremental constraint solver.
0128:
0129:        class Variable {
0130:
0131:            public int value; // my value; changed by constraints
0132:            public Vector constraints; // normal constraints that reference me
0133:            public Constraint determinedBy; // the constraint that currently determines
0134:            // my value (or null if there isn't one)
0135:            public int mark; // used by the planner to mark constraints
0136:            public Strength walkStrength; // my walkabout strength
0137:            public boolean stay; // true if I am a planning-time constant
0138:            public String name; // a symbolic name for reporting purposes
0139:
0140:            private Variable(String name, int initialValue,
0141:                    Strength walkStrength, int nconstraints) {
0142:                value = initialValue;
0143:                constraints = new Vector(nconstraints);
0144:                determinedBy = null;
0145:                mark = 0;
0146:                this .walkStrength = walkStrength;
0147:                stay = true;
0148:                this .name = name;
0149:            }
0150:
0151:            public Variable(String name, int value) {
0152:                this (name, value, Strength.weakest, 2);
0153:            }
0154:
0155:            public Variable(String name) {
0156:                this (name, 0, Strength.weakest, 2);
0157:            }
0158:
0159:            public void print() {
0160:                System.out.print(name + "(");
0161:                walkStrength.print();
0162:                System.out.print("," + value + ")");
0163:            }
0164:
0165:            // Add the given constraint to the set of all constraints that refer to me.
0166:            public void addConstraint(Constraint c) {
0167:                constraints.addElement(c);
0168:            }
0169:
0170:            // Remove all traces of c from this variable.
0171:            public void removeConstraint(Constraint c) {
0172:                constraints.removeElement(c);
0173:                if (determinedBy == c)
0174:                    determinedBy = null;
0175:            }
0176:
0177:            // Attempt to assign the given value to me using the given strength.
0178:            public void setValue(int value, Strength strength) {
0179:                EditConstraint e = new EditConstraint(this , strength);
0180:                if (e.isSatisfied()) {
0181:                    this .value = value;
0182:                    DeltaBlue.planner.propagateFrom(this );
0183:                }
0184:                e.destroyConstraint();
0185:            }
0186:
0187:        }
0188:
0189:        //------------------------ constraints ------------------------------------
0190:
0191:        // I am an abstract class representing a system-maintainable
0192:        // relationship (or "constraint") between a set of variables. I supply
0193:        // a strength instance variable; concrete subclasses provide a means
0194:        // of storing the constrained variables and other information required
0195:        // to represent a constraint.
0196:
0197:        abstract class Constraint {
0198:
0199:            public Strength strength; // the strength of this constraint
0200:
0201:            protected Constraint() {
0202:            } // this has to be here because of
0203:
0204:            // Java's constructor idiocy.
0205:
0206:            protected Constraint(Strength strength) {
0207:                this .strength = strength;
0208:            }
0209:
0210:            // Answer true if this constraint is satisfied in the current solution.
0211:            public abstract boolean isSatisfied();
0212:
0213:            // Record the fact that I am unsatisfied.
0214:            public abstract void markUnsatisfied();
0215:
0216:            // Normal constraints are not input constraints. An input constraint
0217:            // is one that depends on external state, such as the mouse, the
0218:            // keyboard, a clock, or some arbitrary piece of imperative code.
0219:            public boolean isInput() {
0220:                return false;
0221:            }
0222:
0223:            // Activate this constraint and attempt to satisfy it.
0224:            protected void addConstraint() {
0225:                addToGraph();
0226:                DeltaBlue.planner.incrementalAdd(this );
0227:            }
0228:
0229:            // Deactivate this constraint, remove it from the constraint graph,
0230:            // possibly causing other constraints to be satisfied, and destroy
0231:            // it.
0232:            public void destroyConstraint() {
0233:                if (isSatisfied())
0234:                    DeltaBlue.planner.incrementalRemove(this );
0235:                removeFromGraph();
0236:            }
0237:
0238:            // Add myself to the constraint graph.
0239:            public abstract void addToGraph();
0240:
0241:            // Remove myself from the constraint graph.
0242:            public abstract void removeFromGraph();
0243:
0244:            // Decide if I can be satisfied and record that decision. The output
0245:            // of the choosen method must not have the given mark and must have
0246:            // a walkabout strength less than that of this constraint.
0247:            protected abstract void chooseMethod(int mark);
0248:
0249:            // Set the mark of all input from the given mark.
0250:            protected abstract void markInputs(int mark);
0251:
0252:            // Assume that I am satisfied. Answer true if all my current inputs
0253:            // are known. A variable is known if either a) it is 'stay' (i.e. it
0254:            // is a constant at plan execution time), b) it has the given mark
0255:            // (indicating that it has been computed by a constraint appearing
0256:            // earlier in the plan), or c) it is not determined by any
0257:            // constraint.
0258:            public abstract boolean inputsKnown(int mark);
0259:
0260:            // Answer my current output variable. Raise an error if I am not
0261:            // currently satisfied.
0262:            public abstract Variable output();
0263:
0264:            // Attempt to find a way to enforce this constraint. If successful,
0265:            // record the solution, perhaps modifying the current dataflow
0266:            // graph. Answer the constraint that this constraint overrides, if
0267:            // there is one, or nil, if there isn't.
0268:            // Assume: I am not already satisfied.
0269:            //
0270:            public Constraint satisfy(int mark) {
0271:                chooseMethod(mark);
0272:                if (!isSatisfied()) {
0273:                    if (strength == Strength.required) {
0274:                        DeltaBlue
0275:                                .error("Could not satisfy a required constraint");
0276:                    }
0277:                    return null;
0278:                }
0279:                // constraint can be satisfied
0280:                // mark inputs to allow cycle detection in addPropagate
0281:                markInputs(mark);
0282:                Variable out = output();
0283:                Constraint overridden = out.determinedBy;
0284:                if (overridden != null)
0285:                    overridden.markUnsatisfied();
0286:                out.determinedBy = this ;
0287:                if (!DeltaBlue.planner.addPropagate(this , mark)) {
0288:                    System.out.println("Cycle encountered");
0289:                    return null;
0290:                }
0291:                out.mark = mark;
0292:                return overridden;
0293:            }
0294:
0295:            // Enforce this constraint. Assume that it is satisfied.
0296:            public abstract void execute();
0297:
0298:            // Calculate the walkabout strength, the stay flag, and, if it is
0299:            // 'stay', the value for the current output of this
0300:            // constraint. Assume this constraint is satisfied.
0301:            public abstract void recalculate();
0302:
0303:            protected abstract void printInputs();
0304:
0305:            protected void printOutput() {
0306:                output().print();
0307:            }
0308:
0309:            public void print() {
0310:                int i, outIndex;
0311:
0312:                if (!isSatisfied()) {
0313:                    System.out.print("Unsatisfied");
0314:                } else {
0315:                    System.out.print("Satisfied(");
0316:                    printInputs();
0317:                    System.out.print(" -> ");
0318:                    printOutput();
0319:                    System.out.print(")");
0320:                }
0321:                System.out.print("\n");
0322:            }
0323:
0324:        }
0325:
0326:        //-------------unary constraints-------------------------------------------
0327:
0328:        // I am an abstract superclass for constraints having a single
0329:        // possible output variable.
0330:        //
0331:        abstract class UnaryConstraint extends Constraint {
0332:
0333:            protected Variable myOutput; // possible output variable
0334:            protected boolean satisfied; // true if I am currently satisfied
0335:
0336:            protected UnaryConstraint(Variable v, Strength strength) {
0337:                super (strength);
0338:                myOutput = v;
0339:                satisfied = false;
0340:                addConstraint();
0341:            }
0342:
0343:            // Answer true if this constraint is satisfied in the current solution.
0344:            public boolean isSatisfied() {
0345:                return satisfied;
0346:            }
0347:
0348:            // Record the fact that I am unsatisfied.
0349:            public void markUnsatisfied() {
0350:                satisfied = false;
0351:            }
0352:
0353:            // Answer my current output variable.
0354:            public Variable output() {
0355:                return myOutput;
0356:            }
0357:
0358:            // Add myself to the constraint graph.
0359:            public void addToGraph() {
0360:                myOutput.addConstraint(this );
0361:                satisfied = false;
0362:            }
0363:
0364:            // Remove myself from the constraint graph.
0365:            public void removeFromGraph() {
0366:                if (myOutput != null)
0367:                    myOutput.removeConstraint(this );
0368:                satisfied = false;
0369:            }
0370:
0371:            // Decide if I can be satisfied and record that decision.
0372:            protected void chooseMethod(int mark) {
0373:                satisfied = myOutput.mark != mark
0374:                        && Strength.stronger(strength, myOutput.walkStrength);
0375:            }
0376:
0377:            protected void markInputs(int mark) {
0378:            } // I have no inputs
0379:
0380:            public boolean inputsKnown(int mark) {
0381:                return true;
0382:            }
0383:
0384:            // Calculate the walkabout strength, the stay flag, and, if it is
0385:            // 'stay', the value for the current output of this
0386:            // constraint. Assume this constraint is satisfied."
0387:            public void recalculate() {
0388:                myOutput.walkStrength = strength;
0389:                myOutput.stay = !isInput();
0390:                if (myOutput.stay)
0391:                    execute(); // stay optimization
0392:            }
0393:
0394:            protected void printInputs() {
0395:            } // I have no inputs
0396:
0397:        }
0398:
0399:        // I am a unary input constraint used to mark a variable that the
0400:        // client wishes to change.
0401:        //
0402:        class EditConstraint extends UnaryConstraint {
0403:
0404:            public EditConstraint(Variable v, Strength str) {
0405:                super (v, str);
0406:            }
0407:
0408:            // I indicate that a variable is to be changed by imperative code.
0409:            public boolean isInput() {
0410:                return true;
0411:            }
0412:
0413:            public void execute() {
0414:            } // Edit constraints do nothing.
0415:
0416:        }
0417:
0418:        // I mark variables that should, with some level of preference, stay
0419:        // the same. I have one method with zero inputs and one output, which
0420:        // does nothing. Planners may exploit the fact that, if I am
0421:        // satisfied, my output will not change during plan execution. This is
0422:        // called "stay optimization".
0423:        //
0424:        class StayConstraint extends UnaryConstraint {
0425:
0426:            // Install a stay constraint with the given strength on the given variable.
0427:            public StayConstraint(Variable v, Strength str) {
0428:                super (v, str);
0429:            }
0430:
0431:            public void execute() {
0432:            } // Stay constraints do nothing.
0433:
0434:        }
0435:
0436:        //-------------binary constraints-------------------------------------------
0437:
0438:        // I am an abstract superclass for constraints having two possible
0439:        // output variables.
0440:        //
0441:        abstract class BinaryConstraint extends Constraint {
0442:
0443:            protected Variable v1, v2; // possible output variables
0444:            protected byte direction; // one of the following...
0445:            protected static byte backward = -1; // v1 is output
0446:            protected static byte nodirection = 0; // not satisfied
0447:            protected static byte forward = 1; // v2 is output
0448:
0449:            protected BinaryConstraint() {
0450:            } // this has to be here because of
0451:
0452:            // Java's constructor idiocy.
0453:
0454:            protected BinaryConstraint(Variable var1, Variable var2,
0455:                    Strength strength) {
0456:                super (strength);
0457:                v1 = var1;
0458:                v2 = var2;
0459:                direction = nodirection;
0460:                addConstraint();
0461:            }
0462:
0463:            // Answer true if this constraint is satisfied in the current solution.
0464:            public boolean isSatisfied() {
0465:                return direction != nodirection;
0466:            }
0467:
0468:            // Add myself to the constraint graph.
0469:            public void addToGraph() {
0470:                v1.addConstraint(this );
0471:                v2.addConstraint(this );
0472:                direction = nodirection;
0473:            }
0474:
0475:            // Remove myself from the constraint graph.
0476:            public void removeFromGraph() {
0477:                if (v1 != null)
0478:                    v1.removeConstraint(this );
0479:                if (v2 != null)
0480:                    v2.removeConstraint(this );
0481:                direction = nodirection;
0482:            }
0483:
0484:            // Decide if I can be satisfied and which way I should flow based on
0485:            // the relative strength of the variables I relate, and record that
0486:            // decision.
0487:            //
0488:            protected void chooseMethod(int mark) {
0489:                if (v1.mark == mark)
0490:                    direction = v2.mark != mark
0491:                            && Strength.stronger(strength, v2.walkStrength) ? forward
0492:                            : nodirection;
0493:
0494:                if (v2.mark == mark)
0495:                    direction = v1.mark != mark
0496:                            && Strength.stronger(strength, v1.walkStrength) ? backward
0497:                            : nodirection;
0498:
0499:                // If we get here, neither variable is marked, so we have a choice.
0500:                if (Strength.weaker(v1.walkStrength, v2.walkStrength))
0501:                    direction = Strength.stronger(strength, v1.walkStrength) ? backward
0502:                            : nodirection;
0503:                else
0504:                    direction = Strength.stronger(strength, v2.walkStrength) ? forward
0505:                            : nodirection;
0506:            }
0507:
0508:            // Record the fact that I am unsatisfied.
0509:            public void markUnsatisfied() {
0510:                direction = nodirection;
0511:            }
0512:
0513:            // Mark the input variable with the given mark.
0514:            protected void markInputs(int mark) {
0515:                input().mark = mark;
0516:            }
0517:
0518:            public boolean inputsKnown(int mark) {
0519:                Variable i = input();
0520:                return i.mark == mark || i.stay || i.determinedBy == null;
0521:            }
0522:
0523:            // Answer my current output variable.
0524:            public Variable output() {
0525:                return direction == forward ? v2 : v1;
0526:            }
0527:
0528:            // Answer my current input variable
0529:            public Variable input() {
0530:                return direction == forward ? v1 : v2;
0531:            }
0532:
0533:            // Calculate the walkabout strength, the stay flag, and, if it is
0534:            // 'stay', the value for the current output of this
0535:            // constraint. Assume this constraint is satisfied.
0536:            //
0537:            public void recalculate() {
0538:                Variable in = input(), out = output();
0539:                out.walkStrength = Strength
0540:                        .weakestOf(strength, in.walkStrength);
0541:                out.stay = in.stay;
0542:                if (out.stay)
0543:                    execute();
0544:            }
0545:
0546:            protected void printInputs() {
0547:                input().print();
0548:            }
0549:
0550:        }
0551:
0552:        // I constrain two variables to have the same value: "v1 = v2".
0553:        //
0554:        class EqualityConstraint extends BinaryConstraint {
0555:
0556:            // Install a constraint with the given strength equating the given variables.
0557:            public EqualityConstraint(Variable var1, Variable var2,
0558:                    Strength strength) {
0559:                super (var1, var2, strength);
0560:            }
0561:
0562:            // Enforce this constraint. Assume that it is satisfied.
0563:            public void execute() {
0564:                output().value = input().value;
0565:            }
0566:
0567:        }
0568:
0569:        // I relate two variables by the linear scaling relationship: "v2 =
0570:        // (v1 * scale) + offset". Either v1 or v2 may be changed to maintain
0571:        // this relationship but the scale factor and offset are considered
0572:        // read-only.
0573:        //
0574:        class ScaleConstraint extends BinaryConstraint {
0575:
0576:            protected Variable scale; // scale factor input variable
0577:            protected Variable offset; // offset input variable
0578:
0579:            // Install a scale constraint with the given strength on the given variables.
0580:            public ScaleConstraint(Variable src, Variable scale,
0581:                    Variable offset, Variable dest, Strength strength) {
0582:                // Curse this wretched language for insisting that constructor invocation
0583:                // must be the first thing in a method...
0584:                // ..because of that, we must copy the code from the inherited
0585:                // constructors.
0586:                this .strength = strength;
0587:                v1 = src;
0588:                v2 = dest;
0589:                direction = nodirection;
0590:                this .scale = scale;
0591:                this .offset = offset;
0592:                addConstraint();
0593:            }
0594:
0595:            // Add myself to the constraint graph.
0596:            public void addToGraph() {
0597:                super .addToGraph();
0598:                scale.addConstraint(this );
0599:                offset.addConstraint(this );
0600:            }
0601:
0602:            // Remove myself from the constraint graph.
0603:            public void removeFromGraph() {
0604:                super .removeFromGraph();
0605:                if (scale != null)
0606:                    scale.removeConstraint(this );
0607:                if (offset != null)
0608:                    offset.removeConstraint(this );
0609:            }
0610:
0611:            // Mark the inputs from the given mark.
0612:            protected void markInputs(int mark) {
0613:                super .markInputs(mark);
0614:                scale.mark = offset.mark = mark;
0615:            }
0616:
0617:            // Enforce this constraint. Assume that it is satisfied.
0618:            public void execute() {
0619:                if (direction == forward)
0620:                    v2.value = v1.value * scale.value + offset.value;
0621:                else
0622:                    v1.value = (v2.value - offset.value) / scale.value;
0623:            }
0624:
0625:            // Calculate the walkabout strength, the stay flag, and, if it is
0626:            // 'stay', the value for the current output of this
0627:            // constraint. Assume this constraint is satisfied.
0628:            public void recalculate() {
0629:                Variable in = input(), out = output();
0630:                out.walkStrength = Strength
0631:                        .weakestOf(strength, in.walkStrength);
0632:                out.stay = in.stay && scale.stay && offset.stay;
0633:                if (out.stay)
0634:                    execute(); // stay optimization
0635:            }
0636:        }
0637:
0638:        // ------------------------------------------------------------
0639:
0640:        // A Plan is an ordered list of constraints to be executed in sequence
0641:        // to resatisfy all currently satisfiable constraints in the face of
0642:        // one or more changing inputs.
0643:
0644:        class Plan {
0645:
0646:            private Vector v;
0647:
0648:            public Plan() {
0649:                v = new Vector();
0650:            }
0651:
0652:            public void addConstraint(Constraint c) {
0653:                v.addElement(c);
0654:            }
0655:
0656:            public int size() {
0657:                return v.size();
0658:            }
0659:
0660:            public Constraint constraintAt(int index) {
0661:                return (Constraint) v.elementAt(index);
0662:            }
0663:
0664:            public void execute() {
0665:                for (int i = 0; i < size(); ++i) {
0666:                    Constraint c = (Constraint) constraintAt(i);
0667:                    c.execute();
0668:                }
0669:            }
0670:
0671:        }
0672:
0673:        // ------------------------------------------------------------
0674:
0675:        // The DeltaBlue planner
0676:
0677:        class Planner {
0678:
0679:            int currentMark = 0;
0680:
0681:            // Select a previously unused mark value.
0682:            private int newMark() {
0683:                return ++currentMark;
0684:            }
0685:
0686:            public Planner() {
0687:                currentMark = 0;
0688:            }
0689:
0690:            // Attempt to satisfy the given constraint and, if successful,
0691:            // incrementally update the dataflow graph.  Details: If satifying
0692:            // the constraint is successful, it may override a weaker constraint
0693:            // on its output. The algorithm attempts to resatisfy that
0694:            // constraint using some other method. This process is repeated
0695:            // until either a) it reaches a variable that was not previously
0696:            // determined by any constraint or b) it reaches a constraint that
0697:            // is too weak to be satisfied using any of its methods. The
0698:            // variables of constraints that have been processed are marked with
0699:            // a unique mark value so that we know where we've been. This allows
0700:            // the algorithm to avoid getting into an infinite loop even if the
0701:            // constraint graph has an inadvertent cycle.
0702:            //
0703:            public void incrementalAdd(Constraint c) {
0704:                int mark = newMark();
0705:                Constraint overridden = c.satisfy(mark);
0706:                while (overridden != null) {
0707:                    overridden = overridden.satisfy(mark);
0708:                }
0709:            }
0710:
0711:            // Entry point for retracting a constraint. Remove the given
0712:            // constraint and incrementally update the dataflow graph.
0713:            // Details: Retracting the given constraint may allow some currently
0714:            // unsatisfiable downstream constraint to be satisfied. We therefore collect
0715:            // a list of unsatisfied downstream constraints and attempt to
0716:            // satisfy each one in turn. This list is traversed by constraint
0717:            // strength, strongest first, as a heuristic for avoiding
0718:            // unnecessarily adding and then overriding weak constraints.
0719:            // Assume: c is satisfied.
0720:            //
0721:            public void incrementalRemove(Constraint c) {
0722:                Variable out = c.output();
0723:                c.markUnsatisfied();
0724:                c.removeFromGraph();
0725:                Vector unsatisfied = removePropagateFrom(out);
0726:                Strength strength = Strength.required;
0727:                do {
0728:                    for (int i = 0; i < unsatisfied.size(); ++i) {
0729:                        Constraint u = (Constraint) unsatisfied.elementAt(i);
0730:                        if (u.strength == strength)
0731:                            incrementalAdd(u);
0732:                    }
0733:                    strength = strength.nextWeaker();
0734:                } while (strength != Strength.weakest);
0735:            }
0736:
0737:            // Recompute the walkabout strengths and stay flags of all variables
0738:            // downstream of the given constraint and recompute the actual
0739:            // values of all variables whose stay flag is true. If a cycle is
0740:            // detected, remove the given constraint and answer
0741:            // false. Otherwise, answer true.
0742:            // Details: Cycles are detected when a marked variable is
0743:            // encountered downstream of the given constraint. The sender is
0744:            // assumed to have marked the inputs of the given constraint with
0745:            // the given mark. Thus, encountering a marked node downstream of
0746:            // the output constraint means that there is a path from the
0747:            // constraint's output to one of its inputs.
0748:            //
0749:            public boolean addPropagate(Constraint c, int mark) {
0750:                Vector todo = new Vector();
0751:                todo.addElement(c);
0752:                while (!todo.isEmpty()) {
0753:                    Constraint d = (Constraint) todo.elementAt(0);
0754:                    todo.removeElementAt(0);
0755:                    if (d.output().mark == mark) {
0756:                        incrementalRemove(c);
0757:                        return false;
0758:                    }
0759:                    d.recalculate();
0760:                    addConstraintsConsumingTo(d.output(), todo);
0761:                }
0762:                return true;
0763:            }
0764:
0765:            // The given variable has changed. Propagate new values downstream.
0766:            public void propagateFrom(Variable v) {
0767:                Vector todo = new Vector();
0768:                addConstraintsConsumingTo(v, todo);
0769:                while (!todo.isEmpty()) {
0770:                    Constraint c = (Constraint) todo.elementAt(0);
0771:                    todo.removeElementAt(0);
0772:                    c.execute();
0773:                    addConstraintsConsumingTo(c.output(), todo);
0774:                }
0775:            }
0776:
0777:            // Update the walkabout strengths and stay flags of all variables
0778:            // downstream of the given constraint. Answer a collection of
0779:            // unsatisfied constraints sorted in order of decreasing strength.
0780:            //
0781:            protected Vector removePropagateFrom(Variable out) {
0782:                out.determinedBy = null;
0783:                out.walkStrength = Strength.weakest;
0784:                out.stay = true;
0785:                Vector unsatisfied = new Vector();
0786:                Vector todo = new Vector();
0787:                todo.addElement(out);
0788:                while (!todo.isEmpty()) {
0789:                    Variable v = (Variable) todo.elementAt(0);
0790:                    todo.removeElementAt(0);
0791:                    for (int i = 0; i < v.constraints.size(); ++i) {
0792:                        Constraint c = (Constraint) v.constraints.elementAt(i);
0793:                        if (!c.isSatisfied())
0794:                            unsatisfied.addElement(c);
0795:                    }
0796:                    Constraint determiningC = v.determinedBy;
0797:                    for (int i = 0; i < v.constraints.size(); ++i) {
0798:                        Constraint nextC = (Constraint) v.constraints
0799:                                .elementAt(i);
0800:                        if (nextC != determiningC && nextC.isSatisfied()) {
0801:                            nextC.recalculate();
0802:                            todo.addElement(nextC.output());
0803:                        }
0804:                    }
0805:                }
0806:                return unsatisfied;
0807:            }
0808:
0809:            // Extract a plan for resatisfaction starting from the outputs of
0810:            // the given constraints, usually a set of input constraints.
0811:            //
0812:            protected Plan extractPlanFromConstraints(Vector constraints) {
0813:                Vector sources = new Vector();
0814:                for (int i = 0; i < constraints.size(); ++i) {
0815:                    Constraint c = (Constraint) constraints.elementAt(i);
0816:                    if (c.isInput() && c.isSatisfied())
0817:                        sources.addElement(c);
0818:                }
0819:                return makePlan(sources);
0820:            }
0821:
0822:            // Extract a plan for resatisfaction starting from the given source
0823:            // constraints, usually a set of input constraints. This method
0824:            // assumes that stay optimization is desired; the plan will contain
0825:            // only constraints whose output variables are not stay. Constraints
0826:            // that do no computation, such as stay and edit constraints, are
0827:            // not included in the plan.
0828:            // Details: The outputs of a constraint are marked when it is added
0829:            // to the plan under construction. A constraint may be appended to
0830:            // the plan when all its input variables are known. A variable is
0831:            // known if either a) the variable is marked (indicating that has
0832:            // been computed by a constraint appearing earlier in the plan), b)
0833:            // the variable is 'stay' (i.e. it is a constant at plan execution
0834:            // time), or c) the variable is not determined by any
0835:            // constraint. The last provision is for past states of history
0836:            // variables, which are not stay but which are also not computed by
0837:            // any constraint.
0838:            // Assume: sources are all satisfied.
0839:            //
0840:            protected Plan makePlan(Vector sources) {
0841:                int mark = newMark();
0842:                Plan plan = new Plan();
0843:                Vector todo = sources;
0844:                while (!todo.isEmpty()) {
0845:                    Constraint c = (Constraint) todo.elementAt(0);
0846:                    todo.removeElementAt(0);
0847:                    if (c.output().mark != mark && c.inputsKnown(mark)) {
0848:                        // not in plan already and eligible for inclusion
0849:                        plan.addConstraint(c);
0850:                        c.output().mark = mark;
0851:                        addConstraintsConsumingTo(c.output(), todo);
0852:                    }
0853:                }
0854:                return plan;
0855:            }
0856:
0857:            protected void addConstraintsConsumingTo(Variable v, Vector coll) {
0858:                Constraint determiningC = v.determinedBy;
0859:                Vector cc = v.constraints;
0860:                for (int i = 0; i < cc.size(); ++i) {
0861:                    Constraint c = (Constraint) cc.elementAt(i);
0862:                    if (c != determiningC && c.isSatisfied())
0863:                        coll.addElement(c);
0864:                }
0865:            }
0866:
0867:        }
0868:
0869:        //------------------------------------------------------------
0870:
0871:        public class DeltaBlue implements  Benchmark {
0872:
0873:            private long total_ms;
0874:
0875:            public long getRunTime() {
0876:                return total_ms;
0877:            }
0878:
0879:            public static Planner planner;
0880:
0881:            public static void main(String[] args) {
0882:                (new DeltaBlue()).inst_main(args);
0883:            }
0884:
0885:            public void inst_main(String args[]) {
0886:                System.out.println("DeltaBlue benchmark starting...");
0887:                int iterations = 100;
0888:                long startTime = System.currentTimeMillis();
0889:                for (int j = 0; j < iterations; ++j) {
0890:                    chainTest(100);
0891:                    projectionTest(100);
0892:                }
0893:                long endTime = System.currentTimeMillis();
0894:                total_ms = endTime - startTime;
0895:                System.out.println("Total time for " + iterations
0896:                        + " iterations of chain and projection tests: "
0897:                        + total_ms + " ms");
0898:                System.out.println("Average time per iteration: "
0899:                        + ((double) total_ms / iterations) + " ms");
0900:
0901:            }
0902:
0903:            //  This is the standard DeltaBlue benchmark. A long chain of
0904:            //  equality constraints is constructed with a stay constraint on
0905:            //  one end. An edit constraint is then added to the opposite end
0906:            //  and the time is measured for adding and removing this
0907:            //  constraint, and extracting and executing a constraint
0908:            //  satisfaction plan. There are two cases. In case 1, the added
0909:            //  constraint is stronger than the stay constraint and values must
0910:            //  propagate down the entire length of the chain. In case 2, the
0911:            //  added constraint is weaker than the stay constraint so it cannot
0912:            //  be accomodated. The cost in this case is, of course, very
0913:            //  low. Typical situations lie somewhere between these two
0914:            //  extremes.
0915:            //
0916:            private void chainTest(int n) {
0917:                planner = new Planner();
0918:
0919:                Variable prev = null, first = null, last = null;
0920:
0921:                // Build chain of n equality constraints
0922:                for (int i = 0; i <= n; i++) {
0923:                    String name = "v" + Integer.toString(i);
0924:                    Variable v = new Variable(name);
0925:                    if (prev != null)
0926:                        new EqualityConstraint(prev, v, Strength.required);
0927:                    if (i == 0)
0928:                        first = v;
0929:                    if (i == n)
0930:                        last = v;
0931:                    prev = v;
0932:                }
0933:
0934:                new StayConstraint(last, Strength.strongDefault);
0935:                Constraint editC = new EditConstraint(first, Strength.preferred);
0936:                Vector editV = new Vector();
0937:                editV.addElement(editC);
0938:                Plan plan = planner.extractPlanFromConstraints(editV);
0939:                for (int i = 0; i < 100; i++) {
0940:                    first.value = i;
0941:                    plan.execute();
0942:                    if (last.value != i)
0943:                        error("Chain test failed!");
0944:                }
0945:                editC.destroyConstraint();
0946:            }
0947:
0948:            // This test constructs a two sets of variables related to each
0949:            // other by a simple linear transformation (scale and offset). The
0950:            // time is measured to change a variable on either side of the
0951:            // mapping and to change the scale and offset factors.
0952:            //
0953:            private void projectionTest(int n) {
0954:                planner = new Planner();
0955:
0956:                Variable scale = new Variable("scale", 10);
0957:                Variable offset = new Variable("offset", 1000);
0958:                Variable src = null, dst = null;
0959:
0960:                Vector dests = new Vector();
0961:
0962:                for (int i = 0; i < n; ++i) {
0963:                    src = new Variable("src" + Integer.toString(i), i);
0964:                    dst = new Variable("dst" + Integer.toString(i), i);
0965:                    dests.addElement(dst);
0966:                    new StayConstraint(src, Strength.normal);
0967:                    new ScaleConstraint(src, scale, offset, dst,
0968:                            Strength.required);
0969:                }
0970:
0971:                change(src, 17);
0972:                if (dst.value != 1170)
0973:                    error("Projection test 1 failed!");
0974:
0975:                change(dst, 1050);
0976:                if (src.value != 5)
0977:                    error("Projection test 2 failed!");
0978:
0979:                change(scale, 5);
0980:                for (int i = 0; i < n - 1; ++i) {
0981:                    if (((Variable) dests.elementAt(i)).value != i * 5 + 1000)
0982:                        error("Projection test 3 failed!");
0983:                }
0984:
0985:                change(offset, 2000);
0986:                for (int i = 0; i < n - 1; ++i) {
0987:                    if (((Variable) dests.elementAt(i)).value != i * 5 + 2000)
0988:                        error("Projection test 4 failed!");
0989:                }
0990:            }
0991:
0992:            private void change(Variable var, int newValue) {
0993:                EditConstraint editC = new EditConstraint(var,
0994:                        Strength.preferred);
0995:                Vector editV = new Vector();
0996:                editV.addElement(editC);
0997:                Plan plan = planner.extractPlanFromConstraints(editV);
0998:                for (int i = 0; i < 10; i++) {
0999:                    var.value = newValue;
1000:                    plan.execute();
1001:                }
1002:                editC.destroyConstraint();
1003:            }
1004:
1005:            public static void error(String s) {
1006:                System.err.println(s);
1007:                System.exit(1);
1008:            }
1009:
1010:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.